
18-500 Design Project Report: KaraoKey, 03/03/2022

1

Abstract—Vocal coaches are hard to find and are expensive, so

there have been many apps created to mimic the feedback one would
get at a singing lesson. However, we have noticed that current state of
the art vocal coach apps are overly technical and do not provide real
time feedback to the user.

KaraoKey is a casual karaoke-inspired web application targeted
towards reducing anxiety behind recreational singing. We aim to
reduce concerns about users’ pitch by providing real-time visual
feedback informed by the YIN algorithm. This feedback will be shown
to the user within 250 milliseconds of their input vocals.

Index Terms—Pitch detection algorithm, real-time feedback,
YIN algorithm, Vocal Coach

I. INTRODUCTION

Music is an everyday part of life. People bond over the shared
taste of songs and artists, and casual singing is commonplace at
many social events. However, for some, singing is an activity
that is anxiety inducing. Whether it is due to concerns about
pitch, or confidence issues, some might be embarrassed to
actually partake in casual singing.

When it comes to reaffirming or growing one’s skills as a
casual singer, the options are limited. Vocal coaches are
expensive and hard to find. They are also often more than what
the average singer would need, as vocal coaches target upper
echelon singers. The content that vocal coaches teach can be
overly technical and focus more on concepts that are irrelevant
to the casual singer, such as breathing technique, vocal
enunciation, and correct posture.

After doing a competitive analysis of existing vocal coach
apps, we also realized that many apps do not have effective
feedback mechanisms. Many apps did not give real-time
feedback, which we think is essential in any educational setting.
This is the main focus in our feedback mechanism loop that
helps us stand out from other existing methods of vocal
improvement. In addition to real-time feedback, we will also
provide quantitative scoring so that users can gauge their
performance and track growth.

With KaraoKey, we aim to create a web-app that provides
real-time feedback for casual singers to reaffirm their singing
abilities. We are taking a gamified approach inspired by one of
the most popular and successful educational apps, Duolingo.

Users will sing to hardcoded melodies and songs, and the app
will give them real-time visual feedback on a five-line staff as
to whether they are on pitch or not. After they are done singing,
a more comprehensive analysis will be done, and a scoring will
be provided.

Our app’s feedback mechanism is the main focus– we will

not be overly technical and provide only baseline, rudimentary
feedback so as to not overwhelm the user. We will be
encouraging but honest, as reaffirmation and confidence in
one’s singing abilities is our main goal. We will gamify this
approach, as to build on the user’s intrinsic motivation to
improve their singing. With these core goals in mind, we
believe that this is an effective approach to tackle our use case.

II. USE-CASE REQUIREMENTS

We have set quantitative and qualitative benchmarks for our
app to ensure the accuracy and effectiveness of our app. Most
of them regard the ability to provide accurate, real-time
feedback. We also have benchmarks on our user interface. The
following are our requirements.

A. Latency in real-time feedback

According to the Web Audio API specification [1], a popular
API used for “processing and synthesizing audio in web
applications,” a latency of 30 milliseconds or less is
recommended for real-time audio processing. The Audio
Engineering Society's Technical Council recommends a latency
of 20 milliseconds or less, based on research on human
perception of audio delays [2].

The reason why 30 milliseconds appears to be the standard
in terms of real time feedback is due to a phenomenon called
the Haas Effect. The Haas Effect states that if a sound follows
another sound within 40 milliseconds, the two sounds are
perceived as a single sound. These standards will be different
for us, as we are providing real-time visual feedback for audio
input. The Haas Effect provides guidelines on human
perception of real-time audio feedback.

According to the Nielsen Norman Group [3], 100 ms is the
limit for having the user feel like the app is reacting
instantaneously to the user input. We will aim to have our page
be as responsive as possible, but this metric is not feasible
considering the amount of feedback processing needed. We’ve
decided to relax this requirement to match the average human
reaction speed, the time it would take for a user to react to visual
stimuli.

For this reason, we are aiming for a latency of 250
milliseconds or less for visual feedback. If the latency is too
high, the user may perceive a major delay between their singing
and the resulting visual feedback, which may be distracting and
make our application difficult to use. It is pertinent that we
minimize the duration between when the user sings a note into
the microphone and when the user gets the feedback for that
note.

Anna Gerchanovsky, Anita Ma, and Kelly Woicik

Department of Electrical and Computer Engineering, Carnegie Mellon University

KaraoKey Design Proposal

18-500 Design Project Report: KaraoKey, 03/03/2022

2

B. Pitch Detection Accuracy

The Journal of the Audio Engineering Society suggests that
a level of accuracy between 90% and 95% is achievable for
most pitch detection algorithms [4].

Ideally, we aim for such a level of accuracy. This would
provide a more useful, effective, and engaging experience for
the user. However, this comes with the risks of requiring more
processing and complexity, thus potentially increasing the
latency of the pitch detection algorithm.

As our visual feedback consists of simply plotting their input
note on a five line staff, we have decided to aim for a 87%
accuracy rate as a starting point. This means that our pitch
detection algorithm correctly identifies the input note in most
cases, but occasionally misidentifies a note. We believe that this
visual representation of feedback gives a little more leeway, and
is thus more forgiving to minor errors of pitch detection. We
must strike a balance between accuracy and latency, and in this
case, we decided to sacrifice and lower our required accuracy
rate.

C. Range of Notes

The range of notes that the average human voice can produce
is 85 to 1100 Hz. For male singers, the range of notes in songs
usually spans between F2 (87.31 Hz) to G4 (392.00 Hz). For
female singers, the range of notes in popular songs typically
spans between A3 (220.00 Hz) to C6 (1046.50 Hz) range.

Because our app is designed to provide visual feedback for
all types of beginner singers, our web application should be able
to support a wide range of notes. We are aiming to recognize
frequencies and detect notes from 85 to 1100 Hz.

D. Latency in post-song analysis

According to the same article by the Nielsen Norman Group
[5], a 10 second delay is the upper limit to how long a user will
stay engaged with an app. We believe that 10 seconds is more
than enough time to process any post-song statistics, so we have
lowered the latency requirement to be 5 seconds.

E. User Interface Interaction

 Our user must be able to seamlessly use our app with little to
no learning curve. Thus, our app should be easily navigable and
easy to understand. There are many UX Metrics that Adobe
recommends, including task time, completion rate, and task
satisfaction [6]. We have decided on the following quantitative
requirements.

Task time:
 Time to complete registration: 2 minutes. We believe

that the registration page should be short and concise.
If the registration page is too verbose, we believe that
we will lose the user's attention.

 Time from login to singing page: 30 seconds. The user
should be able to easily navigate through these pages
and choose a song of their liking.

 Time from song analysis to singing page: 10 seconds.
This navigation should be very trivial, as to make
practicing over and over again an easy experience.

Completion Rate: We hope to have a 95% completion rate.
We hope to provide an experience that allows users to stay
completely engaged with our app. Task Satisfaction: We hope
to have a 95% user satisfaction rate. We hope to provide
feedback that is helpful to the user. We hope to have them feel
like they have gained something from this experience.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

A. WebApp Design

 Upon opening KaraoKey, users will be greeted with a home
screen prompting them with 2 buttons: login and sign up. Based
on their choice, they will be directed to separate pages in order
to enter the necessary information. Once verified as a user, they
will be directed to a mode selection screen where they will have
the option of “Song Mode'' or “Practice Mode”. These buttons
will both bring up different screens filled with hardcoded songs
or melodies, respectively. Upon clicking on one of the songs or
melodies, the user will be directed to a song mode page that
displays song lyrics, notes, song progress, and the users pitch.
After completion of the song/melody, a graph of user pitch vs.
desired pitch will be displayed as well as percentages of hit and
missed notes. From this screen, they will have the option to
return to the mode selection screen or try the song again. A
more detailed diagram can be found in Appendix - Diagram 1.

B. System Diagram

A detailed system diagram can be found in Appendix -
Diagram 2.

C. Django Framework

Karaoke will run on the Django framework as Anna and
Kelly have experience working with this framework and it also
has an intuitive MVC layout. Additionally, this framework will
allow us to efficiently store the users along with their
song/melody results within a user model. Views will handle all
of the website navigation.

D. Pitch Detection

The pyaudio module will allow us to access the users’
microphone for recording while the aubio module will handle
the pitch detection of the users’ voice. The recorded notes will
then be compared with hardcoded note values for each
respective song/melody to detect accuracy.

E. Feedback Generation and Scoring

We will be providing feedback during the song/melody in
real time as well as after the song/melody. The real-time
feedback will display where the user's pitch is relative to the
hardcoded recorded pitch. The hardcoded pitch for the song will
be displayed as blocks on the screen while the users’ pitch will
be displayed via an arrow that traverses the screen as the user
progresses through the song. Shown on the next page are
example images of this process.

18-500 Design Project Report: KaraoKey, 03/03/2022

3

(a)

(b)

Fig. 1. (a) and (b) show the progression of gameplay during singing feature of
Karaokey.

There will also be after song/melody feedback that will show

a graph of the hardcoded desired pitch vs the users’ recorded
pitch. This graph will be a line graph with time on the x-axis
and pitch in Hz on the y-axis. The 2 lines graphed will separate
the users’ pitch from the desired pitch and data will be gathered
via a .txt file that will be written to once the user has finished
the song/melody. This .txt file will display timestamps as well
as recorded pitch. Additionally, we will generate metrics in the
form of percentages displaying hit notes and missed notes.

IV. DESIGN REQUIREMENTS

A. AJAX Update Requirements

The AJAX update requirement, namely that it be called every
100 milliseconds, is satisfied trivially. AJAX is asynchronous,
so it does not wait for a server response about the last request
before sending another one, meaning that we can assign this 100
milliseconds period for AJAX calls. Even if a call takes above
these 100 milliseconds, which would fall into our 250
milliseconds latency, an issue will not occur.

We will likely use MediaStream Recording API to record
audio, which provides an ondataavailable event handler, which
can collect audio information at a given frequency, or whenever
it is called. If this is called by the AJAX update, we do not need
to worry about problems sampling information at this
frequency.

B. Latency Requirements

As we require our latency in real-time feedback to be less
than 250 milliseconds from the time the user sings a note to
when visual feedback for that note is displayed on the screen,
we will have to make sure our pitch detection algorithm takes
only a fraction of this time. As the best pitch detection
algorithms have a latency of up to 60 seconds, we will also
require that our algorithm’s latency be under 80 milliseconds.

C. Accuracy Requirements

 We will require that our pitch detection algorithm be at least
85% accurate for input frequencies within the range of 85-1100
Hz, to meet our accuracy and range of notes use-case
requirements. This means that we must be effective at filtering
out everything above 1100 Hz and below 85 Hz. We will be
using the aubio module for this.

V. DESIGN TRADE STUDIES

A. Pitch Detection Approach

We have chosen to use an existing module for pitch
detection. We researched the risks of developing a homegrown
algorithm. It is very complex and difficult to create a fast
algorithm to detect pitch. Some of the best pitch detection
algorithms have a latency of 10-60 milliseconds [7]. There are
many factors and optimizations that the best audio modules use.
Especially as a group with limited experience with signal
processing and debugging signal processing algorithms, these
features will be extremely difficult to implement and optimize
if we were to implement them by hand. Using a 3rd party
module for pitch detection will help us achieve our latency use-
case requirement faster.

B. Pitch Detection Module

After deciding to use a pitch detection module instead of
creating it ourselves, we are using aubio for pitch detection.
While there are many other python audio modules that exist,
such as librosa, crepe, and pyAudioAnalysis, aubio is the most
commonly used module for real-time pitch detection. This way,
if we were to run into any bugs or issues, there would be many
resources in the form of documentation, stackoverflow posts,
etc. that could help us out. We have also used this module in the
past, so we are most comfortable iterating on this project with
this module. By relying on the standard pitch detection module,
we will be able to reach our latency use-case requirement more
confidently.

C. Pitch Detection Algorithm

In the aubio module, there are 6 pitch methods to choose
from: schmitt, fcomb, mcomb, specacf, yin, and yinfft [8]. In
order to decide which algorithm would work best for our use
case, we tested all the pitch detection algorithms 4 times under
the same conditions. The testing environment was as follows: a
quiet apartment with a fan in the background and the Audio
Technica BHPS1 as well as the Scarlett Solo 3rd Gen interface
connected to a laptop. The four tests were as follows: Kelly
singing to “C Major Scale - Slow”, Kelly holding her phone
playing “C Major Scale - Slow” to the microphone, Kelly

18-500 Design Project Report: KaraoKey, 03/03/2022

4

singing to “C Major Scale - Fast”, Kelly holding her phone
playing “C Major Scale - Fast'' to the microphone.

The results from all these tests can be found in the following
linked google sheets document: https://tinyurl.com/karaokey-
pda-tests. For the yin, specacf, and fcomb algorithms, the
singing vs. recording tests outputted vastly different
frequencies in Hz (i.e. 270 vs. 2000 Hz), which does not lend
well to comparing the two audios for scoring. For the mcomb
algorithm, these same discrepancies tended to happen, but to a
lesser degree (i.e. 200 vs. 900 Hz). Nonetheless, this
discrepancy was not ideal. For the schmitt algorithm, the
outputted frequencies were quite close along the same song.
However, our most accurate algorithm was by far the yinfft,
reporting incredibly close pitches to Kelly’s recordings. Thus,
we decided to move forward with the yinfft algorithm.

D. Backend Language

We have chosen to use a Python backend instead of C++.
Despite the fact that python, a high-level interpreted language,
is about 20 times slower than C++ , a lower-level compiled
language, there are ways we plan on mitigating this slowness
factor [9]. Most of the serious computation for the pitch
detection will be handled by modules such as aubio, which is
implemented in C++. We are also cognizant of the aspects of
python that make it slow, and we will note this as we are coding.
For example, as lists in python can hold objects of different
types, each element needs to store additional metadata, which
hinders runtime and memory consumption. We will avoid using
lists and instead opt to use numpy arrays, which are much
faster. Another factor that led us to choose python over C++ is
development cost. This project will require a lot of iteration and
improvement initially, and it will be much easier to do so using
python. At least in the early stages of the project, we have
decided to value Python’s lower development cost over its
slowness factor. Eventually, if we truly cannot optimize our
code further to meet our latency requirements and have reached
a point where iteration has slowed, we will transition to C++.

E. Hz vs. Note Names

We have chosen to handle all of the pitch detection in Hz.
Originally, we had mockups that suggested notes being
displayed on a staff, which would require the mapping of Hz to
note names for better placement on this staff. However, after
pivoting our use-case to be targeted to beginners, we decided
that this staff approach and subsequent note placement was not
extremely user friendly or intuitive.

F. Feedback Delivery

To not overwhelm the amount of information going through
the user’s audio channel, as they are already hearing themselves
and the backing track, we’ve decided to provide feedback in the
form of visuals. Such visuals will be basic and easy to interpret,
so that we are not inundating the user with even more
information they need to process.

G. Feedback Delivery Timing

There are advantages and disadvantages to real-time and
asynchronous feedback in education. Real-time feedback is

useful for users to make corrections in real-time, while
asynchronous feedback allows for deeper reflection on their
performance. However, singing on pitch is a skill that requires
immediate adjustments if they are singing off-tune, so it is
beneficial to provide a type of feedback that would allow them
to make these changes in real-time. This also mirrors the type
of real-time awareness that the singer will eventually develop
to sing on pitch. Therefore, we have chosen to have our main
feedback loop be synchronous. We will still include elements
of asynchronous feedback in the form of a more detailed
breakdown of the user’s performance after they have sung the
melody/song. This way we can both build up the user’s pitch
awareness and allow them to reflect more deeply on their
performance.

H. Song Selection

Initially, our feature that has users sing to songs included a
sub-feature that would allow users to input a song of choice to
sing to. However, since then, we have decided to remove that
sub-feature and only allow users to choose from a list of hard-
coded songs. This decision allows us to meet our latency and
accuracy use-case requirements, as this would limit the amount
of preprocessing required by the (sometimes inaccurate) pitch
detection algorithm to get the song’s pitches.

I. Frequency Range

Ideally, we will be able to accommodate all vocal ranges. The
lowest note ever sung was 0.189 Hz (G-7), sung by Tim Storms,
and the highest note was 1134.9 Hz (D#10), sung by
Tsetsegsuren Munkhbayar. However, accommodating for such
a wide range would make our pitch detection algorithm less
accurate. To meet our pitch accuracy use-case requirements,
we’ll be limiting our range of frequencies. This is so that the
pitch detection algorithm can focus on a more specific range of
fundamental frequencies for detection. This way, we can also
limit the amount of noise and harmonics that can interfere with
the pitch detection.

J. Microphone and Interface

 When picking a microphone, it was important to consider
options that minimize background noise and so our advisor,
Professor Sullivan recommended a headset microphone as it
ensures the microphone is always around 2 inches from the
users mouth, picking up the most prominent signal. A lot of the
headset microphones we found online tended to be incredible
headphones with an okay microphone attached. However, our
web app depends on accurate audio in order to provide correct
feedback to our users’. Thus, we looked into broadcasting
headsets and settled on the Audio-Technica BHPS1. This
headset not only cancels out background noise via the
headphones, but also works as a dynamic microphone to
decrease peaking in the microphone despite it being very close
to a users’ mouth.

Additionally, we purchased an interface in order to translate
the signal from the high quality microphone we have into
something that our computer could process in full. We decided
on the Scarlett Solo 3rd Gen as it was compatible with our
Audio-Technica headphones inputs/outputs and also was a

18-500 Design Project Report: KaraoKey, 03/03/2022

5

more budget friendly, yet high quality interface option.

K. Framework

When considering how to build our web application, we
thought about both Django and Flask as a framework. We
selected Django, for a few reasons. The first consideration was
familiarity. Both Kelly and Anna are comfortable building
Django web applications and have li ttle experience working
with Flask. So, out of time considerations, Django was
preferred, unless Flask had specific features we needed that
were not available with Django. Django also provides a
stronger base and more support for front end features, both of
which would allow us to develop more in a short time scale.
Flask is more flexible as a framework and tends to make
deployment simpler. However, the flexibility didn’t outweigh
the benefits of Django for us and, because we don’t currently
plan on deploying our web application, the ease of deployment
wasn’t a factor for us.

L. Graphics Display Mechanism

When considering how to display feedback, we considered
using an existing graphics package, like Graph.js, or designing
it on our own with HTML, css, and JS. Using an existing
package has the benefit of being easier, more sophisticated and
visually pleasing, and likely having more responsive design in
order to scale with window size. However, an existing package
could be limiting and not provide the specific functionality we
want. It may be difficult to achieve the design we had in mind
exactly with an existing framework. Currently, we are using
Graph.js to provide feedback post-song. During the song, we
are experimenting with using a stepped line chart for target
pitch, and a moving element to indicate the user pitch in the y
direction and time in the x direction. This sacrifices our original
plan of a scrolling target pitch, but looks cleaner, and we are, in
general, more confident in it working.

M. Graphics Display

As mentioned in the previous tradeoff, the original design
included continuously scrolling target pitch, but we are
currently considering a static graph with target pitch, which the
user pitch scrolls through horizontally as time passes. This
means we do not have to worry about the current target pitch
remaining aligned on the screen if the window is resized.
However, we liked the idea of a scrolling target pitch because
it focused on a smaller portion of the song at a time. As a
compromise, our current plan is to break the target song or
melody into chunks, similarly to how karaoke machines show a
portion of the lyrics at a time. Each target pitch chunk is
displayed statically, but is switched out after it is done, allowing
the user to focus on smaller portions of the song at a time.

N. Overall tone

Since our initial proposal, our project has shifted from being
focused on a vocal coach to being more gamified and providing
an experience more similar to traditional karaoke. This
approach was heavily inspired by one of the most successful
language education apps, Duolingo. A reason for this shift was
to appeal to our target audience. Our target audience is less

experienced and has a casual interest in singing, and does not
need extremely sophisticated feedback. This allows us to focus
on the user experience and making the feedback more engaging.
It also limits our scope to simpler analysis and excluding
advanced vocal techniques from consideration.

VI. SYSTEM IMPLEMENTATION

A. Subsystem A- Pitch Detection

Our Pitch Detection subsystem will have the workflow of the
diagram shown on the following page. First, the user will be
singing into the Audio Technica BPHS1 headset. This headset
will be connected to the Scarlett Solo 3rd Gen interface via a
XLRM 3-pin connection and a ¼” headphone jack connection.
The XLRM 3-pin connection works to upload the inputted
users’ voice from the headphones to the interface, while the
headphone jack allows the user to hear themselves. As seen in
the arrow connection, the users’ voice is processed before it gets
to the Scarlett Solo due to the Audio Technica’s ability to filter
out background noise in the inputted signal. Once at the Scarlett
Solo, the users’ voice will be interpreted into a readable signal
for the laptop and connected via a USB-C wire to the laptop.

Once at the laptop, the processed users’ voice will go through
the web interface frontend and be passed to the python pitch
detection backend through views.py (more mentioned in the
next section). Once the backend receives the users’ pitch on the
PyAudio Stream, it will be passed to Aubio, which will run a
YINFFT pitch detection algorithm in order to detect the pitch
of the users’ voice (in Hz). It will then send this pitch data back
to the front end. This pitch will then be displayed on the screen
via an arrow so that the user is able to see their pitch via visual
feedback.

B. Subsystem B- Web Application Implementation

The organization of the web application for this project will
follow the standard design of a Django web application.
Navigation between pages will be handled by the Django
urls.py and views.py functions, which will render generally
static HTML templates. The two pages we expect to make use
of JavaScript will be the gameplay page, during which the user
will perform, and the feedback afterwards.

The feedback page will use JavaScript in the form of
Graph.js, in which feedback will be rendered in the form of
charts. We will likely use line graphs in order to represent the
user pitch compared to the target pitch, over time.

The gameplay page will make use of more sophisticated
JavaScript. We plan to use the MediaStream Recording API.
This creates a stream in JavaScript, which will continuously
record the user vocals. The stream can have a specific sampling
frequency assigned to it. An advantage of this API is that it can
be processed during and after recording. The ondataavailable
event handler is called when new data is recorded, or on
command, like we can with AJAX. We can use this event to
pass information into our python views with AJAX. We will
process the most recent data in python views. Here, we can
update the model of the current game run in the database. The
model will have a one to one relation with a user who is

18-500 Design Project Report: KaraoKey, 03/03/2022

6

currently playing, and the audio data of the vocal recording.

Fig. 2. Block diagram of pitch detection subsystem workflow.

Fig. 3. Block diagram of web applicaton workflow

Pitch detection will be done at this point. Comparison with
the target pitch ca n be done here or later. Then, we can pass
information back to the JavaScript AJAX, which can then
update the view to show where the user pitch is. Upon
completing the song, the model should be updated one last
time, and the stream should be stopped. At this point, the game
object can be used in scoring and evaluation, providing overall
feedback and comparisons to the target pitch.

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for Pitch Detection

In our use-case requirements, we are aiming for a latency of
250 milliseconds. In order to verify that we have achieved this
metric, we will screen record with audio our application
running the melody “Happy Birthday” and have the singer
abruptly change notes. We will then review the screen
recording to measure how long it took between a user changing

18-500 Design Project Report: KaraoKey, 03/03/2022

7

notes and our web application moving the users’ pitch arrow.
The screen recording will more accurately allow us to measure
this timestamp rather than relying on our own reaction time
with a timer. We will do this multiple times through the course
of a song and take the average time across all trials in order to
extrapolate to our true latency. A success will be achieved if our
average is less than 250 milliseconds.

Another use case requirement relies on our frequency range
being fixed at 85 to 1100 Hz. In order to ensure that our pitch
detection algorithm does not detect frequencies outside this
range, we will use our current aubio/pyaudio pitch tracking
demo code, play frequencies less than 85 and greater than 1100
Hz in a continuous note and verify via the output that only
frequencies between 85 to 1100 Hz were detected. A success
will be achieved if our output only contains frequencies
between 85 to 1100 Hz.

Our last use case requirement dealing with pitch detection
relies on an accuracy of 85%. We will measure this by using
our current aubio/pyaudio pitch tracking demo code and
playing notes of known frequency. We will then compare the
output of our code with the known frequency that we were
playing through the microphone. A success will be achieved if
we are able to identify the correct frequency in 85% of our
trials.

B. Tests for Web Application

The first requirement we want to test, in this case, is latency
in post-song analysis. Our goal is to provide users with a
summary on their performance over the course of the song
within 5 seconds of them completing the song. To confirm that
we meet this requirement, we will perform multiple trials of all
the implemented songs, and record the time it takes. We will
record apparent time with an external timekeeping device that
is triggered by the user on completion of the song and stopped
on receiving feedback, as well as internally, by recording time
stamps upon exiting the game screen to successful load of the
feedback afterwards.

The second set of requirements that is handled by the web
application is user interface interaction requirements. In order
to test these, we want to give users who are unfamiliar with our
web application a task and observe how they perform. Based on
our requirements, the test will likely consist of registering,
logging out, logging back in, navigating to song selection,
choosing a song, performing it, viewing the results, and exiting.
We will do this monitoring ourselves, to note any issues, as well
as with internal logging statements. We hope to be able to
perform this test on 10+ people, and it may require additional
rounds if users have difficulties and the first round of user
interface interaction tests don’t go well. If we redo tests, we
would like to find new people, in order to keep using test
subjects who are unfamiliar with our application.

We have three time requirements: 2 minutes to complete
registration, 30 seconds to navigate from login to singing, and
10 seconds to exit from post-song feedback to home screen.
These tests will be monitored by internal logging keeping track
of the timestamp at which the user enters and exits a given page
of our web application.

The 100% completion rate will be monitored by observing
the tests. If a user is unable to complete the task at hand, that
will be considered a failure and we will have to reconsider our
system design. Once we have made necessary changes, another
round of testing will occur.

For task satisfaction, this will be measured by performing a
post-task survey of the user. Although this is not finalized, the
survey will likely ask users to rate statements similar to these
on a scale from strongly disagree to strongly agree:

1. I felt comfortable using the web application.
2. Navigation was simple and intuitive.
3. I was satisfied with the speed of feedback provided.
4. I was satisfied with the format of the feedback

provided.

VIII. PROJECT MANAGEMENT

A. Schedule

Our schedule consists of two generally parallel branches -
development of pitch detection and of the web application - that
are progressing in parallel until they are ready to be integrated.
Both the web application navigation and framework as well as
pitch detection algorithms should be developed enough after
spring break to be able to touch base on how information is best
stored and passed between the two. Our goal is to have separate
elements of both branches complete by the beginning of April,
at which point the focus will be on finalizing the integration, as
well as completing any remaining tasks, as, at that point, the
rest of the time is slack.

B. Team Member Responsibilities

Kelly is tasked with primarily focusing on the pitch detection
algorithm. Her responsibilities include learning about and
selecting the best available pitch detection algorithm for our
purpose, familiarizing herself with it, and setting up the basic
template for using it. She is also taking the lead on purchasing
materials.

Anita’s main responsibility is generating feedback. This
builds on Kelly’s work, and also requires an understanding and
analysis of the target pitch. Feedback includes both real time
feedback and feedback and analysis after the song is played.

Anna’s focus is building the web application. She is to focus
on navigation, storage, and organization of the Django web
application, which will include identifying where and how the
pitch detection algorithm and pitch comparison can be
integrated.

C. Bill of Materials and Budget

Item Cost
Audio-Technica BPHS1

Headset
$234.33

Focusrite Scarlett Solo 3rd
Gen

$128.39

Total: $362.72

D. Risk Mitigation Plans

Our greatest concern is the quality and ability of our pitch
detection algorithm. In this case, we focused on two possible

18-500 Design Project Report: KaraoKey, 03/03/2022

8

issues that could come up: issues with pitch detection accuracy
and issues with pitch detection latency.

If we run into issues with the accuracy of our pitch detection
algorithm, the ultimate plan for mitigating this would be to test
out and ultimately move onto a different pitch detection
module. However, our first course of action will be to see if any
processing could be done to the input audio in order to mitigate
this. For example, we are considering using a low pass in order
to eliminate non-singing noises such as breathing, gasping, or
sighing.

If we run into issues with latency, there are a few options to
consider. First, we will reexamine how information is passed
through the system and evaluate if we could make this more
efficient. For example, we may find that using AJAX has a
larger lack than expected, in which case we would look for
alternative ways to update the view. However, if it seems that
the latency issues are caused by the algorithm itself, we may
have to move to C++, which is faster than Python, when we
choose a pitch detection algorithm.

IX. RELATED WORK

When working on this project, we had a few sources of
inspiration both for our goal, and for our implementation.

A. At Home Karaoke Machine

As we are focusing on the karaoke aspect of our project, just
with the addition of feedback, this is one of the closest
alternatives we have to consider. An at home karaoke machine
comes with a speaker and microphone. Optionally, it may have
the ability to duet, the ability to connect to a personal device
and display lyrics. These often cost greater than $200, but
cheaper versions in the $40-$50 range are available.

B. Rock Band

Rock Band is a video game where users aim to imitate the
performance of a real band for a song, using specialized
controllers to simulate instruments like drums and guitar, and a
microphone to score vocals. The singer is scored like our user
will be, on the accuracy of their pitch. Target notes and lyrics
scroll in order to guide the user, again, similarly to what we plan
to implement.

C. Pitch Perfect

Pitch Perfect is a Spring 2021 Capstone Project that aims to
provide users with feedback on their singing. Users perform an
exercise, and, afterwards, receive feedback on their pitch, their
rhythm detection (as measured by claps), and their posture.
They provide feedback on more metrics than we aim to.
However, they do not provide real time feedback, which we aim
to do, because of the difficulty they had in reducing latency.

X. SUMMARY

Our final goal for this project is to create a karaoke web
application that is able to provide users with feedback on their
singing by comparing their pitch with that of the target song.
We will provide real time feedback as well as a summarized
report upon completion of the song.

Our aim is to provide users who are beginners or just not
quite confident with their karaoke skills with an opportunity to
practice in a fun but productive way, where they can enjoy the
karaoke format, while still receiving constructive feedback. We
do not aim to provide vocal coaching or feedback on advanced
techniques, and therefore KaraoKey will not be designed to
analyze scatting or ad-libbing. Doing so is outside the scope of
our project and, additionally, we believe that these users are
likely already more confident and comfortable with practicing
in a real karaoke setting.

Our aim is to keep our system accessible to our goal user.
Our materials include a headset microphone costing ~$230, but
we aim to develop a web application that is able to perform with
cheaper materials as well if it is used in a non-crowded,
generally quiet environment. We also want to emphasize the
real time feedback, so keeping latency down while passing the
vocal input between elements of our system will be key.

GLOSSARY OF ACRONYMS

AJAX – Asynchronous JavaScript And XML
FFT – Fast Fourier Transform

REFERENCES
[1] “Web Audio API,” www.w3.org.

https://www.w3.org/TR/webaudio/#AudioContext-section (accessed
Mar. 03, 2023).

[2] “Audio Guidelines for Over the Top Television and Video Streaming,”
2016. Accessed: Mar. 03, 2023. [Online]. Available:
https://www.aes.org/technical/documents/AESTD1005_1_16_09.pdf

[3] J. Nielsen, “Response Time Limits: Article by Jakob Nielsen,” Nielsen
Norman Group, 2019. https://www.nngroup.com/articles/response-
times-3-important-limits/

[4] S. Siddiq, “Data-Driven Granular Synthesis,” www.aes.org, May 11,
2017. https://www.aes.org/e-lib/browse.cfm?elib=18619

[5] J. Nielsen, “Response Time Limits: Article by Jakob Nielsen,” Nielsen
Norman Group, 2019. https://www.nngroup.com/articles/response-
times-3-important-limits/

[6] “Usability Metrics: Measuring UX Design Success | Adobe XD
Ideas,” Ideas. https://xd.adobe.com/ideas/process/user-testing/usability-
metrics-measuring-ux-design-success/

[7] C. Harte, "Towards automatic extraction of harmony information from
music signals.", 2006

[8] “Man page of AUBIOPITCH,” aubio.org.
https://aubio.org/manpages/latest/aubiopitch.1.html (accessed Mar. 03,
2023).

[9] “Intel | Data Center Solutions, IoT, and PC Innovation,” Intel.
https://www.intel.com/content/www/us/en/homepage.html?ref=https://w
ww.intel.com/content/www/us/en/develop/articles/is-python-slower-
than-c-for-mathematical-computations.html (accessed Mar. 03, 2023).

18-500 Design Project Report: KaraoKey, 03/03/2022

9

XI. APPENDIX

Diagram 1: Web Application User Interface Design

18-500 Design Project Report: KaraoKey, 03/03/2022

10

Diagram 2: System Diagram

18-500 Design Project Report: KaraoKey, 03/03/2022

11

Table 1: Schedule

