ScentBôt

DESIGN REVIEW | SS23 ECE Capstone

Use Case

- A mobile scent classification system that can map and locate the source of odor to help prevent hazards.
- Current scent detection systems are immobile, extremely expensive, and inaccessible to consumers, like people suffering from anosmia.
- ECE Areas: Signals & Systems,
 Software Systems

Design Requirements

#01 Accurately classify different scents	#02 Collision-free navigation and location detection	#03 Accessibility
Classification Accuracy (TPR): > 95%	Computation time < 1.5s per step for data collection, routing and inference	Cost effective scent module (< \$150)
False negative rate: < 1%	Robot can detect scent from > 0.5m radial distance	I2C compatible sensors for easy interfacing
Collect training data in at least 3 different indoor temperature and humidity environments	Prediction confidence threshold for detecting a scent > 90%	

Solution

Data Flow

Setup

- Test Arena 2m x 2m
- White Foam Core Boards
- Arena divided into 4 x 4 grid
- Overhead Camera
- Multiple objects on corners only one scented

The Robot

- Arduino Uno Microcontroller
- ESP8266 Wi-Fi Module for relaying data
- Sensor array for collecting gas data
- DC motors with magnetic encoders
- Exhaust fan to ensure continuous air flow
- L298N motor driver
- HC-SR04 Ultrasonic Sensor
- 2 x 6V power supplies

Verification & Metrics

Requirements	Testing	Metrics
Accurately classify different scents	Inference testing of algorithm on individual scents & testing with various unscented objects	Accuracy (TPR): > 95% False negative rate: < 1%
Collision-free navigation	Correct path planning around various configurations	Robot can navigate to within 5 cm of each waypoint
Low latency	Time taken to send classification label in test setup	Latency of detection, routing, and classification: < 1.5s
Record location of different scents	Robot deviation from path once a scent is detected	Robot can detect scent from > 0.5m radial distance
Accessibility	Cost of sensor module	Estimated budget for sensor module: < \$150

Alternative Approach: Random Exploration

- High dependence on sensor sensitivity for our project
- Test the working distance of our sensors to determine the need for path planning
- Test setup: one object, scent diffuser to create increasing density for scent detection
- Robot will randomly explore the space and follow the increasing scent probability to the object
- Metric: 3 minutes to convergence

Progress So Far

- Wavefront Segmentation implementation
- Robot CAD progress

Schedule

Conclusion

- Overall purpose
 - A mobile scent classification system that can **map** and **locate** the source of odor to help prevent hazards, working toward considerations of public safety.
- Key changes
 - Random exploration approach
- Key challenges moving forward
 - Sensor sensitivity and determining need for path planning
 - Robot motor calibration