18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

8-Ball Lifeguard

Authors: Devank Agarwal, Justin Rager, and James Ray

Affiliation: Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract— A system designed to help people train their skills at
8-ball pool. The system projects lines onto the pool table to help
users align their shots. There is one line showing where to align
the cue stick, and lines showing the directions the target and cue
ball should go. The cue stick also incorporates sensors to provide
feedback to the user after each shot. It contains compasses that
allow for the calculation of the angle of the shot, relative to the
pool table. There are also accelerometers in the cue stick to track
the power

Index Terms— 8-Ball, computer vision, pool, sensor

1. INTRODUCTION

Eight ball pool is a very difficult activity for people to learn.
There are not a lot of resources available that are able to help
people learn which pool ball to aim for on any given shot, the
angle at which they should be shooting, and how to visualize
the shot they want to shoot. These are very difficult things for
new players to learn on their own. And the easiest way to learn
it would be by taking lessons. However, it can become very
expensive to receive a high quality pool lesson.

8 Ball Lifeguard is a project that can analyze a game state in
pool, provide the best shot available to the user by projecting
it onto the table, and help the user line up the shot by using a
laser coming out the front of the pool stick and an LED to tell
the user when their shot is on the correct angle. This project
will help new players tremendously because it takes the most
difficult parts of pool off of their hands so they can learn how
to correctly hit the cue ball. On top of that, it also helps the
user learn to hit the cue ball correctly by helping the user line
up the shot and provide feedback to the user on how to
improve their shot.

A project similar to this one was done in Spring 2019 but
our project differs from their project in 2 major ways. Their
project was focused on the game of 9 ball pool while ours is
built for 8 ball pool. This is a major difference because in a
9-ball pool you only have one choice of which ball to aim for
while in an 8-ball pool you have many different options for
which ball to aim at. Another major difference is that our
project is incorporating sensors and other features attached to
the pool cue. These sensors and other features are designed to
help the user be able to line up their shot better as well as
provide feedback on how to improve their shot, like should
they shoot harder or softer or what angle they were off by for
their shot.

II. UsE-CASE REQUIREMENTS

In order to make this product something people would want
to use, we have defined several use cases for our design. First
off, we want our product to be quick. It should be able to read
the table position and display the recommended shot quickly,
rather than having the user wait for a minute or more before
each of their shots. Because of this, we want our design to be
able to compute the recommended shot in less than 3 seconds.
As this calculation is fairly straightforward for most positions
on the table, this should not be difficult. We also want the CV
detection for the balls to take less than 5 seconds. Since the
balls are all different colors than the table, detecting the
positions of all the balls is not complex. The harder part of this
process is detecting which of the colored balls are solid color
vs striped. This is possible by checking for the amount of
white visible to the camera, but since it is more complex, we
are giving it a less-strict requirement.

For giving the user feedback, we also want the measured
angle and acceleration of the sensors on the pool table to be
accurate. For this, we want to make sure the cue is able to
update its position quickly and accurately. Our requirement for
this is that the pool cue should be able to update its position
every 10ms. While we are implementing a system to detect
when the cue makes contact with a ball, the cue stick should
be able to quickly record this data and send it to the laptop.
Being able to quickly record and send the data from the pool
cue to the laptop will also be useful for debugging and
integration, as it will allow us to quickly run tests instead of
waiting for seconds on minutes for the data to update and
send. This shows that the requirement is still useful even if we
are not constantly polling the stick for its position.

Our design should also not hinder the users. If we make the
pool cue much heavier than it previously was, it could alter
how they take shots, and when they remove the device, their
training will not be transferable. Additionally, if the device
weighs too much, it could unbalance the cue stick, which will
also make it hard for a user to transition to a regular pool
table. To minimize the effect of these, we have imposed a
weight limit on the pool cue sensors. All combined, it will
weigh less than 0.251bs, battery included. This should make it
that the pool cue is not unbalanced and does not weigh
significantly more than a regular cue without the sensors.

Overall, we also want to make sure our device can
measurably improve people’s skills at the game. Our goal is
for people to be able to pocket a ball on nearly every shot
while using our device. That may be unfeasible, so we want
users to either be able to make shots they couldn’t without our

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

device or significantly improve the accuracy of the shot, even
if it still missed. So, in our tests, we want users to either make
a shot they missed, or if they missed while using the device,
we want an improvement of 5 degrees or more. A 5 degree
improvement is significant enough to say it is not random
chance, and that using our device helped.

111. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our System includes a pool table with a wooden frame to
capture ball positions, a camera, and a projector on top of the
wooden frame to process and project said image capturing,
and a smart embedded cue stick which shall notify users real
time as to how accurate their shot is or isn't. Figure 1 depicts

a cartoon version of what the system would look like.

Projector

FIGURE 1: A cartoon description of the pool table.

The pool table system has three elements to it apart from the
table itself. We have the frame holding the system in place, the
camera and the projector. The Frame holding the camera and
projector is made up of plywood. The height of the two legs
are 3 inches wide and 55 inches tall since the projector needs
to be approximately 4 feet away to display the right
dimensions onto the table and then we add 7 inches to account
for the height of the pool table with the legs. There exists a
base on the bottom also made up of plywood, whose
dimensions are 42 inches by 18 inches serving as a
counterweight. The dimensions were chosen as such to
account for the dimensions of the pool table and to add a bit of
wiggle room. The top of the frame which would hold the
camera and the projector is also 42 inches wide, same as the
base, and 3 inches wide, same as the legs.

The camera used by the system is the Logitech C922X. This
will sit on top of the frame and will capture live video of the
pool table at all given moments. This video stream will be fed
to a laptop backend via USB which would handle the
Computer Vision aspect of the system and then feed it to the
shot calculation. Figure 2 is the block diagram for the backend
shot calculation and the AR system.

Backend Shot Calculation/Laptop

USB
_| Angle L
Correction Shot calculation
Find a Line from each
ball to cue ball
Image Find 1 line from each
USB Capturing to ball to each pocket
Position Remove Lines which
Formatting have collisions

Remove Lines which
require bounces

Create Image with
pool table
dimensions

Out of remaining set of
lines assign hardness
level

Find minimum hardness
of each ball and store
result (15 possibilities)

Add cue ball and
target ball

Separate out into solids

Draw lines from .
and stripes

cue ball to target
ball and target ball

to target pocket || Find minimum shot out ||
of selected category
HDMI
Projector Camera

4

Figure 2:The Block Diagram for the backend shot calculation

The Pool table will also have 4 barcodes which help us
correct for lens distortion and camera tilt so the readings are
not off. The Backend shot calculation would be responsible for
given a grid of balls as x,y coordinates finding the easiest shot
for the user to make. This would involve first finding a line to
every ball from the cue ball and eliminating balls where a
different ball would lie on the same line. Then from the balls
make a line to each pocket, remove the lines which would
cause a collision with other balls and save the one with the
smallest angle delta to the first line from the cue ball. If no
lines have been found check for whether or not a shot can be
made with a bounce and save that shot. Once the easiest shot
for each ball has been calculated, we find the easiest shot from
the set of all balls and return that to the image creation
pipeline. The image creation pipeline would be responsible for
creating the image which the projector would project. Once
fed in the shot to make, i.e the target ball and the cue ball
along with the lines (in the form of m and ¢ from y = mx + c)
the system will create an image of the cue ball, the first line
from the cue ball to the target ball, the target ball, and the
second line from the target ball to the pocket and then display

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

this image. Once displayed, this image will be used by the
projector to display the shot onto the pool table. The projector
we are planning on using is the Epson VS330. The image fed
to the projector will be sent via an HDMI cable from the
backend laptop.

The final subsystem within the project that we would like to
talk about is the smart embedded cue stick. Figure 3 is a
cartoon depiction of what the cue stick would look like.

Figure 3: The embedded cue stick and pool table.

There are multiple things involved in the making of the cue
stick. The stick itself will have an arduino nano which will act
as the microcontroller for communicating with the sensors on
the stick as shown in the green in the diagram. The sensor on
the stick is an accelerometer and a compass (Adafruit TDK
InvenSense ICM-20948 9-DoF IMU (MPU-9250 Upgrade))
which will tell the relative direction the stick is in and the
speed at which the shot is being made. These are shown in
orange in the diagram. These will feed their values into the
microcontroller which will in turn send them via a radio
transmitter (Deegoo-FPV 12pcs NRF24L01) to the receiver,
the same chip as above to the pool table. These in the diagram
are shown in mustard with the line connecting them. The pool
table itself will also have an arduino nano and a compass
which will help us determine the relative angle the cue stick is
at. The receiver will read the values from the cue stick and the
arduino will determine the relative angle and the speed of the
cue stick and send them to the laptop backend via USB. Once
the laptop backend knows the offset of the cue, it will send a
signal to the arduino on the pool table which will further send
it to the arduino on the cue stick to light up an LED if the
angle the cue stick is placed is well aligned. The system on the
cue stick is going to be powered by a battery on the stick and
the system on the pool table will be powered by a wire from
the laptop. Figure 4 shows the block diagram for the entire
system.

Pool Table System

Compass:
Adafruit
TDK
InvenSense
ICM-20948

SPI

Radio Transceiver:
Deegoo-FPV NRF24L01

A

Radio

A

Radio Transceiver:
Deegoo-FPV NRF24L01

SPI
Compass and
Accelerometer: | '2C
Adafruit TDK
InvenSense
ICM-20948
LED

Pool Cue System

Figure 4: The Block Diagram for the embedded cue stick
and table.

The pool table arduino is going to be connected to the laptop
backend via USB, the sensor on the stick and the table will
communicate with their respective Arduinos via I2C and the
arduino will communicate with the radio transceiver via SPI.
The transceivers will communicate with each other via radio.

IV. DESIGN REQUIREMENTS

The design requirements for our smaller implementation for
a real time 8-ball pool teaching assistant are based on our use
case-requirements. These can be broken down into multiple
parts.

A. The Camera Detection System

The first one we shall talk about is the camera detection
system. Since the entire system depends upon the initial
positions of the balls on the board we are striving to get an
estimate of 0.1linch accuracy for the detection of balls. The
camera we have chosen is fine grained enough for this and
more importantly we plan on correcting any obvious mistakes
which the camera may make, these being any distortion
caused by the shape of the camera lens and any degree of tilt
the system may have due to accidental bumping into the
frame. For this we plan on using the NVIDIA Vision

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

Programming interface. The basic math behind the software is
going to be a matrix inverse transformation to get the pixel's
actual position to its corrected position. For the angle
correction we plan on using 4 barcodes placed on the table,
whose offset from a perfect 90 degree angle can be used to
correct the tilt. Furthermore, the pool balls must be detected
with 95% accuracy.

B. End to End Latency

For our end to end latency we plan on having a 3.1 s end to
end latency between shot calculations. We define end to end
over here as from the time the balls on the table have 0
movement, that is the game state has been stabilized. The way
we plan on achieving this is by having the CV detection have
a 10ms latency which is ensured by openCV and then have the
shot calculation and image creation take 3 seconds. The way
this is being achieved is with parallel programming for each
ball where each thread runs its own separate calculation and
we have one thread for each ball.

C. Projection and Calculation

For the projection of the new shot created, The system
should help improve accuracy of shots by at least 5° or less if
the improved shot is made. We plan on achieving this by
ensuring that the projection and the shot created is not offset
by more than 2° from the pocket and the projection has a
margin of error of less than 0.1 inches. Given a pool table
with a 40 inch diagonal length, with these metrics we should
be able to achieve this use case requirement.

V. DESIGN TRADE STUDIES

We had to make a few executive decisions in regards to
certain tradeoffs. These mainly fall into three different
categories, the first of which is the shape and strength of the
frame holding the entire system together. The second of these
was the hardware we used and the ease associated with them
and the third was on how many sources of input we wanted to
feed into the system

A. More Rigid or More User Friendly?

For the pool frame, the biggest trade off we had to choose
between was the tradeoff between rigidity of the frame to
prevent movement of the system and how much of the users
view do we block from the pool table. The stronger the frame
is the more wood we would need to block the user's view and
playing perspective. We chose to lean towards the comfort of
playing the game. To counter the rigidity issue, we used a 3
inch width for the wooden frames, and chose to only have the
legs on the shorter sides of the table since those have the least
shots. To add structural support we added 2 inch by 3 inch by
2 inch cubes on each edge with brackets on the outside.
Furthermore we plan on adding diagonal trusses for further
support. We made the decision to let the frame wobble by a
tiny amount by correcting with software implementations for
the tilt in camera angle.

B. Ease of Use or Cheap?

For the hardware, the first issue was whether or not to use
RPi or Arduino. For RPi, we would be able to get it for free,
but many of the sensor options that we had explored were
made for Arduino and would take more work to integrate with
the project. In the end, since our budget was not going to be
tight, we decided that the extra price for the Arduinos was not
an issue. Also, we had to balance the weight of the battery on
the cue stick vs the battery life of the sensors. A larger battery
life would make it less frustrating for users, but would be
more cumbersome when making the shots. In the end, we
decided to use a 9V battery due to their still relatively small
weight and high availability. Thus, we chose to go with Ease
of Use.

C. One source of input or multiple?

We rely on both Computer Vision and sensors instead of
simply relying on the Computer Vision module for detection
of the cue sticks speed and direction for two reasons. The first
of these is that two solely rely on the entire position of the cue
stick and its full range of motion. We would need the camera
to be placed at a much higher angle than 55 inches from the
base which makes the entire system even less rigid and more
complex mechanically. Moreover, the Computer Vision
module would have to be able to capture frame perfect motion

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

detection for the cue stick to figure out its speed. This leads
into the second reason as to why we chose to have sensors as
well.

With both sensors and a Computer Vision system tracking
the cue stick, we are able to generate two sources of input to
check reliability before sending it to the user. If we only had
one of these and the value for the Computer Vision system
would be way off then we would have returned faulty values
to the user. The compass modules on the cue sticks provide a
fairly accurate direction for us to use (accurate to 5
millitagents of measurement) and we are able to back it up
with another reliable source. Moreover, to tell the user real
time they are on the right angle without having the user have
to change their line of view from the cue ball, we needed a
signal on the cue stick itself for which we went with an LED.
If we didn't make this decision the user would have to line up
their shot, turn their vision away while keeping the cue stick
perfectly straight which we realized to be hard for a new user
to do.

We also can't rely on the sensors by themselves as we would
need the Computer Vision system to track the balls. The
alternative to this would be to have sensors within the balls
themselves however this would require cutting open the balls
and changing the weight distribution as well, which we did not
have the mechanical engineering skills to do.Thus we decided
to go with multiple sources of input.

VI. SYSTEM IMPLEMENTATION

A. Sensor System on the Pool Table and Cue Stick

The sensor on the pool table serves as both a way to
communicate remotely with the cue stick sensors and provides
the relative direction of the pool table. This direction is critical
for determining where the pool cue is actually pointing. The
radio transceiver modules serve as a fast and simple way for
the pool table and cue stick to communicate. Over radio, they
simply send a bitstream from slave transceivers to a master
transceiver. These sensors will communicate with the
Arduinos using SPI so as to not interfere with the compass
sensor, which communicates using 12C. This microcontroller
is also wired into the laptop so it also provides communication
between the sensors and the shot computation. The sensors on
the pool cue simply serve as ways of collecting data to give
the users feedback. The accelerometer also will be able to
detect contact with the ball due to a sudden stop, which we can
use to time when the shot has been made. The pool cue will
also have an LED that turns on when the cue stick is facing the
correct direction. To do this, the radio transceivers will need to
switch between master and slave in order to transmit data to
the cue stick rather than from the cue stick.

B. CV and Shot Projection System

This part of the system is designed such that there will be a
camera 4 feet above the table and it will point directly down at
the table. From there the camera will pass the images it

captures into a python program that is using openCV. This
openCV program will look for all of the balls that are on the
table. Once it finds all of the balls on the table, it will identify
which one is the cue ball as well as which balls are solids vs
stripes. It will then pass a graph to the shot calculation
system(talked in more detail in the next section) which will
contain the (x,y) coordinate of the center of each of the as well
as whether each ball is a solid, stripe, the cue ball, or the eight
ball.

After the shot calculation system runs, it will then pass an
image to the Projection system of the correct shot that should
occur. It will then take the image and send it to the projector
for the projector to show on the table to the user.

C. Shot Calculation System

The shot calculation will follow a simple algorithm to try to
find the easiest shot. It will first receive all of the XY
coordinates from the CV system. After it receives the
coordinates it will form lines from the cue ball to all of the
target balls that have been specified by the user(are they
shooting for solids or stripes). It will calculate the slope of the
line using the formula y = mx+b. Once those lines are created,
we will go through all of the lines that have another pool ball
in its path and remove them. From the remaining balls that
still have lines, we will create 6 possible shots to each of the
pockets. Once we create those shots, we will remove any of
the shots that would include collisions with either other balls.
This second removal of the collisions will ensure that we don’t
create shots that the path from the cue ball to the target ball is
clear but the line from the target ball to the pocket is not clear.
After this, if no shot exists we will check for any shots that
can exist by bouncing the cue ball and/or target ball off of the
wall. From here we will then look at an individual ball to find
the easiest shot that exists for that target ball. This will be
done by comparing the two slopes of the line from the cue ball
to the target ball and the target ball to the pocket and choosing
the smallest difference between those two slopes. After we
compare for each target ball like we did for each individual
ball to find the easiest shot. Once the easiest shot is found, we
create the image by adding a line for the cue stick, a line from
the cue stick to the target ball, and a line from the target ball to
the pocket to an image of the current game state. Finally we
send this image to the projector system to project the new
image onto the table.

VII. TEST, VERIFICATION AND VALIDATION

For our testing we will be using the 40-in pool table that we
purchased. The testing will be done in two phases. The two
phases will be broken down into user testing and non user
testing. For the user testing, we will recruit 5 newer pool
players. We will set up 9 shots for the user to try. These shots
will range from easy shot to difficult shots, easy shots being
straight line shots while difficult shots necessitating the user to
hit the pool ball they are aiming for at an angle to get the ball

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

into a pocket. These first 9 shots will be done without our
system. After the user does the 9 shots, we will then set out the
same 9 shots again but this time have the user try the shots
with our system. After each shot with and without the system,
we will mark down whether the shot is made or not, if the shot
missed the angle at which the shot missed, and if any fluke
happened in the test that wouldn’t make the comparison fair,
like if a user made very poor contact with the cue ball. We will
then compare, if the user had an increase or decrease in the
number of shots and for each shot if there was an
improvement on the accuracy of the shot based on the angle.
We will consider this test successful for a user if there is an
increase in the number of shots that were made or if their
accuracy improved by at least 5°.

While the user test is going on, we also will be watching to
see if the frame that we built to hold up the projector and
camera. We will ensure that some of the shots the users do are
close to where the upright portion of the frame is so that we
can analyze how much of an inconvenience the frame is to the
user. After the user is done we also will ask them about the
frame and if they struggled at all with how to line up the shot
and work around the frame.

We also will be conducting separate tests that do not require
us to recruit participants. For the other tests, these will be
primarily focused on ensuring that the system is accurate and
is running fast enough to meet the design and use case
requirements. In order to do this we will conduct several
different tests which can be broken down into which main
system it is testing.

For the pool cue we will conduct three tests. Once we finish
designing the pool cue, we will weigh the pool cue with our
attachments and compare it to the weight without our
attachments to ensure that the weight we added is less than .25
Ibs. We also will test how quickly the pool cue updates by
changing the angle of the pool cue (i.e. spinning it around) and
measuring how long it takes for the angle to be updated in our
system. Finally, we will test to ensure that the pool cue’s
alignment is accurate to 1° by setting the pool cue at 3
different angles and measuring the exact angle and comparing
that with what our system is outputting.

For the CV system, we will be conducting one test focused
on two design requirements. The test will consist of placing 2,
8, and 16 pool balls on the table in various positions. The
positions will test edge cases where balls are all right next to
each other or all along the sides of the pool table. From here
we will analyze the CV results to ensure that pool balls are
being detected on the table with at least a 95% accuracy rate.
This will be done by adding how many balls were detected by
the CV and comparing it to the true number of balls that are on
the pool table. We also will be analyzing the positions that the
CV says the balls are on the table compared to their true
position. We will ensure that the position of the balls are
within .1 in of their actual position on the table so that the shot
calculations are all accurate.

Finally we will be testing the shot calculation and projection
system by giving it different placements of the balls on the
pool table. From there we will time how long it takes our
system to calculate the best shot that the user should do.
According to the requirements, this calculation should take no
longer than 3 seconds. From there, we will analyze the shot
calculation and the angle that is calculated for the shot. For the
final shot that our algorithm chooses, it should be off by no
more than 2°. Finally we will then project the image onto the
table and analyze how accurate the projected image is to the
table and the correct shot. This image needs to be within .1 in
of the actual position on the table for this test to be successful.

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

VIIL PROJECT MANAGEMENT
A. Schedule
)
N
No P
>
3o
=]
m
o
©
—
m
N
oo
o~
o
23
<
©
o~
o
—
oS
N
o
NN
L O
o]
251
N
o
-
o~
M~
o »
=}
N
a®
]
Lo
o~
va
> 2332)) S 3= 2=
- En.En.n.n.En.n.EEEn.n.n.EEn.n.n.En.n.EE
“ ot o000t o000 0o0god
£ g egelecgoogggesessggeceegoeg9
e m Dm om0 mnm N wm om0
MmN NN mmMN NN SN NNmMmAN N mm
NS SSSasSanaNSSSalasSSSa >SN
SN SN ANOSNO g NSNS mMmYTE N~ NONO T~~~
O - M= NN =N =R NNHO - NNM = N -0
ST IT;I I]3I
nmaoummmMT TN ANNANMMMMMNS S S ;nn
2ss_sSss_ss_2=ss:s=s_ss:s55s5_5:
. <2 <d €22 C<CLCLCC2 L2 << 2
£ ooc%ooo<Loo<Loo0oo0o0%ocooLood
a €/9/9990992999Q2000090¢e909099¢9Q
L R A e A A I A R A A A R I
Mwmn®@®mmmn@®mn®P®mnmnmnmn®@®mnnn®nm®
NanmnoanoamoanamnNanonomoneemaNm
NN SN SSNSNASNSSA SN SN NA NSNS S SsSAN S~ N
MmoSomoxSdIn<mMmmosN<O©mo N rmin<
HHNO A NMNMO A NN A AN S NS H NN
I NN RN N NN A R RN R R R RN R R N
NN NMMMMNMST T TINDANNANANNMMMNMONMST < n
NI I S N N N I I I T
WYYV YV D>V VY n
c Do > > > > > > > > > 0SS > > > > > > > > > >
H BRI R R IR
1 5/T/T /T TTDTTTVT T 5T T TV T TTTTUTTT
s -/ Mo owmininmOownwm 4 mn o MO T N NnmmnoLwnn
3 [— — €] -
o
" = 5]
w g 5T o v g
o e @ v 06 5]
e E EE3 Ee= E.2 £
5 ¢ =g o0 55 8 e F
3 ~ e wnc 8T 3 2w L Q9 -
“ y Lwoau 9 g O] < v]
0 © s>t os0w HSY3 &
£ @ gn 888y 2059 3
] g v & . £ gg.z:sggué‘wsgo >
E G:E,2% 5_ 3 S§¢28s.25ES8R §
3 FR IR 2c ¢ ‘-gwomEmmEE_“g S
nwgo YE I OV e U0 & —=o o L
g Bas s s 8 Qg <] oL u o ¢
v g u? fEogemcevoYEgo 20K
3T s g vy ey 0 EgoE- S LY oE
Uo o T - FEE oE =+ T T 0¢Y LT -0y wd
S 3EYYaEDE T S fe=22g5E=0¢0c
© 5 20U o =020 ECI0niida £F0@
804808z >eFriz0
L3 o]
o
Fig. 1. Schedule example with milestones and team responsibilities

The above figure is our schedule. The bolded rows represent
the two major sections of our project. The unbolded rows each
represent the milestones of each section. The duration is also
only counting weekdays, so for example, a duration of 5 days

represents one week.

B. Team Member Responsibilities

Devank’s primary responsibility is to create the shot
calculation equation the laptop will use to compute the
recommended shot. To do this, he first needs to create a
heuristic on what quantitative values can be used to find the
“best” shot. He also is the main person responsible for creating
the frame that will support the camera and projector above the
pool table.

Justin’s primary responsibility is to arrange and calibrate the
sensors that will go on the cue stick. He is also responsible for
the communication between the microcontrollers on the cue
stick and table, as well as communication between the laptop
and microcontrollers.

Jimmy’s primary responsibility is to create and train the CV
model. He also is responsible for helping construct the frame
for the pool table. He also is supposed to help with the
integration of the projector and camera model to the laptop.

C. Bill of Materials and Budget

The bill of materials is shown at the end of the document.
Included in the figure is the price of each item. The total price
of all the items is listed in the bottom row. The items that are
listed as $0 are items that we were able to acquire for free.
Additionally, the third microcontroller is a spare and not
necessary.

D. Risk Mitigation Plans

For this project, we need to successfully integrate all of our
components together. We have never worked with CV in depth
before, so learning how to train the model is new territory for
our group. This is lessened by being able to base our model off
of existing models, so we simply need to adjust already known
models to fit our use case. We also have not done work in
microcontroller-to-microcontroller communication before,
which is important to the project. However as this is not an
unknown area, there are plenty of guides to help us make sure
everything works correctly. Another risk is that the sensors on
the cue stick may not be able to transfer data quickly enough
to the laptop. The sensors chosen are able to transmit data at a
high enough bandwidth that this should not be an issue.

IX. RELATED WORK

There have been a couple similar projects to what we have
done. The main work that we are building off of is an ECE
capstone project from the spring semester of 2019. It was by
Team B9: Breaktime. Their work was similar to our project.
They built a CV system that would track all of the balls in a
game of 9 ball pool and help line up the next shot for the user.
We are using this system as a jumping off point for our
project. We are using the projector and camera that the other
group used for their project. This has allowed us to simplify

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

the beginning steps of finding what products we should use in
our project and instead move on to the more difficult portions
of our project.

Another work that our project is similar to is a youtube
video by Stuff Made Here. This youtube video demonstrates a
robotic pool cue that when put next to the cue ball, it would
calculate the next shot that should happen and automatically
shoot it for the user without the user doing anything, The
difference with our projects is that ours is designed to help the
user how to play while their system is built to play for the
user.

X. SUMMARY

Our project is a learning tool to help people become better
at 8-ball. It will help users learn about how hard to hit the pool
ball, as well as what angle they need to hit it at in order to
pocket a ball. To help users see the correct angle to hit the ball,
we are projecting lines showing the direction the pool cue
should hit the pool ball, the direction the pool ball should go
after the shot, and what direction the target ball should move
once the pool ball hits it. We also will have a light on the pool
cue that will light up once the pool cue is in the correct
direction. This will provide a secondary guide for the user and
serves as a backup if the projector breaks. While there is no
good way to indicate the exact level of force the user needs to
use when shooting, we are able to provide feedback about the
strength they used and if it was stronger or weaker than our
calculated value. To do this, we have an accelerometer on the
cue stick to measure the force of the impact and will display it
on the laptop screen. One challenge for implementation is
deciding where the sensors will be on the cue stick. The closer
they are to the tip of the cue, the better data they are able to
collect. However, that also increases the likelihood that the
sensors will interfere with the users while taking shots.

GLOSSARY OF ACRONYMS

CV — Computer vision

HTML - Hypertext Markup Language
12C — Inter-integrated circuit

LED - Light-emitting Diode

ML — Machine learning

RPi — Raspberry Pi

SPI — Serial Peripheral Interface

USB - Universal Serial Bus

18-500 Design Project Report: 8-Ball Lifeguard 3-3-2023

REFERENCES

[1] “Automatic pool stick vs. strangers” YouTube, uploaded by Stuff Made
Here, 15 February 2021, https://voutu.be/vs TTXYxydOE

[2] Lambert, Graham. “Wireless Communication between Two Arduinos.”
Circuit Basics, Circuit Basics, 17 Nov. 2021,
https://www.circuitbasics.com/wireless-communication-between-two-ar
duinos/

[31 Ou, Xu, and Kim. BreakTime Augmented Reality Pool Guidance System
2019

[4] Siepert, Bryan. “Adafruit TDK Invensense ICM-20948 9-Dof Imu.”
Adafruit Learning System, Adafruit, 5 Aug. 2020,
https://learn.adafruit.com/adafruit-tdk-invensense-icm-20948-9-dof-imu

[51 “VPI - Vision Programming Interface: Lens Distortion Correction.”
Docs.nvidia.com, docs.nvidia.com/vpi/algo ldc.html.

Item Price Part Name Manufacturer
Hathaway Breakout 40-in Tabletop Pool

pool table $113.46 | Table Hathaway

RF transceivers $15.15Deegoo-FPV 12pcs NRF24L01 Deegoo

Accelerometer + Adafruit TDK InvenSense ICM-20948

compass x4 $75.07 [9-DoF IMU (MPU-9250 Upgrade) Adafruit

Microcontroller x3 $81.62 [Arduino Nano Arduino

Wood $50 |Plywood Home Depot

Laptop $0 |Macbook Pro 13in Apple

Camera $0 [Logitech C922X Logitech

Projector $0|Epson VS330 Epson

Light $0(LED unknown

total $335.30

https://youtu.be/vsTTXYxydOE
https://learn.adafruit.com/adafruit-tdk-invensense-icm-20948-9-dof-imu

