18-500 Final Project Report: Picture This!, 05/05/2023

Page 1 of

Picture This!

Joseph Ayala, Anthony Meza, Sophia Zhang
Electrical and Computer Engineering, Carnegie Mellon University

Abstract— This project involves the creation of
AR Pictionary. One player will use a hardware de-
vice to create drawings in virtual space while other
players view the drawings in a shared screen to guess
what is being drawn. The hardware device will use
an Arduino, IMU and HC-005 Bluetooth module. An
Android phone will run the AR Unity Application and
will be connected to a monitor to allow guessers to view
the screen. Using the Arduino to collect IMU data, the
hardware device will send the data through the Blue-
tooth module to the Andriod phone via Bluetooth. The
Unity application will then collect this data, render it
in virtual space, and the share the screen for the other
viewers to see. While there are existing version of AR
Pictionary, we aim to expand this by creating interac-
tive and immersive 3D drawings.

Index Terms— Arduino, Augmented reality, De-
sign, Bluetooth

1 INTRODUCTION

In current times, games have began to increase in popu-
larity as a main source of entertainment. “The video gam-
ing industry generated 179.7 billion of revenue for the entire
year, compared to 2019’s 150.2 billion.” [3]. Unfortunately,
traditional forms of gaming tend to predominately involve
a single player experience that restricts players to sitting in
front of a monitor or screen. Excessive time spent sitting
has been shown to have harmful effects on mental health
and have effects related to insomnia in adolescents [2]. We
aim to address this issue by taking a game that most people
recognize and putting a spin on it to make it more appeal-
ing, engaging, and interactive for users. Our medium for
this will be AR, a cutting-edge technology, which makes the
digital world interactive with our physical world. For this
capstone project a prototype of Pictionary, a multiplayer
drawing and guessing game, will be created where AR is
utilized in order to display the drawings for other players
to guess.

This experience will be possible with the creation of a
pen device and a phone application. The pen device will
be used to draw in the AR space. By pressing down a but-
ton, the pen will record the players’ movements. The pen’s
data will be broadcast to the phone application which will
be downloaded on the personal devices of the participating
players. By using the cameras on players’ personal devices,
they will be able to view the drawing in the AR space that
is also overlaid onto the physical world. They will be able
to move around the drawing with their device’s cameras
to see it from different angles or zoom in on certain parts

of the drawing in real time by walking around in physical
space.

2 USE-CASE REQUIREMENTS

The use cases of our project can be generalized into a
few different categories: the game should be representative
of the original Pictionary, lines should resemble the mo-
tion of the user’s hand movements (line accuracy), and the
hardware should be robust and easy to use.

2.1 Game Requirements

The basic game Pictionary requires a player who is as-
signed as the “drawer” and at least two other players that
will be assigned as “guessers”. The drawer will be given a
random word which they will need to represent in the form
of a drawing. While the drawer is creating their drawing,
the other guessers will be able to see the progress that the
drawer is making and attempt to guess what the random
word drawer is trying to represent. The first guesser that
is able to figure out what the word is wins the round. After
this, players will alternate as guessers and drawers for a few
rounds until satisfied.

Due to the competitive aspect of this game, we need at
least a drawer and two guessers participating at the same
time. Thus our game will need to be able to support at
least these 3 players. Additionally to emulate the real-time
viewing of the drawing while its being made, we want it
to take less than 1 second for a drawer’s hand motion to
translate into a line render on Unity.

2.2 Line accuracy

The lines that are rendered in virtual space are loosely
derived from the movements that the drawer player does.
Since the drawer is gesturing in space and does not produce
a visible representation, exact accuracy of the movement of
their hand is not necessary.

However the line will need to have two aspects correct:
line direction and length. What this means is if the drawer
player is moving their hand in an upward direction, the
line produced should also be vertical. If the player moves
their hand side-to-side, the line produced should also be
horizontal. Additionally, the player should be able to move
their hand an amount and be able to produce a line length
that scales with the time their hand has been moving.

18-500 Final Project Report: Picture This!, 05/05/2023

Page 2 of

2.3 Hardware efficiency

The hardware pen device that is being created will be
held and moved through the air in order to create lines. As
such, this device should be light weight (less than 0.5 1b or
weighing around the same as an average smart phone) and
can fit comfortably in someone’s hand (6 x 9 x 3 in). To
keep the game accessible to everyone, we want our hard-
ware components and cost of implementing the game to be
less than $50 dollars.

Previously we aimed to attach a battery case to it and
power the components on our pen with a battery. We hoped
that we could attain a battery life of around 4 hours. How-
ever, after integration and finalizing our pen, we have de-
termined that using a battery pack would be difficult to
power everything. More details are provided in

Additionally, the hardware pen should be robust and
be able to transmit the necessary data to reduce the game
overhead. This point can be reiterated from Section [2.1
where when a player moves their hand to draw a line, that
line should be rendered in 1 second or less.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

On a high level, the framework for our system will con-
sist of N players (where N > 3): 1 drawer player and
N — 1 guesser players. The drawer player will be the one
responsible for drawing the image and viewing the image.
They will be holding the pen device and perform gestures
in order to “draw” in physical space once game play begins.
The guesser players will be responsible for watching what
the drawer is currently trying to make, and guessing what
they are attempting to create. While the drawer is draw-
ing, this data will be captured by the pen device and sent
to the drawer’s personal device where the Unity App will
be able to render lines they are creating in physical space to
the AR space. Originally, this AR space was planned to be
visible to all players through the cameras on their own per-
sonal devices. Due to time constraints, this was updated
so now the drawer’s phone screen will be shared on a mon-
itor, where the guessers will be able to see what is being
drawn and make guesses about what the drawer is trying
to create. Fig.|l]is a diagram overview that demonstrates
data flow and general layout.

Looking at Fig. with a little more detail, the
Drawing Mechanism will be our pen device, which will con-
tain 5 hardware components: a Arduino, IMU, HC-005
Bluetooth module, two buttons, and two LEDs. When but-
ton is pressed, the N will start recording the IMU data that
corresponds to the pen device’s movment, which will send
the data through the Bluetooth module. The LED will
light up as well, providing visual feedback for all players,
that the device is currently drawing in AR space.

The drawer will have access to the pen device and ro-
tate it in air in physical space in order to “draw”. These
gestures will be captured by the pen device the moment

game play begins, and store it on the device.

This stored data will then be sent to the game app on
the drawer’s personal device. Using this data, the Unity
App will be able to render lines that are overlaid onto the
Real World through AR. Fig.[I]is a picture overview of this
data flow and general layout.

The drawer will need to have the Unity Android Appli-
cation downloaded to their devices in order to be able to
view what is being drawn. The Unity software will be using
the Android Bluetooth plugin package in order to record
data from the Arduino itself, which will be sent over via
Bluetooth by the drawing mechanism through the HC-005
during game play. This data will be processed, and us-
ing ARCore packages within Unity, will be able to process
and render lines the drawer is trying to produce in the AR
Space. By viewing the screen replicated from the camera,
users will be able to view the rendered lines that the drawer
has created. Other packages that come with AR Core will
be used in order to make sure that the drawing is tied to a
specific location in the real world. The main packaged that
assists with this would be AR Foundation, which allows
the creation of many varying types of AR, GameObjects.
Through this, an anchor point can be created at which AR
LineRenderer Objects can be attached to (the drawings the
drawer creates).

Game Screen Game Screen

(Draw Phase)

B

Home Screen

<image>

<AR Camera Screen>

AN

(Start Game start

Figure 2: Game Ul and how the drawer will redirected from
page to page

In Fig. [2| we are able to get a better idea of how the
Unity Application will function in order to be intuitive
enough for player to use, but also simple enough to cre-
ate for our scope of project.

The drawer will be responsible for running the appli-
cation on a handheld device, which will be connected to a
monitor where the guessers can view what is happening.

When they start the application, there will be the op-
tion to be able to connect to the pen device in order to use
the hardware in the game. To connect the user will first
connect via Bluetooth in the Android settings application
(just like for any other Bluetooth mechanism). Once the
application is opened, the user should be able to connect to
the pen device by clicking the connect button. Once they
start the game the pen will completely connect, and allow
the game to start.

During gameplay, a drawer can touch the screen for
where to start drawing (creating an anchor point and new

18-500 Final Project Report: Picture This!, 05/05/2023

Page 3 of

Host Android Phone

Unity Software

ARF

Render,
Bluetooth

Stabalize,
Anchor
Coordinates

A

Connection

Camera H Screen
TeamViewer
Host (software)

Real World/Ar Space

Drawn AR Line
Renderer
Gameobjects

Laptop

Screen Share

L

Hands

TeamViewer
(software)

HDMI CORD

{ Led Lights Button Inpuls]

Display Monitor

D</
Screen

MU
Eyes
Drawing Mechanism

Guesser_1

Eyes %

Guesser_N

Figure 1: An overview of the game structure and the components. Red blocks represent any physical devices. Blue
represents any software components. Green represents the virtual space where AR objects are overlaid onto the real

world.

LineRenderer), and then move the pen device in order to
draw in 3D space. If they want to restart what they are
drawing, they can click the clear button to delete what they
have drawn.

After playing a round, the players will be able to exit
the game screen at any time and go to the connection phase
in order to switch drawers, swapping the phone and the pen
device in the process. If any error connections occur while
in the draw phase, players will be redirected to the Con-
nection phase to try and reconnect.

This system is simple enough for most players to be able
to play the game. If time permits, more complexity could
be added by adding more features like adding interactiv-
ity with guessers of some sort. For the current scope and
timeline, this basic design will suffice.

4 DESIGN REQUIREMENTS

The Design Requirements for our game of AR Pic-
tionary are built off of our Use-Case requirements and
can once again be split into the same overarching cate-
gories: the game should be representative of the original
Pictionary, lines should resemble the motion of the user’s
hand movements (line accuracy), and the hardware should
be robust and easy to use.

4.1 Game Requirements

Before, we aimed to have 3 devices that were capable
of seeing the same virtual space. However, due to time
constraints from unprecedented problems in our hardware
and software integration, we decided that we did not have
enough time for the networking and multiple device Cloud
Anchoring required for this. Therefore we decided to scrap
the networking and transition to screen sharing, where our
game would be running on a host Android device which
is then screen shared to a separate laptop, which is then
displayed on a bigger monitor through HDMI. Further de-
tails on this are elaborated on in the software subsection
of our design tradeoffs. This tradeoff still satisfies our first
requirement of our App needing to be viewable by multiple
users.

We also aim to have real time line drawing. The second
requirement implies that the overall end-to-end latency of
communication needs to be kept to a minimum. The de-
fined metric of at most 5 seconds from hand movement to
drawn line will need to consider the combined latency of a
number of different components. This includes time taken
for: 1) hardware data collection on the drawing mechanism,
2) transmission of the data from the drawing device to the
Unity Software, 3) calculation of linear displacement based
on the data received, and 4) rendering that the software
will perform in order to create the line all in the AR space,

18-500 Final Project Report: Picture This!, 05/05/2023

Page 4 of

which will be visible for all players. Calculation and ren-
dering of the line latency will be described in more detail
in [£:2] Hardware data collection and transmission latency
will be described in more detail in

4.2 Line accuracy

As stated in the line’s direction needs to correlate
with the movement of the drawer’s hand, as well as the
length of time the user is moving their hand.

To assess the correct direction of the line, we will base
this metric off of an orientation test. More details on this
metric will be discussed in Section [7

We were originally using positional data in order to de-
termine where the points of the line were. We originally
were aiming for a drawn line length to be correct within 10
cm of our test line and our reference line to account for the
noise from the IMU. However, this method was in practice
too noisy for our purposes. A discussion of these details
can be found in Section Because of this, we decided to
focus more on the orientation/angle that the device is being
held at to determine the angle. Once again, more details
of how this will be assessed will be discussed in Section [7

The latency of line calculation and render should be
less than 3 seconds in order to hit our metric of 5 seconds
between hand movement to drawn line to leave sufficient
overhead for data collection on the IMU and transmission
of this data.

4.3 Hardware efficiency

Our pen should be light weight (less than a 1 1b) and
can fit comfortably in someone’s hand (6 x 9 x 3 in) as
stated in 2.3

We were originally aiming for a 4 hour battery life. We
would need to find a battery that will be able to supply 4
hours of power to our microprocessor and IMU, which are
the components that that will be drawing the most current.
Equation describes how our battery life ¢, current draw
A, and battery capacity C' are related to each other. N is
the total number of components drawing current and A; is
the current component ¢ is drawing.

_C C
A Zi]\io A
However, after integrating and testing everything, we
would need 2 3.7 V batteries to have sufficient voltage for
our system. However, since everything on our board runs
uses either 3 V or 5 V, we would need a buck converter to
step down this voltage to ensure our components are not
destroyed in the process. This system would have taken up
too much space on our board and ultimately would have
been extremely power inefficient. Because of this, we are
instead using an long USB 2.0 cable to power our Arduino
and components. This effectively nullifies this previous use
case since there will be a ready supply of power.
Additionally, the hardware pen should be robust and
be able to transmit the data with low latency. This point

(1)

can be reiterated from where when a player moves their
hand to draw a line, that line should be rendered in 5 sec-
onds or less. Thus we are aiming for a communication
latency between our pen and the Unity App to be less than
200 ms, as this is the typical latency for Wi-Fi and blue-
tooth communication. We will additionally consider an ex-
tra 100 ms overhead needed for collecting the data from
the IMU.

5 DESIGN TRADE STUDIES

5.1 Hardware Calibration Methods

Calculating relative position with solely an IMU is dif-
ficult to do so in an accurate method. An IMU will only
be able to sample data at a constant rate and if there are
changes in frequency that happen faster than this sam-
pling rate, they will be missed and therefore not incorpo-
rated into the output of the IMU. This makes it difficult
to obtain an IMU with a high enough sampling rate and
low enough error to get accurate enough metrics for line
displacement. These errors can accumulate over time and
extended duration of IMU usage will result in data with
high errors.

There are a few methods that can be used to address
this problem that will be further described in the following
sections.

5.1.1 Multiple IMUs

One method of correcting for IMU drift and accumu-
lated error over time is to use multiple IMUs that can cor-
rect each other through a process called multi-sensor data
fusion. Sensor fusion combines sensor data or data derived
from different sources that will produce data that has less
uncertainty than would be possible when these sources were
used individually. The goal is that combining these sensors
will result in data that is more accurate.

One of our concerns with this approach is that it will
likely add non-trivial overhead to our line calculations. We
will have to implement our own data combination algo-
rithm (like Brooks—Iyengar algorithm) on either our Ar-
duino Nano or as a C# script in Unity. Due to us having
to implement our own version of this algorithm, there may
not be enough time to fully optimize this to meet our la-
tency metric

Another small concern is that we want to keep our pen
as small and as low-cost as possible. Having to add more
IMUs will increase the size of it as well as increase the cost
of our device as well.

Overall sensor fusion is a feasible method of providing
more reliability of our data. However, as discussed in Sec-
tion|8.4.2] our diagnostic tests have showed promising signs
that a single IMU falls within our error range. If more is-
sues emerge with extended use of the IMU, sensor fusion is
something we can include to improve our data reliability.

18-500 Final Project Report: Picture This!, 05/05/2023

Page 5 of

5.1.2 Software Assistance through CV

Another potential method is to use CV in order to de-
tect the location of the pen on camera. This could be ac-
complished by tracking the location of a lit LED. CV would
be able to more easily determine the location of the pen in
the air and would have to rely less on noisy hardware for
this information.

However, CV will only be able to provide 2D coordi-
nates on a screen. This goes against our original proposal
idea of using AR to draw 3D lines that players can ro-
tate around and interact with. Additionally, there were
concerns that adding CV would also greatly increase our
latency for line calculation and computation.

The time and energy it would also take to implement
CV falls outside the scope of the project. There is likely
not enough time to implement CV and reach the desired
minimum viable product.

5.1.3 Stationary Device as Reference Point

Another general method that falls in line with sensor
fusion as described in Section [5.1.1] is using a stationary
device as a reference point. This device would be placed
on the ground to the side and would serve as a fixed refer-
ence point between the pen and the IMU.

An obvious concern is the method in which this de-
vice would be able to determine distance. One way is to
use Wi-Fi in order to determine the distance between our
bluetooth pen and Wi-Fi device. Once again, however, the
issues with this solution approach are similar to the ones
defined in Section BTl This external Wi-Fi device will
likely be even less accurate than the IMU and would do lit-
tle to correct the actual distances. Another large concern
is that this Wi-Fi device will be extremely expensive which
will break our proposed requirement of an affordable cost.

5.2 Hardware Communication Protocol

Previously, we had planned to use Wi-Fi in order to
send our IMU data from our microprocessor to the Unity
App. This would have been accomplished with support
from an Unity library called Uduino. The method was par-
tially successful as we were able to send our line data from
our Arduino to Unity’s desktop monitor. However, once
we tried to port our app to our Android phones, we were
unable to establish a connection. After trying our best to
debug this connection, we were unable to come up with a
solution so we had scrapped this idea in favor of a different
Unity package and method of communication.

Figure |3| demonstrates an alternate method that was
previously considered for transferring data from our
ESP8266 module to our Unity App. Due to an inability for
Unity to directly communicate wirelessly to our hardware,
a Python net socket could have functioned as an interme-
diate in order to send data over.

This alternate approach would allow us to have more
fine-grained control over how data is transferred between

our pen and our Unity app. It would also allow us to po-
tentially reduce the latency of line calculation by allowing
us to use built-in Python libraries to perform our double
integration.

However, as demonstrated in Fig. [there would have
been additional latency added due to a communication pro-
tocol. First, data would be need to be sent over a Wi-Fi
channel twice. This communication protocol would also
have required our Unity app to constantly be polling the
Wi-Fi channel in order to detect an incoming packet re-
ception signal. Only once the hardware and software per-
formed a handshake and agreed to exchange data, then they
would have been able to send/receive data. This is neces-
sary to ensure both ends are ready to send and receive data
as without it, the line data could be incorrectly dropped,
which would have drastically decreased the quality of the
game. However, this method would have incurred addi-
tional latency as well as draw more power from the devices
since they would have been constantly busy polling in the
background.

lnterl?nael :::er of > Unity App
Python net socket

"| have data"
[(to), (), ..., (In)] > Unity App

Python net socket

{0), (W), .., (tm)] P Ready to receive data" Unity App

Python net socket

[(t0), (), .., (I)] 10, 1, ..., In || "no more data"

—— Unity App
Python net socket
[(t0), (1), ..., (In)] L "Received n lines"
N Unity App
Python net socket
ELE Unity App

Python net socket

Figure 4: Communication protocol between the Python
Net Socket and Unity on how to transfer data

5.3 Software Selection

Unity was an obvious first choice in terms of software
development for us. Not only do we have previous expe-
rience using it, Unity is also already well integrated with
several other packages such as AR Foundation in general,
AR Core for Android devices or Apple AR Kit. Addition-
ally, Unity has a very large and an active community, so
there are many built-ins, guides, and documentation avail-
able to streamline this process.

18-500 Final Project Report: Picture This!, 05/05/2023

Page 6 of |E|

Internal buffer of
IMU data

Double integrate to
obtain line position

»

Wi-Fi Channel

IMUJdata

Hardware Device

LED

Bread board

Button

Internal buffer of line
position data

Wi-Fi Channel

Figure 3: Schematic of an alternate hardware design that involves using a Python Net socket to assist in data transfer

between ESP8266 module and our Unity App

5.3.1 Networking + Cloud Anchoring vs Screen
Sharing

In terms of software trade-offs, we originally planned to
use Unity’s AR Cloud Anchoring package in order to store
the location of AR anchors in the cloud and share them to
multiple Android devices through Unity’s networking pack-
age. We were able to get the AR Cloud Anchoring to work
for one anchor point on one device, but found it overly com-
plex trying to make it work for multiple different anchor
points, as well as on multiple different devices through an-
chor points. At this point, given the short amount of time
left before the final demo, we decided it would be unfeasi-
ble to not only get all of this working separately but also
integrated into the rest of the pipeline (hardware commu-
nication 4 software line algorithms) in time.

Therefore we decided to scrap the cloud anchoring and
transition to screen sharing, where our game would be run-
ning on a host Android device which is then screen shared
to a separate laptop, which is then screen shared to a big-
ger monitor through HDMI. This is done through an ap-
plication called TeamViewer, which allows one device to be
used as a host and other devices to hook into this device
and view what is being displayed on it. TeamViewer Host
is installed on the host Android phone that has our game,
while TeamViewer is installed on the laptop that will be
screen shared to.

This more simple implementation still allows all users
to effectively be able to see what is being drawn in the real
world and guess in real-time while being feasible to inte-
grate in the short amount of time available to us. The only
drawback would be that this method is less interactive for
users, as the users would only see the drawer’s point of view
and the drawer would simply be changed to whoever holds
the host device and pen.

5.4 Build Device Selection

For our application, since we have the intention mak-
ing our game easily accessible for the average person, we
needed to make considerations about what devices it should
be able to build on. It was originally considered that we
could develop an application that could be run on any de-
vice, including phones and laptops. The idea behind this
approach would mean that the application would be ac-
cessible to anyone anywhere. This idea was eventually
scrapped, instead deciding to strictly build for phones, the
deciding factor being that generating builds for accessibil-
ity on both laptop and phone screens would add an unnec-
essary amount of additional complexity that would divert
focus from the more challenging components of the project
as a whole. Additionally, phones would be much more prac-
tical and allow for ease of interaction during a game play
session, since it would make it easier for guesser players to
move around and examine the drawings created by drawers
at different angles.

We also had to consider which OS device we would want
to try developing our project for. IOS devices were consid-
ered due to the greater number of IOS devices that we
accessible, but IOS tends to be more complicated to build
on since it would require everyone in our group to own Ap-
ple products. We instead made the decision to code for
Android devices, mainly because they are much more de-
veloper friendly. This did mean we would need to purchase
more Android devices for testing purposes, but Android
devices are usually cheaper than Apple devices as well.

6 SYSTEM IMPLEMENTATION

6.1 Pen

Fig. [5| describes the layout of the pen device. The pen
will consist of an Arduino Nano, 2 green LEDs, 2 buttons.

18-500 Final Project Report: Picture This!, 05/05/2023

Page 7 of |E|

a HC-005 bluetooth module, and an IMU. The Arduino
Nano will be powered via a USB cable that will be able
to supply 2 Ah. The Arduino Nano will also be able to
power the IMU through its 3.3 V pin and power the HC-
005 through its 5V pin. The Arduino will be connected to
the buttons and LEDs to receive inputs and provide visual
feedback to the user.

MU fclata

Bluetooth] Channel

Hardware Device

LEDs

Draw Euttan -

calloration
button

Bread board

Figure 5: Schematic of the pen

The drawer will press and hold one of the buttons (as
referenced in Fig. @ to indicate that they are in the pro-
cess of drawing a line. One of the LEDs will also light
up to provide visual feedback for the drawer. The IMU
will determine the user’s hand orientation and draw a line
in the corresponding direction. While the user’s hand is
in that orientation, a line in that direction will be drawn.
The steeper the angle the user’s hand is at, the greater the
distance of the line will be. This data will be sent to the
the Unity App on all players’ phone through Wi-Fi.

Axis Abs.
Orientation

Figure 6: The pen device in drawing mode

When the drawer presses the other button, the Arduino
will enter calibration mode as shown in Fig. [7] In this
mode, the user will ideally hold the pen in a constant posi-
tion while the Arduino keeps track of all the accelerations
that are impacting it while stationary. These statistics will
be used by the Arduino when calculating line position to
get rid of errors due to gravity or the way the user is holding
the pen. It will also reset the previously collected distance
data.

Figure 7: The pen device in calibration mode

18-500 Final Project Report: Picture This!, 05/05/2023

Page 8 of

In order to reduce the amount of IMU drift accumu-
lated over time that would greatly reduce the accuracy of
the lines and hinder the game experience, the player must
start in a calibration phase. In this phase, they will will
hold the pen in their dominant hand straight down, with
the IMU pointed at the ground. Once they assume this
position, they must press the calibration button and hold
this this position for 2 seconds. After they finish calibrat-
ing, the player is free to draw 2 additional lines. Once these
2 lines are drawn, the player must return to this calibra-
tion phase. While the pen will still work after these two
lines have been drawn, the quality of the drawn lines will
be diminished.

The Arduino will collect IMU data once every 0.01 sec-
onds to obtain an the accelerometer, gyroscope, and mag-
netometer data at this point of time. From this data, we
perform sensor fusion to calculate the pitch and roll of the
pen. Using this data, we then double integrate the pitch
and roll data by multiplying it by the change in time twice.
This data will be used in order to determine the location
and shape of the line. This displacement data will be sent
to the Unity App.

6.2 Unity App

The Unity app will consist of three scenes as already
seen in Figure Each scene will have some sort of scene
manager GameObject that has functions responsible for
loading different game scenes. These functions in each
game scenes will be associated with certain buttons, that
once pressed, will load the appropriate game scenes. The
game loading screen will simply have the title screen, and
a button that leads the Connection Scene. In the connec-
tion scene, the drawer will be able to connect the hardware
device to the Unity App. The user will click the connect
button to establish a connection with the hardware device,
and then they are able to click the start button to load the
Drawing Scene once they are ready. In the game scene the
drawer is able to play the game as described. If players
want to exit, an exit button will be present to load each
previous game scene they have opened.

Figure [8] describes the general flow of data within our
Unity App for the game Drawing Scene. Once ported to
each players’ phone, the Unity app, ported to Android
through the use of the ARCore package, will directly in-
teract with our Arduino through a Bluetooth channel.

Positional data from the pen will be put into an data-
holding Unity GameObject within the game scene which
will then be read through a C# script. This script that
directly updates and renders the AR drawing will, at the
start of a round of the game, scan the environment and
create AR plane GameObjects on the surrounding surfaces
(takes a second or two). Then when the player taps on a
location on the screen, the script will create an AR anchor
at that point, using the touch position and identity rota-
tion to create a Pose Struct, and instantiate an initial AR
LineRenderer GameObject at that anchor point, through
the use of the AR Foundation Package. This anchor point

determines the absolute location, relative to the real world,
of the drawing that the drawer will draw.

After this, the script will always be in a busy polling
state, waiting for the drawer to hold down the button to
draw, at which the script then pulls the locational data
from the Arduino, placed in the data-holding GameObject
within the scene, and forms it into a Vector3 position. The
script then adds a new point to the LineRenderer whenever
the distance between the previous point and the current
pen location is more than 0.001m, calculated by adding the
Vector3 pen location to the anchor point’s Vector3 location.
This continues until the drawer releases the button. The
drawer at this point can then either decide to hold down
the button to continue drawing, tap the screen to create a
new anchor point at which to draw, or clear all drawn lines
by tapping the clear lines button.

If the drawer decides to touch the screen, a new anchor
point will then be created at this location in space, and
corresponding LineRenderer. This signifies a new drawing,
or a separate continuous line, which will be drawn and an-
chored in the new space where the user started drawing.
These anchors will be stored in a list, allowing each sep-
arate line to be rendered and held in the exact location
where they were drawn in space, instead of following the
drawer’s phone around as they move around. All of this is
able to be seen by the other players in the game through
the TeamViewer app screen sharing the drawer’s point of
view onto a bigger monitor.

7 TEST & VALIDATION

7.1 Line Accuracy Tests

(x2,y2, z2)

(x3,y3, z3)

(x4, y4, 24)

(x1', y1', z1")
(x0, yO, z0)

Figure 9: An example of a reference line (in black) with
defined points in 3D space as well as an test line drawn by
a user(in red)

We will assess line accuracy is what we define as a dis-
tance test. In this test, we generate a few reference lines
that will consist of a a few points connected by a straight
line. Figure[Jgives an example of such a line with arbitrary
points in space.

Depending on exact metric we are trying to test, we
can create this 3D line in two ways. If testing on a 2D
plane, we can print out this reference line onto a sheet of
paper. Otherwise, we can use string to represent a line in

18-500 Final Project Report: Picture This!, 05/05/2023

Page 9 of

AR Foundation Package

Instantiation of gameobject

C# Scripts
(Instantiates AR line
gameobject)
(updates line
position)

Cleaned positional data

Python net socket

Looks to script, waiting for line position updates

Unity Editor

App ported to phone

ARCore Package

|

Create AR line gameobject .
Fed into
Cloud Anchoring
(Attaches AR object to real

world location)

Ymhea absolute line position (relative to real world)

Render AR line
gameobject

Updates relative line positions (relative to self)

Figure 8: Flow and transfer of data within Unity

3D space. We will then use our pen to trace over this refer-
ence line. They will draw a line from one point to another
point. This drawn line will also be called a test line.

In reference to Figure [0 a user for example, will draw
a line from point (20, y0, 20) to point (z1,yl,21). After-
wards they will draw a line from point(x1,y1, z1) to point
(22,92, 22) until the reference line is finished being traced
over.

We will calculate the angle between the reference line
and the test as demonstrated in Equation v = (11 —
Zo,Y1 — Yo, 21 — 20) is the expected vector for the reference
line while v; = (2} — zo,¥y] — Yo, 2] — 20) is the vector of
our drawn line. We can determine the angle between these
two vectors by solving for § in Equation
Uy - Ut

cos(0)

orlTu] .

If the angle 6 between our two lines is < 10°, our AR
lines are accurate enough. With this new metric, we were
able to achieve an angle deviance of 8°. With more time,
we could have refined our testing a bit more and tried to
fine tune the parameters and filtering more.

Fig. shows an example of a line that was drawn.

7.2 Pen Size

We will first construct our device onto a bread board
and try to compact it as much as possible. After devel-

opment has been finished, we will solder everything to a
PCB.

Our entire system fits on a 7 cm by 9 cm PCB and
weights roughly 6 oz. Thus we have fulfilled our metric.

7.3 Battery Life

We originally were planning on running a test script
that mimics automation of drawing the line by constantly
setting the button input signal to high and low. We planned
on running this script on loop until the battery dies and see
how long it takes for the battery. However, due to reasons
discussed in this is no longer a considered metric.

7.4 Latency Tests

We plan on conducting a test where we draw one line.
When the button is lifted, we start a timer and measure
how long it take for this gestured line to be displayed in
Virtual space.

One test set will will involve drawing 5 lines and record-
ing how long it takes for those lines to be rendered com-
pletely in AR space. We aimed for an end to end latency of
1 second and a hardware latency of 150 ms. We achieved
this metric with an end to end latency of 10 s and hardware
latency of 8 ms.

18-500 Final Project Report: Picture This!, 05/05/2023

Page 10 of

0.1

0

Button Released

Connected

34 - < -‘\
5-5 17:27:06: Activate
7:08: Anchor

Connect Button [IDisconnect Button|

3
Clear Drawings

\

Figure 10: An example of a “lasso” drawn in black with
the pen device.

7.5 User Satisfaction for Drawing Test

We plan on also running additional user tests in order
to measure the “easy to use” metrics we have intended to
establish for our game. This test will specifically focus on
how easy the hardware pen device is to use. We will ask
a player to attempt to create a drawing based on the word
using the pen. After they complete this task and see their
finished product. We will then conduct a short survey, ask-
ing for a rating on a scale of 1 to 10, on how accurate they
felt the pen was at drawing their intended drawing. A goal
would be to have at least 80% satisfaction for the majority
of our test.

Unfortunately, with our previous scheme of trying to
calculate positional data, users understandably found it
frustrating to use. We achieved a metric of 2 out of 10
users saying that they were satisfied with the pen’s func-
tionality and an average rating of 1.9.

Due to this feedback, we were encourage to come up
with a different method of drawing lines.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Fig.

The hardware is the main focus of our work in the first
half of the course, as it is our critical path. It is imperative
that it gets done in order to have usable data for the soft-
ware side of things. while the hardware is in development,
the initial software pieces that can be done simultaneously
during the first half of the course.

The latter half of the course, after spring break, are fo-
cused on finishing up the software, finalizing the hardware,
and then integrating the software with the hardware. We
expect the integration to be the most troublesome area,
so we leave ample time for that. The very last weeks are
dedicated to testing and validation of our project.

8.2 Team Member Responsibilities

Sophia will be mainly focused on the hardware aspects
of the project. This includes stuff like selecting and buy-
ing the components, designing the hardware pen, and then
building, calibrating and testing the hardware.

Joseph will be mainly focused on the software aspects
of the project. This includes stuff like setting up and port-
ing the AR Unity project to the android phone, developing
the main line drawing scene and line drawing functionality,
and making sure all AR functionality and the line drawing
works for all users as expected.

Anthony will help Sophia work on getting the hardware
functional during the initial stages of the project and then
shift to helping Joseph get the software functional in the
latter stages of the project. This includes helping design
and test the hardware, as well as designing and implement-
ing the game application Ul and functionality, and helping
debug kinks that happen in the AR space and between de-
vices.

We will all work together on integrating and testing the
project as a whole.

8.3 Bill of Materials and Budget

Table [1] contains a summary of all purchased and ob-
tained goods. Hardware pen components are at the top of
the table and software and testing components are located
at the bottom.

Some components like buttons and LEDs can be triv-
ially obtained from previous projects and are not counted
in the cost. Other components such as a borrowed phone
also will not cost anything out of pocket.

Some of the hardware materials are for the purposes of
backups and testing. Our actual device will only require
one IMU. However, we wanted to purchase backups and

18-500 Final Project Report: Picture This!, 05/05/2023 Page 11 of

Table 1: Bill of materials

Description Manufacturer Quantity Cost @ Total
ESP8266 NodeMCU HiLetgo 3 $16.39 $49.17
Arduino Arduino 1 $0 $0
LSM6DS032 6-DoF IMU Adafruit 3 $12.50 $37.50
IMU Fusion Breakout - BNO055 Adafruit 3 $34.95 $104.85
Button NA 4 $0.50 $2
LED NA 1 $0 $0
Breadboard NA 1 $0 $0
HC-005 Bluetooth Module NA 3 $10.39 $31.17
PCBs NA 1 $13.97 $13.97
Uduino Unity 1 $15 $15
Arduino Bluetooth Plugin Unity 1 $15 $15
Samsung A10e Samsung 1 $150 $150.00
Android Phone NA 1 $0 $0

$418.66

Table 2: A more accurate assessment of spending on materials for finalized product

Description Manufacturer Quantity Cost @ Total
Arduino Arduino 1 $6.64 $6.64
IMU Fusion Breakout - BNO055 Adafruit 1 $34.95 $34.95
Button NA 2 $0.50 $1
LED NA 2 $0.50 $0.50
PCB NA 1 $5.0 $5.0
Arduino Bluetooth Plugin Unity 1 $15 $15
Samsung Al0e Samsung 1 $150 $150.00
Android Phone NA 1 $0 $0

$213.09

18-500 Final Project Report: Picture This!, 05/05/2023

Page 12 of

different types of IMUs to test and assess which ones best
suit our needs.

Table |2 contains a more accurate spending summary.
If you take out the purchased phone for the purpose of
testing, the cost of our pen itself is $63.09

8.4 Risk Mitigation
8.4.1 Hardware Reliability

A large portion of our project depends on the hardware
pen working, so we focused on the hardware right from the
very start. Once we realized this task seemed infeasible for
just one person to work on, we reorganized division of labor
so more people are working on the hardware components.

At the same time, the software that can be built without
hardware input is being developed simultaneously.

8.4.2 IMU Noise

A large pressing and ongoing concern for our hardware
was the quality of our IMU signals and whether or not they
would be too noisy for the purposes of our project. We did
our best to mitigate this risk by thoroughly researching
IMUs to try to find ones that were of high enough quality
but cheap enough to meet our cost use cases.

Unfortunately, we quickly discovered that even if the
initial acceleration data on IMUs seems to be sufficient,
the small error that it has will quickly build with every
operation done with it. Because of this, every quaternion
rotation and double integration to get position done on the
points would quickly grow more and more noisy until the
positional was not extremely meaningful for our purposes.

To address this, we ended up relying on the slightly
more accurate orientation data. By combining the accel-
eration data, gyroscope, and magnetometer data provided
on our IMU, we were able to perform sensor fusion similar
to what is described in to get more stable rotational
data. We have chosen to use our pen in more of a joystick
fashion, where you can rotate it and hold it in that position
for an extended period of time to change the distance.

Being aware of potential problems from the beginning
and coming up with backups has proven to be key in ad-
dressing the shortfalls of our IMU methods.

8.4.3 Hardware-Software Communication

One of the biggest issues that we discovered was the
transfer of our IMU data to the Unity app on our phone.
Some of the methods that we were debating on are dis-
cussed in b} We initially were set on two possible methods:
write our own Python net socket or use the built in Unity
package Uduino.

After some feedback and comments, we decided this
method would cause unnecessary latency as data would
need to be sent twice: once to our netsocket and once again
to our Unity App. Additionally, it would require additional
equipment (i.e. a laptop), that would make our device less
user friendly.

We originally planned on using Uduino, a Unity pack-
age designed for interfacing between an Arduino and Unity
through either a serial, Wi-Fi or Bluetooth connection. We
successfully interfaced through Wi-Fi and a serial connec-
tion with desktop Unity and our pen. Unfortunately, we
discovered that our Android devices were not compatible
and data could not be sent. Since there was not any doc-
umentation nor was the author being communicative, we
decided to switch to a different method.

We ended up on using a Bluetooth connection with a
different Bluetooth Unity package. Not only was it easier
to set up, but our latency was reduced since it was a direct
connection.

8.4.4 Integration

Our biggest risk is the integration of the hardware, soft-
ware, and multiple devices running concurrently. We tried
to start by integrating our hardware and software as early
as possible. However, difficulties inevitably arose, which
greatly delayed other aspects of our project such as run-
ning multiple concurrent devices and fine tuning our hard-
ware. Because of this, we opted to screen share our device’s
screen instead. We also dedicated a lot of time and effort
to focusing on the pen’s data collection metrics to ensure
we had a slightly working product.

9 RELATED WORK

AR only recently has begun to grow in popularity, but
a few similar technologies that tried to accomplish simi-
lar goals that align with the product we are also trying to
build.

Although it did not involve AR, when the Nintendo Wii
[5], was released, it managed to integrate both physical ac-
tivity and movement with video games. It was also able
to add a new form of interaction between different players
for select games. We hope our AR Pictionary game is able
to embody a similar ideal, innovation and enforcing phys-
ical activity. We attempt to improve upon this concept
by making an application that is easily accessible on any
individuals personal device, instead of requiring someone
to pay a lot of money for a new game system. Our game
would also allow for larger groups to participate, since we
are not restricted to 4 controllers that can be synced to
the system at a time, instead (in concept) any number of
people would be able to play our AR Pictionary game.

VRChat [4] was able to provide and innovative form
of social interaction for users in a virtual-replacing-the-
physical world context. Similarities exist in the form of a
virtual context for interaction among people, but lack the
real world interaction among individuals. There are many
more activities to do within VRChat as well, but requires
users to purchase a VR Headset, which can be expensive for
some. Our design, since it is simple in nature and mostly
requires personal devices, simplifies some complexities of
requiring additional hardware, besides the pen that needs

18-500 Final Project Report: Picture This!, 05/05/2023

Page 13 of

to be purchased.

There exists a current product on the market called Pic-
tionary Air [1], which functions very similarly to our prod-
uct. Drawings are made in virtual space with a pen like
device, and they are viewed on a tablet where people can
guess what another person is trying to draw. The difference
though is that these drawings with the pen are made in a
two dimensional space, and the drawings are only viewable
on one single device at any time. Our game will instead be
creating image in a three dimensional space, and also will
be interactive among multiple devices, allowing for more
participants.

10 ETHICS

Ethics were highly considered in the development of this
product. AR technology is both innovative and controver-
sial due to its immersion with real life.

One potential issues is that AR can be distracting
by preventing people from being aware of their surround-
ings. If people are to focused on viewing the virtual world
through their phone, it may cause them to be unable to
see in the physical real world around them. Some of these
dangers could include items on the floor that could cause
players to trip, walls close to a player, and many more.
One potential scenario could be a group of children playing
this game in the front yard of their house. As they get
more and more excited with the game, they slowly venture
further and further away from it until they are playing in
the street. Since their attention is dedicated to the game,
they may not be aware of immediate dangers such as cars
or road construction that may be happening at the same
time. Some of these dangers can be mitigated by giving
reminders to users to make sure they are aware of their
surroundings while playing the game. This will allow them
to stay immersed, but also reminded to stay aware.

There are also concerns that our app requires access to
phone cameras, which can be seen as an invasion of pri-
vacy. We have addressed these concerns by first asking
permission for camera access. While our app does view
the surrounding environment through the camera, it does
not record anything. In addition, in order to screen share,
TeamViewer requires temporary access to the host device,
which is also an invasion of privacy. To alleviate this, this
connection is only possible locally, in close contact, so the
owner of the device knows what is going on, in their device.
Additionally, the connection can be aborted at any time by
the owner of the device.

There is also a potential issue with conflicts amongst
players that could occur if the games get to intense. This
could be problematic, since instead of creating an enjoy-
able game like our user requirements intend, it might cause
tension amongst players instead. This will hopefully be
avoided since game play is simple and straight forward.
The game itself will also make sure to maintain a positive
atmosphere, to make sure every ones attitudes are positive
during game play.

11 SUMMARY

To summarize our design; we use a hardware pen that
records and sends positional IMU data through Bluetooth,
a Unity software application that renders lines based on
that data, as well as AR packages that allow these lines
to be overlaid on the real world through a phone. The in-
tegration of all these parts allow us to make into reality
our novel idea of Pictionary in AR. In order for a seamless
experience, we hope to have smooth, low-latency lines that
are not jarring for the user as they draw, but also man-
ages to be seamless for use among many devices running
simultaneously.

With this product an effort will be made to create a
game that will promote face-to-face social connection and
bonding, as well as promote a non-sedentary lifestyle by
requiring active movement and interaction amongst peers.
This is the perfect product for when one wants relative
strangers at an event to form connections with each other
through an icebreaker, or even just strengthening pre-
existing bonds one has with their friends. In addition, this
will be the perfect game for young children to remain active
and develop socially in this current technologically isolating
world.

Possible future developments are into the research of
IMUs and better methods of using acceleration and orien-
tation to determine linear displacement. While there exist
IMUs that are extremely accurate in this regard, they are
also extremely expensive. Research can also be done in this
area to determine a way of making IMUs less expensive and
more widespread as a result.

Glossary of Acronyms
o AR — Augemented Reality
e CV - Computer Vision
e DOF - Degrees of Freedom

e IMU - Inertial Measurement Unit

References

[1] Amazon. Pictionary Air Drawing Game. URL: https:
//www . amazon . com/Pictionary-Drawing-Light -
up-Devices-Exlclusive/dp/BO7P5PQZY77th=1,

[2] Kaixin Liang Si-Tong Chen Liuyue Huang Tianyou
Guo Can Jiao Qian Yu Nicola Veronese Fernanda
Cunha Soares Igor Grabovac Albert Yeung Liye Zou
Chunping Lu Xinli Chi. “Moving More and Sitting
Less as Healthy Lifestyle Behaviors are Protective Fac-
tors for Insomnia, Depression, and Anxiety Among
Adolescents During the COVID-19”. In: Pandemic,
Psychology Research and Behavior Management 13
(2020), pp. 1223-1233. DOI: [10.2147/PRBM. S284103.

https://www.amazon.com/Pictionary-Drawing-Light-up-Devices-Exlclusive/dp/B07P5PQZY7?th=1
https://www.amazon.com/Pictionary-Drawing-Light-up-Devices-Exlclusive/dp/B07P5PQZY7?th=1
https://www.amazon.com/Pictionary-Drawing-Light-up-Devices-Exlclusive/dp/B07P5PQZY7?th=1
https://doi.org/10.2147/PRBM.S284103

18-500 Final Project Report: Picture This!, 05/05/2023

Page 14 of

3]

Marko Milijic. “45+ Video Games Industry Rev-
enue Statistics: Game On!” In: (). URL: https://
spendmenot . com / blog / video — game - industry -
revenue-statistics/.

VrChat. VrChat. URL: https://hello.vrchat.com/.

Wikipedia. Wii. URL: https://en.wikipedia. org/
wiki/Wiil

https://spendmenot.com/blog/video-game-industry-revenue-statistics/
https://spendmenot.com/blog/video-game-industry-revenue-statistics/
https://spendmenot.com/blog/video-game-industry-revenue-statistics/
https://hello.vrchat.com/
https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/Wii

Page 15 of

18-500 Final Project Report: Picture This!, 05/05/2023

lean

<US8J05 BIaWET YUy

{eseyd meiq)
U29495 IWED

Moy pue noAe| 1) s, dde mo jo uorsioa aged-[[NJ Y T 2INS1]

uad
Jaauunn

ueg g

mu_bmor_mn_
128uUu00

=<safiessauc-

SWeD) UElS

<abiewe=

(aseyd uopaauuog)
UIUIG AWe)

U=22J35 IWoy

ddy ueig

Page 16 oflﬁl

18-500 Final Project Report: Picture This!, 05/05/2023

gQz[7-vef% tefY-Lrfy wrf7-ot/? L[Y%-Ef%
€l M33IM

Ll ¥33M 0L M33M 6 M33IM

Jrey) J3uRy) (g] 9INTI

T€/E-Le[E ¥z[t-oTft [r[t-Er/E gsS gfe-Lzfz
8MIIM IM3IIM 9MIIM SMIIM ¢ HMIIM

Yz[z-ozfT Lrfz-Etrfz

ot/z-g/T

EXM3IAM ZM3IIM L M3EIM

uonejuasald |eul4
slusuodwoy az|eul

Bunsal |ox1d

(1anpoid [euid) Bunsa) 1asn aweo
Bunsal 18sn

(auijaseg) Aljeuoiound sweg

£oeina2y aui Joy Bunss) |exid

Bunsal

S821A8(] Usamlag JUSWIUOIIAUT 8|gEUOd
8lBUB)U| 8WED Ul Yy ajelibaju|
uonaelaiul Jusuodwod slempleH pue Aiun
uonesfialu| ssold

8pog wuplobly aur vy

aoedg Yy Yum UoIDEISIU| 189S Ydleasay
aoedS MY Ul UONRISUSD) [3pON

abexoed pD yaieasay

21004y Yaleasay

juswdojarag yY

aua2sg aweo Buuuny

U8812§ UoDI8|as awen

}loMaLWel4 alWes) uolajans

suoyd o1 pod + dmas 128loud Yy Aun
dniss gnuio Auun

2oBLI9)U| SWED)

Bunsa) pue uoneiqle) uad
Buipjing uad
ubisaq uad
uonoas|es sped
alempleH
ILIL MSVL

	INTRODUCTION
	USE-CASE REQUIREMENTS
	Game Requirements
	Line accuracy
	Hardware efficiency

	ARCHITECTURE AND PRINCIPLE OF OPERATION
	DESIGN REQUIREMENTS
	Game Requirements
	Line accuracy
	Hardware efficiency

	DESIGN TRADE STUDIES
	Hardware Calibration Methods
	Multiple IMUs
	Software Assistance through CV
	Stationary Device as Reference Point

	Hardware Communication Protocol
	Software Selection
	Networking + Cloud Anchoring vs Screen Sharing

	Build Device Selection

	SYSTEM IMPLEMENTATION
	Pen
	Unity App

	TEST & VALIDATION
	Line Accuracy Tests
	Pen Size
	Battery Life
	Latency Tests
	User Satisfaction for Drawing Test

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Mitigation
	Hardware Reliability
	IMU Noise
	Hardware-Software Communication
	Integration

	RELATED WORK
	ETHICS
	SUMMARY

