18-500 Design Report - Picture This!, 3 March 2023

Page 1 of 12

Picture This!

Joseph Ayala, Anthony Meza, Sophia Zhang
Electrical and Computer Engineering, Carnegie Mellon University

Abstract—This project aims to create a game of
AR Pictionary where one player, the drawer, will have
a hardware device called a pen and the guesser player
will be able to view the AR drawings with their per-
sonal device cameras. We will be creating the pen
out of an NodeMCU module, an IMUm and using An-
droid phones in order to run the AR Unity App. The
NodeMCU will collect the IMU data and double inte-
grate it, via trapezoidal estimation, in order to obtain
linear displacement values. This data will then be sent
to participating Android devices via Wi-Fi. The Unity
App running on the Android devices will take the line
data and then render it in virtual space. While there
are existing version of AR Pictionary, we aim to expand
this by creating interactive and immersive 3D drawings.

Index Terms— Arduino, Augmented reality, De-
sign, ESP8266 (WiFi Module)

1 INTRODUCTION

In current times, games have began to increase in popu-
larity as a main source of entertainment. “The video gam-
ing industry generated 179.7 billion of revenue for the entire
year, compared to 2019’s 150.2 billion.” |3]. Unfortunately,
traditional forms of gaming tend to predominately involve
a single player experience that restricts players to sitting in
front of a monitor or screen. Excessive time spent sitting
has been shown to have harmful effects on mental health
and have effects related to insomnia in adolescents [2]. We
aim to address this issue by taking a game that most people
recognize and putting a spin on it to make it more appeal-
ing, engaging, and interactive for users. Our medium for
this will be AR, a cutting-edge technology, which makes the
digital world interactive with our physical world. For this
capstone project a prototype of Pictionary, a multiplayer
drawing and guessing game, will be created where AR is
utilized in order to display the drawings for other players
to guess.

This experience will be possible with the creation of a
pen device and a phone application. The pen device will
be used to draw in the AR space. By pressing down a but-
ton, the pen will record the players’ movements. The pen’s
data will be broadcast to the phone application which will
be downloaded on the personal devices of the participating
players. By using the cameras on players’ personal devices,
they will be able to view the drawing in the AR space that
is also overlaid onto the physical world. They will be able
to move around the drawing with their device’s cameras
to see it from different angles or zoom in on certain parts
of the drawing in real time by walking around in physical

space.

2 USE-CASE REQUIREMENTS

The use cases of our project can be generalized into a
few different categories: the game should be representative
of the original Pictionary, lines should resemble the mo-
tion of the user’s hand movements (line accuracy), and the
hardware should be robust and easy to use.

2.1 Game Requirements

The basic game Pictionary requires a player who is as-
signed as the “drawer” and at least two other players that
will be assigned as “ “guessers”. The drawer will be given a
random word which they will need to represent in the form
of a drawing. While the drawer is creating their drawing,
the other guessers will be able to see the progress that the
drawer is making and attempt to guess what the random
word drawer is trying to represent. The first guesser that
is able to figure out what the word is wins the round. After
this, players will alternate as guessers and drawers for a few
rounds until satisfied.

Due to the competitive aspect of this game, we need at
least a drawer and two guessers participating at the same
time. Thus our game will need to be able to support at
least these 3 players. Additionally to emulate the real-time
viewing of the drawing while its being made, we want it
to take less than 3 seconds for a drawer’s hand motion to
translate into a line render on Unity.

2.2 Line accuracy

The lines that are rendered in virtual space are loosely
derived from the movements that the drawer player does.
Since the drawer is gesturing in space and does not produce
a visible representation, exact accuracy of the movement of
their hand is not necessary.

However the line will need to have two aspects correct:
line direction and length. What this means is if the drawer
player is moving their hand in an upward direction, the
line produced should also be vertical. If the player moves
their hand side-to-side, the line produced should also be
horizontal. Additionally, the player should be able to move
their hand an amount and be able to produce a line that is
within 10% error of the distance their hand has moved.

2.3 Hardware efficiency

The hardware pen device that is being created will be
held and moved through the air in order to create lines. As

18-500 Design Report - Picture This!, 3 March 2023

Page 2 of 12

such, this device should be light weight (less than 0.5 1b or
weighing around the same as an average smart phone) and
can fit comfortably in someone’s hand (6 x 9 x 3 in). To
keep the game accessible to everyone, we want our hard-
ware components and cost of implementing the game to be
less than $50 dollars. Furthermore, the device should be
able to last a few rounds of game play, so we propose a
battery life of at least 4 hours.

Additionally, the hardware pen should be robust and
be able to transmit the necessary data to reduce the game
overhead. This point can be reiterated from Section [2.1
where when a player moves their hand to draw a line, that
line should be rendered in 3 seconds or less.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

On a high level, the framework for our system will con-
sist of N players (where N > 3): 1 drawer player and N —1
guesser players. The drawer will be holding the pen device
and perform gestures in order to “draw” in physical space
once game play begins. This data will be captured by the
pen device and sent to all players’ personal devices where
the Unity App will be able to render lines that the drawer
is creating in physical space to the AR space. This AR
space will be visible to all players via the camera on their
personal devices, where they will be able to see the drawer
creating lines in AR space. Fig. [l]is a diagram overview
that demonstrates data flow and general layout.

Looking at Fig. with a little more detail, the
Drawing Mechanism will be our pen, which will contain
4 hardware components: a NodeMCU, IMU, buttons, and
an LED. When button is pressed, the NodeMCU will start
recording the IMU data that corresponds to the player’s
movement. The LED will light up as well, providing vi-
sual feedback for all players, that the device is currently
drawing in AR space.

The drawer will have access to the pen device and per-
form gestures in air in physical space in order to “draw”.
These gestures will be captured by the pen device the mo-
ment game play begins, and store it on the device. This
stored data will then be sent to the game app that will be
downloaded on all of the “guessers” personal devices. Us-
ing this data, the Unity App will be able to render lines
that are overlaid onto the Real World through AR. Fig.
is a picture overview of this data flow and general layout.
As mentioned later in this could potentially also be
used for a CV assisted approach if necessary.

All of the guessers currently active in the game will need
to have the Unity Android Application downloaded to their
devices in order to be able to view what is being drawn. The
Unity software will be using the Udunio package in order to
record data from the NodeMCU itself, which will be sent
over by the drawing mechanism during game play. This
data will be processed, and using AR Foundation packages
within Unity, will be able to process and render lines the

drawer is trying to produce in the AR Space. By viewing
their screens and camera, users will be able to view the
rendered lines that the drawer has created. Other packages
that come with AR Foundations, like Cloud Anchoring, will
be used in order to make sure that the drawing is tied to a
specific location in the real world.

Drawer
Selected R S
Game Screen Guess Camera Screen

Home Screen (Assign Phase)

<image
eeeeee

Game Screen
(Draw Phase)

]
N

N

Figure 2: Game UI and how players get redirected from
page to page

In Fig. [2] we are able to get a better idea of how the
Unity Application will function in order to be intuitive
enough for player to use, but also simple enough to cre-
ate for our scope of project.

Upon running the app, players will need to select the
role that they will play during the current round of the
game. The guesser players will select the “Guesser” role
and be redirected to a screen with their camera view to see
the AR drawing and a timer in the corner to indicate how
much time is left in the game round. From this screen they
will be able to see exactly what the drawer is drawing, and
make guesses throughout the round.

The drawer player will instead select “Drawer” on the
Game Screen. They will also have a camera view to see
what they are drawing with the pen. When a guesser cor-
rectly guesses what the drawing is, the drawer can press
the “Guessed” button at the bottom of the screen to end
the round and return everyone to the assign role screen.

This system is simple enough for most players to be able
to play the game. If time permits, more complexity could
be added by adding more features like erasing drawn lines
or making it completely remote such that 3 players on op-
posite sides of the world could play together. But for the
current scope and timeline, this basic design will be suffice.

18-500 Design Report - Picture This!, 3 March 2023

Page 3 of 12

Personal Device 0

\

EWSW

User_0

Unity Software
ARF
Render,
Stablaize Uduing -
Coordinates
3
/ Perscnal Device 1

Unity Software

ARF

Render,
Stablaize
Coordinates

Uduino |

Hands

3

Real World/ Ar Space

Camera

Screen

Led Lights

Drawn Objects

!

{ NodeMCU

(Button
L Inputs.

Personal Device N

IMU

Unity Software

ARF

Render,
Stablaize
Coordinates

I

Uduina ¥

Drawing Mechanism

3

Camera

Screen

User N

Figure 1: An overview of the game structure and the components. Red blocks represent any physical devices. Blue
represents any software components. Green represents the virtual space where AR objects are overlaid onto the real

world.

4 DESIGN REQUIREMENTS

The Design Requirements for our game of AR Pic-
tionary are built off of our Use-Case requirements and
can once again be split into the same overarching cate-
gories: the game should be representative of the original
Pictionary, lines should resemble the motion of the user’s
hand movements (line accuracy), and the hardware should
be robust and easy to use.

4.1 Game Requirements

As previously stated in the users of our game will
require our App to be supported on at least 3 devices as
well as have real time line drawing.

The first requirement naturally implies that our App
will need to be downloadable onto multiple devices. For
sake of simplicity, we will be implementing our applications
for Android devices in order to streamline the development
process. Since all players will need to be able to view the
drawing, all devices will need to be able to interact with the
pen from all the different devices. This interaction between
devices will be handled mainly by AR Foundation, and the
AR Core packages that are used in conjunction with the
software.

The second requirement implies that the overall end-to-
end latency of communication needs to be kept to a mini-
mum. The defined metric of at most 5 seconds from hand

movement to drawn line will need to consider the combined
latency of a number of different components. This includes
time taken for: 1) hardware data collection on the drawing
mechanism, 2) transmission of the data from the drawing
device to the Unity Software, 3) calculation of linear dis-
placement based on the data received, and 4) rendering
that the software will perform in order to create the line
all an the AR space, which will be visible for players on
the camera of their personal devices. Calculation and ren-
dering of the line latency will be described in more detail
in Hardware data collection and transmission latency
will be described in more detail in E3]

4.2 Line accuracy

As stated in the line’s direction needs to correlate
with the movement of the drawer’s hand, as well as the
length of time the user is moving their hand.

To assess the correct direction of the line, we will base
this metric off of a distance test. We want the total dis-
tance deviation of a test line to only be 10% off of our
reference line. More details on this metric will be discussed
in Section

We want the drawn line length to be correct within 10
cm of our test line and our reference line to account for the
noise that wil be generated from the IMU. Once again, de-
tails of how this will be assessed will be discussed in Section

[

18-500 Design Report - Picture This!, 3 March 2023

Page 4 of 12

The latency of line calculation and render should be
less than 3 seconds in order to hit our metric of 5 seconds
between hand movement to drawn line to leave sufficient
overhead for data collection on the IMU and transmission
of this data.

4.3 Hardware efficiency

Our pen should be light weight (less than a 1 1b) and
can fit comfortably in someone’s hand (6 x 9 x 3 in) as
stated in 2.3

In order to hit our metric of a 4 hour battery life, we
need to find a battery that will be able to supply 4 hours
of power to our microprocessor and IMU, which are the
components that that will be drawing the most current.
Equation describes how our battery life ¢, current draw
A, and battery capacity C' are related to each other. N is
the total number of components drawing current and A; is
the current component ¢ is drawing.

_C C
T AT =N 4
A Zz‘:oAi

Additionally, the hardware pen should be robust and
be able to transmit the data with low latency. This point
can be reiterated from where when a player moves their
hand to draw a line, that line should be rendered in 5 sec-
onds or less. Thus we are aiming for a communication
latency between our pen and the Unity App to be less than
200 ms, as this is the typical latency for Wi-Fi and blue-
tooth communication. We will additionally consider an ex-
tra 100 ms overhead needed for collecting the data from
the IMU.

t (1)

5 DESIGN TRADE STUDIES

5.1 Hardware Calibration Methods

Calculating relative position with solely an IMU is dif-
ficult to do so in an accurate method. An IMU will only
be able to sample data at a constant rate and if there are
changes in frequency that happen faster than this sam-
pling rate, they will be missed and therefore not incorpo-
rated into the output of the IMU. This makes it difficult
to obtain an IMU with a high enough sampling rate and
low enough error to get accurate enough metrics for line
displacement. These errors can accumulate over time and
extended duration of IMU usage will result in data with
high errors.

There are a few methods that can be used to address
this problem that will be further described in the following
sections.

5.1.1 Multiple IMUs

One method of correcting for IMU drift and accumu-
lated error over time is to use multiple IMUs that can cor-
rect each other through a process called multi-sensor data

fusion. Sensor fusion combines sensor data or data derived
from different sources that will produce data that has less
uncertainty than would be possible when these sources were
used individually. The goal is that combining these sensors
will result in data that is more accurate.

One of our concerns with this approach is that it will
likely add non-trivial overhead to our line calculations. We
will have to implement our own data combination algorithm
(like Brooks—Iyengar algorithm) on either our NodeMCU or
as a C+# script in Unity. Due to us having to implement
our own version of this algorithm, there may not be enough
time to fully optimize this to meet our latency metric

Another small concern is that we want to keep our pen
as small and as low-cost as possible. Having to add more
IMUs will increase the size of it as well as increase the cost
of our device as well.

Overall sensor fusion is a feasible method of providing
more reliability of our data. However, as discussed in Sec-
tion|8.4.2] our diagnostic tests have showed promising signs
that a single IMU falls within our error range. If more is-
sues emerge with extended use of the IMU, sensor fusion is
something we can include to improve our data reliability.

5.1.2 Software Assistance through CV

Another potential method is to use CV in order to de-
tect the location of the pen on camera. This could be ac-
complished by tracking the location of a lit LED. CV would
be able to more easily determine the location of the pen in
the air and would have to rely less on noisy hardware for
this information.

However, CV will only be able to provide 2D coordi-
nates on a screen. This goes against our original proposal
idea of using AR to draw 3D lines that players can ro-
tate around and interact with. Additionally, there were
concerns that adding CV would also greatly increase our
latency for line calculation and computation.

The time and energy it would also take to implement
CV falls outside the scope of the project. There is likely
not enough time to implement CV and reach the desired
minimum viable product.

5.1.3 Stationary Device as Reference Point

Another general method that falls in line with sensor
fusion as described in Section [5.1.1] is using a stationary
device as a reference point. This device would be placed
on the ground to the side and would serve as a fixed refer-
ence point between the pen and the IMU.

An obvious concern is the method in which this de-
vice would be able to determine distance. One way is to
use Wi-Fi in order to determine the distance between our
bluetooth pen and Wi-Fi device. Once again, however, the
issues with this solution approach are similar to the ones
defined in Section [5.1.11 This external Wi-Fi device will
likely be even less accurate than the IMU and would do lit-
tle to correct the actual distances. Another large concern

18-500 Design Report - Picture This!, 3 March 2023

Page 5 of 12

is that this Wi-Fi device will be extremely expensive which
will break our proposed requirement of an affordable cost.

5.2 Hardware Communication Protocol

Figure |3| demonstrates an alternate method that was
previously considered for transferring data from our
ESP8266 module to our Unity App. Due to an inability for
Unity to directly communicate wirelessly to our hardware,
a Python net socket could have functioned as an interme-
diate in order to send data over.

This alternate approach would allow us to have more
fine-grained control over how data is transferred between
our pen and our Unity app. It would also allow us to po-
tentially reduce the latency of line calculation by allowing
us to use built-in Python libraries to perform our double
integration.

Internal buffer of
IMU data

Double integrate to Internal buffer of line
obtain line position position data

Wi-Fi Channel

3

Wi-Fi Channel

IMU|data

Hardware Device
LED

—

Button

Bread board

Figure 3: Schematic of an alternate hardware design that
involves using a Python Net socket to assist in data transfer
between ESP8266 module and our Unity App

Additionally, as demonstrated in Fig. [there would
have been additional latency added due to a communica-
tion protocol. first, data would be need to be sent over a
Wi-Fi channel twice. This communication protocol would
also have required our Unity app to constantly be polling
the Wi-Fi channel in order to detect an incoming packet
reception signal. Only once the hardware and software per-
formed a handshake and agreed to exchange data, then they
would have been able to send/receive data. This communi-
cation protocol is necessary to ensure both ends are ready
to send and receive data. Without this protocol, the line
data would have been incorrectly dropped, which would
have drastically decreased the quality of the game. How-
ever, this method would have incurred additional latency as
well as draw more power from the devices since they would
have been constantly busy polling in the background.

,r

Python net socket

"| have data"

Python net socket

"Ready to receive data"

,~

Python net socket

10, 11, ..., In || "no more data"

—

Python net socket

"Received n lines"

»

Python net socket

‘-

Python net socket

Figure 4: Communication protocol between the Python
Net Socket and Unity on how to transfer data

5.3 Software Selection

Unity was an obvious first choice in terms of software
development for us. Not only do we have previous expe-
rience using it, Unity is also already well integrated with
several other packages such as AR Core for Android devices
or Apple AR Kit. Additionally, Unity has a very large and
an active community, so there are many built-ins, guides,
and documentation available to streamline this process.

5.4 Build Device Selection

For our application, since we have the intention mak-
ing our game easily accessible for the average person, we
needed to make considerations about what devices it should
be able to build on. It was originally considered that we
could develop an application that could be run on any de-
vice, including phones and laptops. The idea behind this
approach would mean that the application would be ac-
cessible to anyone anywhere. This idea was eventually
scrapped, instead deciding to strictly build for phones, the
deciding factor being that generating builds for accessibil-
ity on both laptop and phone screens would add an unnec-
essary amount of additional complexity that would divert
focus from the more challenging components of the project
as a whole. Additionally, phones would be much more prac-
tical and allow for ease of interaction during a game play
session, since it would make it easier for guesser players to
move around and examine the drawings created by drawers
at different angles.

We also had to consider which OS device we would want
to try developing our project for. IOS devices were consid-
ered due to the greater number of IOS devices that we
accessible, but IOS tends to be more complicated to build

18-500 Design Report - Picture This!, 3 March 2023

Page 6 of 12

on since it would require everyone in our group to own Ap-
ple products. We instead made the decision to code for
Android devices, mainly because they are much more de-
veloper friendly. This did mean we would need to purchase
more Android devices for testing purposes, but Android
devices are usually cheaper than Apple devices as well.

6 SYSTEM IMPLEMENTATION

6.1 Pen

Fig. [5| describes the layout of the pen device. The pen
will consist of an ESP8266 NodeMCU, green LED, IMU,
and a button. The NodeMCU will be powered via two 3.7
V batteries that will be able to supply 2 Ah. This ESP8266
will also be able to power the IMU through its 3.3 V pin and
will be connected to a button and LED to receive inputs
and provide visual feedback to the user.

The drawer will press and hold on the button to indicate
that they are in the process of drawing a line. The LED
will also light up to provide visual feedback for the drawer.
The IMU data will be collected while the button is pressed
in order to determine relative position of the player’s hand
as they move it through the air. This data will be sent to
the the Unity App on all players’ phone through Wi-Fi.

i-Fi Channel

Hardware Device

Draw Button -
Calibration -
button

Bread board

Figure 5: Schematic of the pen

In order to reduce the amount of IMU drift accumu-
lated over time that would greatly reduce the accuracy of
the lines and hinder the game experience, the player must
start in a calibration phase. In this phase, they will will
hold the pen in their dominant hand straight down, with
the IMU pointed at the ground. Once they assume this
position, they must press the calibration button and hold
this this position for 2 seconds. After they finish calibrat-
ing, the player is free to draw exactly 2 additional lines.
Once these 2 lines are drawn, the player must return to
this calibration phase.

The ESP8266 module will collect IMU data once every
0.01 seconds to obtain an acceleration vector at this point
of time. From this data, we will double integrate using
trapezoidal estimation in order to obtain linear displace-
ment between the starting design. This will be used in
order to determine the location and shape of the line. This
displacement data will be sent to the Unity App.

Displacement and the acceleration data will be collected
for the purposes of testing and validation as discussed in[7]

6.2 Unity App

Figure [6] describes the general flow of data within our
Unity App. Once ported to each players’ phone, the Unity
app will directly interact with the ESP8266 module through
a Wi-Fi channel. Positional data from the pen will through
be received through a C# script. This script that directly
updates and renders the AR drawing will, at the start of
a round of the game when the player first holds down the
button to draw, instantiates a AR line renderer gameob-
ject, through the use of the AR Foundation Package. Then
it will tie that gameobject’s position to a specific location
in the real world using Cloud Anchoring from the ARCore
Package. This anchor is created through taking the lo-
cational data from the NodeMCU and forming it into a
Vector3 position, and then using that and the identity ro-
tation to create a Pose struct. This will anchor the overall
drawing’s absolute position, relative to the real world, so
that the drawing shows up in the exact same location on
every users’ phone, regardless of the point-of-view.

After this initial instantiation and tying to a location,
the script will then always be in busy polling state, waiting
for any new positional data from the NodeMCU to come
through. Once it receives new data, the script will take
the locational data and form it into a new Vector3 struct,
which it will use to update the current position of the new
point in space, while saving the previous position in space.
The lines will be rendered, using the line renderer gameob-
ject, between these two Vector3 positions in space, which
a new pair of is created every set distance of 0.001 meters.

Everytime the user releases and then holds down the
draw button on the pen, the instantiation of a new cloud
anchor will occur. This signifies a new “drawing”, or a sep-
arate continuous line, which will be drawn and anchored in
the new space where the user started drawing. These an-
chors will be stored in a list, allowing each separate line to
be rendered and held in the exact location where they were

18-500 Design Report - Picture This!, 3 March 2023

Page 7 of 12

AR Foundation Package

Instantiation of gameobject

C# Scripts
(Instantiates AR line
gameobject)
(updates line
position)

Cleaned positional data

Python net socket

Looks to script, waiting for line position updates

Unity Editor

App ported to phone

ARCore Package

|

Create AR line gameobject .
Fed into
Cloud Anchoring
(Attaches AR object to real

world location)

Ymhea absolute line position (relative to real world)

Render AR line
gameobject

Updates relative line positions (relative to self)

Figure 6: Flow and transfer of data within Unity

drawn in space, instead of following the drawer’s phone
around as they move around. At the same time, the cloud
aspect allows other users to see the drawing in the same
absolute location in the real world, as all the anchors are
stored in the cloud.

7 TEST & VALIDATION

7.1 Line Accuracy Tests

We will assess line accuracy is what we define as a dis-
tance test. In this test, we generate a few reference lines
that will consist of a a few points connected by a straight
line. Figure[7]gives an example of such a line with arbitrary
points in space.

(%3, y3,z3)

(x1,y1,z1) (x4, y4, z4)

(x0, y0O, 20}

Figure 7: An example of a reference line with defined points
in 3D space

Depending on exact metric we are trying to test, we
can create this 3D line in two ways. If testing on a 2D
plane, we can print out this reference line onto a sheet of
paper. Otherwise, we can use string to represent a line in
3D space. We will then use our pen to trace over this refer-
ence line. They will draw a line from one point to another
point. This drawn line will also be called a test line.

In reference to Figure[7, a user for example, will draw
a line from point (z0,y0,20) to point (z1,yl,z1). After-
wards they will draw a line from point(x1,y1, z1) to point
(22, y2, 22) until the reference line is finished being traced
over.

(x2,y2, 22)

(x3,y3,23)

1, y1,21) (x4, y4, z4)

(x1', y1', z1")
(x0, y0, z0)

Figure 8: An example of a reference line with defined points
in 3D space as well as an test line drawn by a user

Using the distance formula as described in Equation
the distance between each consecutive point in the refer-
ence line and the test line will be calculated.

18-500 Design Report - Picture This!, 3 March 2023

Page 8 of 12

d= \/(3?1 —0)2 4+ (y1 — Y0)? + (21 — 20)? (2)

We will calculate the percent error between the refer-
ence line distances and the test line distances as demon-
strated in Equation de is the expected distance or the
distance from our reference line. d, is the actual distance
we determined from our test line.

de — dg
- 3)

If the percent error between our reference line and test
line is 10% of less, our AR lines are accurate enough.

5= %100%

7.2 Pen Size

We will construct our device onto a bread board and
try to compact it as much as possible. We will measure the
width, length, and height of this compacted area to obtain
a metric of how large our device is.

7.3 Battery Life

We will run a test script that mimics automation of
drawing the line by constantly setting the button input sig-
nal to high and low. We will run this script on loop until
the battery dies and see how long it takes for the battery.

7.4 Latency Tests

We plan on conducting a test where we draw one line.
When the button is lifted, we start a timer and measure
how long it take for this gestured line to be displayed in
Virtual space.

One test set will will involve drawing 5 lines and record-
ing how long it takes for those lines to be rendered com-
pletely in AR space. In case we do not hit this metric, we
can further split this into two different categories.

7.5 User Satisfaction for Drawing Test

We plan on also running additional user tests in order
to measure the “easy to use” metrics we have intended to
establish for our game. This test will specifically focus on
how easy the hardware pen device is to use. We will ask
a player to attempt to create a drawing based on the word
using the pen. After they complete this task and see their
finished product. We will then conduct a short survey, ask-
ing for a rating on a scale of 1 to 10, on how accurate they
felt the pen was at drawing their intended drawing. A goal
would be to have at least 80% satisfaction for the majority
of our test.

8 PROJECT MANAGEMENT

8.1 Schedule
The schedule is shown in Fig.

The hardware is the main focus of our work in the first
half of the course, as it is our critical path. It is imperative
that it gets done in order to have usable data for the soft-
ware side of things. while the hardware is in development,
the initial software pieces that can be done simultaneously
during the first half of the course.

The latter half of the course, after spring break, are fo-
cused on finishing up the software, finalizing the hardware,
and then integrating the software with the hardware. We
expect the integration to be the most troublesome area,
so we leave ample time for that. The very last weeks are
dedicated to testing and validation of our project.

8.2 Team Member Responsibilities

Sophia will be mainly focused on the hardware aspects
of the project. This includes stuff like selecting and buy-
ing the components, designing the hardware pen, and then
building, calibrating and testing the hardware.

Joseph will be mainly focused on the software aspects
of the project. This includes stuff like setting up and port-
ing the AR Unity project to the android phone, developing
the main line drawing scene and line drawing functionality,
and making sure all AR functionality and the line drawing
works on for all users as expected.

Anthony will help Sophia work on getting the hardware
functional during the initial stages of the project and then
shift to helping Joseph get the software functional in the
latter stages of the project. This includes helping design
and test the hardware, as well as designing and implement-
ing the game application UI and functionality, and helping
debug kinks that happen in the AR space and between de-
vices.

We will all work together on integrating and testing the
project as a whole.

8.3 Bill of Materials and Budget

Table [1| contains a summary of all purchased and ob-
tained goods. Hardware pen components are at the top of
the table and software and testing components are located
at the bottom.

Components like buttons and LEDs can be trivially ob-
tained from previous projects and are not counted in the
cost. Other components such as a borrowed phone also will
not cost anything out of pocket.

Some of the hardware materials are for the purposes of
backups and testing. Our actual device will only require
one IMU. However, we wanted to purchase backups and
different types of IMUs to test and assess which ones best
suit our needs.

Table [2| contains a more accurate spending summary.
If you take out the purhcased phone for the purpose of
testing, the cost of our pen itself is $32.96

18-500 Design Report - Picture This!, 3 March 2023

Page 9 of 12

Table 1: Bill of materials

Description Manufacturer Quantity Cost @ Total
ESP8266 NodeMCU HiLetgo 3 $16.39 $49.17
LSM6DS032 6-DoF IMU Adafruit 3 $12.50 $37.50
IMU Fusion Breakout - BNOO055 Adafruit 3 $34.95 $104.85
Button NA 2 $0 $0
LED NA 1 $0 $0
Breadboard NA 1 $0 $0
Uduino Unity 1 $15 $15
Samsung Al0e Samsung 1 $150 $150.00
Android Phone NA 1 $0 $0

$356.52

Table 2: A more accurate assessment of spending on materials for finalized product

Description Manufacturer Quantity Cost @ Total
ESP8266 NodeMCU HiLetgo 1 $5.46 $5.46
LSM6DS032 6-DoF IMU Adafruit 1 $12.50 $12.50
Button NA 2 $0 $0
LED NA 1 $0 $0
Breadboard NA 1 $0 $0
Uduino Unity 1 $15 $15
Samsung A10e Samsung 1 $150 $150.00
Android Phone NA 1 $0 $0

$182.96

8.4 Risk Mitigation Plans
8.4.1 Hardware Reliability

The software portion of our project depends on the
hardware, so in order to mitigate the risk of the hardware
taking longer than expected to debug, we focused on the
hardware right from the very start. We initially only had
one person working on the hardware, but we realized that
this task seemed likely infeasible so we now reorganized di-
vision of labor so more people are working on the hardware
components.

At the same time, the software that can be built without
hardware input is being developed simultaneously.

8.4.2 IMU Noise

A large concern for hardware is whether or not the IMU
signal would be too noisy for the purposes of our project.
To mitigate this risk, we did detailed research by examin-
ing previous projects to assess which IMUs had high enough
quality. We a couple of simple IMU test scripts to assess
the quality of them.

Both ordered IMUs were sufficient enough for our pur-
poses, so we settled on using the cheaper one. If an IMU
breaks, we have backups just in case. If the accumulated
error grows to be too much, we can switch to using the
other more expensive, but accurate IMU. If that does not

prove to be enough, we can also integrate sensor fusion as
described in to help improve the accuracy of our data.

8.4.3 Hardware-Software Communication

One of the biggest unknowns is the transfer of the data
recorded by the hardware to the software run by the Unity
application. After some research, we have determined that
there are two possible methods: use a built in Unity pack-
age Uduino or write our own Python net socket.

Uduino allows for both serial, Wi-Fi, and Bluetooth
communication between an Arduino device an Unity. If
this package were to work as intended, this would allow us
to interface between our NodeMCU module, which func-
tions similarly to an Arduino, and Unity without any is-
sues. The transfer protocol will transmit data in a similar
manner to what we describe in [5.2] but will instead use
Uduino’s builtin functionality rather than requiring us to
write our own.

If there are interfacing issues, a alternate method would
be to write our own Python net socket to receive data from
the NodeMCU and send it to the Unity App. This is de-
scribed in Section [5.21

8.4.4 Integration

Our biggest risk is the integration of the hardware, soft-
ware, and multiple devices running concurrently. In order

18-500 Design Report - Picture This!, 3 March 2023

Page 10 of 12

to mitigate that risk, we leave ample time in the latter half
to work through any issues that come up.

9 RELATED WORK

AR only recently has begun to grow in popularity, but
a few similar technologies that tried to accomplish simi-
lar goals that align with the product we are also trying to
build.

Although it did not involve AR, when the Nintendo Wii
[5], was released, it managed to integrate both physical ac-
tivity and movement with video games. It was also able
to add a new form of interaction between different players
for select games. We hope our AR Pictionary game is able
to embody a similar ideal, innovation and enforcing phys-
ical activity. We attempt to improve upon this concept
by making an application that is easily accessible on any
individuals personal device, instead of requiring someone
to pay a lot of money for a new game system. Our game
would also allow for larger groups to participate, since we
are not restricted to 4 controllers that can be synced to
the system at a time, instead (in concept) any number of
people would be able to play our AR Pictionary game.

VRChat [4] was able to provide and innovative form
of social interaction for users in a virtual-replacing-the-
physical world context. Similarities exist in the form of a
virtual context for interaction among people, but lack the
real world interaction among individuals. There are many
more activities to do within VRChat as well, but requires
users to purchase a VR Headset, which can be expensive for
some. Our design, since it is simple in nature and mostly
requires personal devices, simplifies some complexities of
requiring additional hardware, besides the pen that needs
to be purchased.

There exists a current product on the market called Pic-
tionary Air [1], which functions very similarly to our prod-
uct. Drawings are made in virtual space with a pen like
device, and they are viewed on a tablet where people can
guess what another person is trying to draw. The difference
though is that these drawings with the pen are made in a
two dimensional space, and the drawings are only viewable
on one single device at any time. Our game will instead be
creating image in a three dimensional space, and also will
be interactive among multiple devices, allowing for more
participants.

10 SUMMARY

To summarize our design; we use a hardware pen that
records and sends positional IMU data through Bluetooth,
a Unity software application that renders lines based on
that data, as well as AR packages that allow these lines
to be overlaid on the real world through a phone. The in-
tegration of all these parts allow us to make into reality
our novel idea of Pictionary in AR. In order for a seamless
experience, we hope to have smooth, low-latency lines that

are not jarring for the user as they draw, but also man-
ages to be seamless for use among many devices running
simultaneously.

With this product an effort will be made to create a
game that will promote face-to-face social connection and
bonding, as well as promote a non-sedentary lifestyle by
requiring active movement and interaction amongst peers.
This is the perfect product for when one wants relative
strangers at an event to form connections with each other
through an icebreaker, or even just strengthening pre-
existing bonds one has with their friends. In addition, this
will be the perfect game for young children to remain active
and develop socially in this current technologically isolating
world.

Glossary of Acronyms

e AR — Augemented Reality
e CV - Computer Vision
e DOF - Degrees of Freedom

e IMU - Inertial Measurement Unit

References

[1] Amazon. Pictionary Air Drawing Game. URL: https:
/ /www . amazon . com/Pictionary-Drawing-Light -
up-Devices-Exlclusive/dp/BO7P5PQZY77th=1,

[2] Kaixin Liang Si-Tong Chen Liuyue Huang Tianyou
Guo Can Jiao Qian Yu Nicola Veronese Fernanda
Cunha Soares Igor Grabovac Albert Yeung Liye Zou
Chunping Lu Xinli Chi. “Moving More and Sitting
Less as Healthy Lifestyle Behaviors are Protective Fac-
tors for Insomnia, Depression, and Anxiety Among
Adolescents During the COVID-19”. In: Pandemic,
Psychology Research and Behavior Management 13
(2020), pp. 1223-1233. DOI: [10.2147/PRBM. S284103,

[3] Marko Milijic. “45+ Video Games Industry Rev-
enue Statistics: Game On!” In: (). URL: https://
spendmenot . com / blog / video - game - industry -
revenue-statistics/\

[4] VrChat. VrChat. URL: https://hello.vrchat.com/k

[5] Wikipedia. Wii. URL: https://en.wikipedia.org/
wiki/Wiil

https://www.amazon.com/Pictionary-Drawing-Light-up-Devices-Exlclusive/dp/B07P5PQZY7?th=1
https://www.amazon.com/Pictionary-Drawing-Light-up-Devices-Exlclusive/dp/B07P5PQZY7?th=1
https://www.amazon.com/Pictionary-Drawing-Light-up-Devices-Exlclusive/dp/B07P5PQZY7?th=1
https://doi.org/10.2147/PRBM.S284103
https://spendmenot.com/blog/video-game-industry-revenue-statistics/
https://spendmenot.com/blog/video-game-industry-revenue-statistics/
https://spendmenot.com/blog/video-game-industry-revenue-statistics/
https://hello.vrchat.com/
https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/Wii

Page 11 of 12

18-500 Design Report - Picture This!, 3 March 2023

‘mop pue JnoAde| 1) s, dde mo jo uorsioa afed-[[nJ y :6 9IN31g

N

=U28125 BlaWeE) Hy'=

<Jjawi] > / . aweg) pelg
.'llll!.'
(eseud meiq)
USRS SUmD Bmelq
19558n9)
\ <abeu
(aseud ubissy) USRI SUIOH

<U88IIS BIAWED HY=

<] =

usal12§ swes)

ssan9
papajes
jameiq

T

-

(aseuyd ssang)
uaal12§ aweg

ddy uels

Page 12 of 12

18-500 Design Report - Picture This!, 3 March 2023

JIRYD) 9uey) QT 231

orfr-frefy tefr-Lofr rrfr-otfy Lp-E)F TE[E-LzfE YzfE-ozft frfE-ErfE
ZEM3AM LEM3IIM OEMIIM 6MJd3IM 8MIIM IMJdM 9MIIM

as Efe-Lzjz
SHIEM FMIAM

Frjr-ozjz
£¥33IMm

ftfz-E1fe
£ M3Im

oTfz-0T
I M33Mm

uonejuasald [EUl4
sjusugdwos aziEu

Bunsa) |axid

(Janpoid [ewd) Bugss) 1asn awes
Bunsal Jasn

{auwjaseg) Apeuoijaun 4 awesy

faeinaay aur) 1oy Bugsa) |exd

Bunpsa)

SATIAB(] USSM]SF JUSWUCAUT S|QEDO
BIEUSU| FWED 0 Yy SjeIGaU|
ucioRISiul Jusuodwon sIemMpIEY puE fiup
uoneiBizaqu) ss01]

s221a2 (dginy ss010y 4y dojaaag
aeds WY UlM UONIBISIU] 1381 UyIesesY
21edS HY Ul UBjEIBUSS) [BPOW

abeyoed A0 youeasay

2103HY YIeasay

wawdo|aaag vy

wiypuofiy sur

ubisaq |n soueyougy

auza5 awes Guuuny

USEIDS UOIB[BS SWED)

HIOMBWELS SWESD UDISIFHS

dn jas gnuyps fuun

aJepaju] 3wes

Bunsal pue uoijeIgED US4
Buiping uad
ubisag uad
uaizagEs sped
AUEMPIEH
JILIL HS VL

	INTRODUCTION
	USE-CASE REQUIREMENTS
	Game Requirements
	Line accuracy
	Hardware efficiency

	ARCHITECTURE AND PRINCIPLE OF OPERATION
	DESIGN REQUIREMENTS
	Game Requirements
	Line accuracy
	Hardware efficiency

	DESIGN TRADE STUDIES
	Hardware Calibration Methods
	Multiple IMUs
	Software Assistance through CV
	Stationary Device as Reference Point

	Hardware Communication Protocol
	Software Selection
	Build Device Selection

	SYSTEM IMPLEMENTATION
	Pen
	Unity App

	TEST & VALIDATION
	Line Accuracy Tests
	Pen Size
	Battery Life
	Latency Tests
	User Satisfaction for Drawing Test

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Mitigation Plans
	Hardware Reliability
	IMU Noise
	Hardware-Software Communication
	Integration

	RELATED WORK
	SUMMARY

