
1
18-500 Final Project Report: DriveWise 05/05/2023

DriveWise
Authors: Sirisha Brahmandam, Yasser Corzo, and Elinora Stoney

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—DriveWise is a system that assists drivers with
becoming safer on the road. It works by keeping track of a
user’s eye movements, mouth movements, and overall face
position to check for signs of inattention and sleepiness. It will
then provide real-time audio feedback to drivers accordingly
as well as keep logs of their driving history. We used cameras
with computer vision to track the driver’s face as well as an
accelerometer to determine when the car is in motion and
meets conditions that don’t require feedback. This device aims
to provide more driver-focused feedback as many modern
safety features in cars don’t currently do that. It will also be
able to be easily integrated into most cars so anyone can use
the device. The domains in the project will be software,
hardware, and signals and systems.

Index Terms—computer vision, driving assistant, embedded
system, eye tracking, facial detection, machine learning, web
application

I. INTRODUCTION
Close to a million car accidents occur annually due to

distracted driving in the United States alone, with young
and inexperienced drivers particularly at risk. Most cars on
the road today don’t give real-time feedback about a
driver’s attention levels, making it difficult to identify and
adjust dangerous behaviors. Even vehicles with
preventative features are not particularly driver-focused,
reporting on symptoms (ex. irregular car movement) rather
than the cause of distracted driving. DriveWise is an
automated driver-feedback system that can be integrated
easily into any semi-modern car. The device uses facial
detection to identify when a driver is inattentive to the road
or showing signs of drowsiness. Real-time audio feedback
is provided to the driver alerting the driver of their
distractedness. The device also works in the cases of
low-light conditions and an obstruction to the eyes (hat or
sunglasses) with a slightly lower accuracy, while still
meeting user requirements. Similar facial detection devices
for drivers exist (Cipia, Smart Eye, Eyeware Tech, and
Seeing Machines), but they are marketed towards car
manufacturers rather than individuals. DriveWise is able to
easily integrate into any car that a user currently owns.

II. USE-CASE REQUIREMENTS
To ensure that DriveWise adequately addresses our user’s

needs, we consider the following use-case requirements.
Clear and concise feedback must be provided when

the driver reaches two seconds of inattention. We define
inattention as either looking away from the road or

exhibiting signs of drowsiness. More specifically, (1)
looking anywhere other than the windshield or rear/side
view mirrors and (2) yawning and/or having closed eyes..
We chose two seconds as our time limit because the US
National Highway Traffic Safety Administration (NHTSA)
[4] has determined it is unsafe to look away from the road
for greater than two seconds. Clear feedback in these cases
will provide the user with an opportunity to notice and
correct their behavior.
Inattention detection accuracy should be at least 90%

in ideal conditions and 85% in non-ideal conditions. We
define ideal conditions as high back lighting and no
obstruction of the driver’s eyes. In contrast, non-ideal
conditions include instances of low lighting and when the
driver is wearing sunglasses or a hat. We are considering
these non-ideal conditions to more accurately reflect the
driving experience. We chose these percentages because
similar research papers on facial detection for inattention
using convolutional neural networks (CNNs) have reported
approximately 95% accuracy for our defined ideal
conditions and 90% accuracy for non-ideal conditions [6].
The computation time for detecting inattention should

be less than 1 second. Because the NHTSA determines 2
seconds [4] as the dangerous limit for inattention, we want
our computation time to be less than one second to ensure
there is enough remaining time to deliver feedback before
the two second threshold is reached.
The frame rate for the video camera should be at least

5 frames per second (fps). We are using CNNs to classify
whether the video stream of the driver’s face is showing
signs of inattention. An fps of five will allow enough time
to use CNNs to give a more accurate classification.
Users should be able to view all of their past data. This

is motivated by the fact that users want to observe and
monitor their progress to motivate further safe driving
practices. We will accomplish this with a web application
that the user can log into to view all of their past data.
User data should be private and not shared with other

users or insurance companies. In this way we can protect
user privacy concerns and prevent negative insurance
implications, such as higher rates due to higher inattention
levels while driving.
The device should be able to plug into a power source

in the user’s car. Direct powering from the car avoids the
burden of charging in advance or changing batteries and
also allows the device to be easily integrated into any
semi-modern car. We define any semi-modern car as one
with a 12V auxiliary power outlet or any kind of USB
power port.

2
18-500 Final Project Report: DriveWise 05/05/2023

Feedback should not be given while the car is
stationary, turning, or reversing. The user does not need
to pay as much attention to the road while the car is parked,
reversing out of a parking space, at a red light, or looking
right/left to make a turn and any audio feedback given
during this time would be annoying to the user.
Lastly, the device should not obstruct the user’s view

of the road, as this would jeopardize driver safety.

III. ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Fig. 1. This is the setup of the DriveWise device in an actual car.

The device is powered by the 12V USB-A port in the
user’s car, connected to the Jetson via a USB-A to USB-C
adaptor. Note that a different adaptor could be used to allow
the device to be powered by an auxiliary power outlet
instead, but the cars that we are testing the device in have a
USB-A port. The Jetson houses all of the machine learning
and computer vision capabilities, as well as the
classification and feedback logic.
When the car is powered on, the device will immediately

turn on and the camera will begin recording a video of the
driver’s face. At this point, the calibration sequence will be
initiated and the user will be instructed (via audio) to look
at the center of the camera with their mouth closed for five
seconds. After calibration, the device will be enabled to
provide feedback once the accelerometer (connected to the
Jetson via I2C) detects that the car is moving. All of the
computer vision and machine learning algorithms will be
stored in the Jetson. Connected to a live camera feed,
frames will be sent (once the car is in motion) to the
OpenCV DNN module and its artificial neural network
where, along with the landmark detector, will help classify

whether a driver is distracted or sleepy through eye and
mouth detection. As a result, if a driver is determined to be
distracted or sleepy, audio feedback will be relayed to the
driver through the speaker connected to the Jetson.
The Jetson will send classification data in real-time (over

the WiFi dongle connected to the user’s phone hotspot) to
the Firebase Firestore, which we are using for storage. This
Firestore is connected to our web application and users are
able to view their own feedback logs once they log in. The
web application itself is also hosted on Firebase, with the
frontend programmed using React. The overall system is
shown in figures 1 and 2, with figure 1 displaying the setup
of the device while plugged into a car. See Figure 3 for the
more detailed block diagram of the system.

The main changes to our system since the design report
were the switch from using the Jetson Xavier AGX to the
Jetson Nano, using DLib instead of cnn-facial-landmarks,
using a wifi dongle instead of a cellular dongle, getting new
adaptors for the different ports on the Jetson Nano, and
using Firebase for the backend and hosting instead of AWS.

Fig. 2. This is a closer-up labeled diagram of the completed device.

3
18-500 Final Project Report: DriveWise 05/05/2023

Fig. 3. This is the functional block diagram for the device

IV. DESIGN REQUIREMENTS
We require the audio feedback to be less than one

second long as, according to the National Highway Traffic
Safety Administration (NHTSA) [4], looking away from the
road for more than two seconds is considered unsafe. With
the feedback being given immediately in under one second,
this will give the driver enough time to hopefully adjust
their behaviors accordingly. As a result, we want to make
sure the feedback is clear and concise to make it clear to the
driver that changes to their driving behavior are needed.

We require our facial detection algorithm to be
unfazed by large head movement. This is necessary for
our use case requirement of having the inattention detection
accuracy be at least 90% in ideal conditions and at least
85% in non-ideal conditions as having our facial detection
algorithm fazed by sudden head movements will affect the
overall accuracy of our detection model. This is especially
important since similar research studies using CNNs
produced 95% accuracy in ideal conditions, ensuring our
product does actually promote safe driving practices in an
accurate manner.
We require our facial & landmark detection algorithms
to complete computation in less than one second. This
design requirement targets the use case requirement of
having the computation time for detection attention to the
road and drowsiness be less than one second. Our
justification for this requirement is the NHTSA’s research
concluding that inattention of the road for more than two
second is unsafe [5], therefore having our computation time
be less than one second gives enough time for the system to
give feedback in under two seconds, ensuring the driver

immediately changes behaviors as soon as the two second
limit is reached.
We require our camera capture video at a frame rate

of at least five fps. This ensures we reach the use case
requirement of having a frame rate of five fps because we
want to use CNNs as they provide a more accurate facial
detection when the user's faces are at different angles. The
fps of the camera can then be lowered to around five fps in
order to reach our computation time.
For the web app we want to host it and use the storage
feature on Firebase. This is required to give the ability to
users to view all their past data in a web app to motivate
further safe driving practices.
Web app accounts should have a login and be linked to

a specific DriveWise device. This is required to address the
use case requirement of having user data being private (i.e.,
not viewable by anyone other than the user). This is needed
to address user privacy concerns as not keeping this data
private may have negative insurance implications. We are
only considering the case that there is one driver per
DriveWise device.

The Jetson Nano must be powered by a 12V auxiliary
port or USB-A or -C port in the vehicle. This addresses
the use case requirement of having the device being able to
be plugged into the power source of a user’s vehicle. This
also eases the user’s experience with DriveWise by helping
the user avoid the time and burden of recharging and
replacing batteries as well as making the device compatible
with any semi-modern car.

The device should be under 100x100x150mm as this
will not significantly obstruct the driver’s view through the
windshield in order not to jeopardize the driver’s safety.

4
18-500 Final Project Report: DriveWise 05/05/2023

V. DESIGN TRADE STUDIES
A number of design trade-offs have been made thus far

regarding the design process of our system. Specifically,
they have been made for the hardware component selection,
the computer vision algorithms, the scope of the project,
calibration of the device, and the integration of a web
application with our physical device and how
communication between the two will occur.

A. Hardware Component Selection

Embedded Board: For our embedded board, we ended
up choosing the NVIDIA Jetson Nano. For machine
learning and computer vision applications, NVIDIA Jetsons
are often used due to their relatively compact size and high
computation power. Since purchasing our own Jetson for
the project would take up a significant portion of our
budget, we decided to borrow one from the 18-500 class
part inventory. We had the choice between a variety of
Jetsons (Xavier NX, AGX Xavier, Nano, and TX2) and
since price was no longer an issue, we originally wanted to
use the model with the highest computation power (most
CPU cores and GPU frequency) to ensure that we are able
to meet our design requirement of completing
computation/classification in under 1 second. The Jetson
AGX Xavier has 8 CPU cores and a 512-core GPU,
compared to the 6 CPU cores and 384-core GPU of the
Jetson NX Xavier, which is the next closest in computation
power. However, we knew that there was a chance of the
Jetson AGX Xavier not being able to work with the car, and
its setup process was much more complicated than we had
envisioned. Because of this, we decided to switch to the
Jetson Nano, which would have less computation power (at
4 CPU cores and a 128-core GPU) but require a lower
wattage to run and it was much more straightforward to set
up.

Camera: Three viable options at our disposal were the
C920 Logitech Webcam, ELP 5 USB camera, and the C922
Logitech Webcam, as these were the three cameras mostly
used in CV projects online. After further research we
decided on the C922 Logitech Webcam because it had the
best characteristics for a real-time computer vision camera:
low latency, adequate low-light, and reasonable resolution.
The ELP camera has a frame rate of 30 fps and latency of
around 105 ms while the C920 camera has a frame rate of
30 fps at 720p and a latency of around 250 to 300 ms and
the C922 camera has a frame rate of 60 fps at 720p with
latency of around 200 to 250 ms and has adequate backlight
compensation, working better than the other two in low
light conditions. In addition, the C922 comes with a tripod
which was needed for the camera to be placed on a car’s
dashboard. In order to meet our use case requirements of
having our audio feedback given in less than 1 second, a
low latency is required from our camera. Therefore the
C922 camera is a better option.

B. Facial Detection Models
Facial detection is a crucial aspect of this project as it

allows us to detect a driver’s face, crucial in identifying
facial features to determine whether a driver is drowsy or
distracted. Different face detection models in Python exist
with strengths and weaknesses unique to each, making it
critical to choose the best overall model for this project.
After researching, we were left with two models, OpenCV’s
DNN and Dlib frontal face detector, as the most viable
options available to us.
Dlib is a C++ toolkit binded to run in python containing

machine learning algorithms used to detect faces. The
frontal face detector works using features extracted from
Histogram of Oriented Gradients (HOG) which are then
passed into an SVM [1].
OpenCV’s deep neural network is a Caffe model based

on the Single Shot-Multibox Detector (SSD) and uses
ResNet-10 architecture as its backbone [3].
From our preliminary testing we found that Dlib’s frontal

face detector was inaccurate when it came to large angled
head movements, specifically when it comes to side faces.
OpenCV’s DNN module was much more accurate. In
addition, the frame rate with Dlib was much lower at 5.41
fps while OpenCV’s DNN was much higher at 12.95 fps
[1]. All in all OpenCV’s DNN performed much better than
Dlib which is why we have originally decided to use DNN
over Dlib. As a result of this decision, we initially used
CNN-facial-landmarks [2] as a landmark detector that
estimates the location of 68 points that map to facial
structures on a user’s face instead of the keypoint facial
landmark detector from Dlib.

Fig. 4. Eye detection points shown on image.

However, CNN-facial-landmarks was not accurate with
tracking eye features and in turn, was not accurate with
calculating the eye aspect ratio (EAR) needed for
determining whether a driver had their eyes closed (Fig 4).
As a result, we first tried using both CNN-facial-landmarks
and Dlib, with CNN-facial-landmarks being used for eye
tracking, mouth detection, and head pose estimation and
Dlib being used in calculating EAR. However, after
integrating the features together, fps suffered significantly
(reaching approximately 3fps) due to using both models at

5
18-500 Final Project Report: DriveWise 05/05/2023

the same time. With a significant decrease in fps, head pose
was not accurately tracked in cases of sudden head
movements, causing a significant amount of false negatives.
After testing head pose with Dlib, because even though
CNN-facial-landmarks had higher accuracy, Dlib was still
able to meet the accuracies defined in our use case
requirements. After confirming that head pose was still
accurate enough using Dlib, we switched the model for eye
tracking and mouth detection to Dlib. This change led to a
significant increase in fps (from 3fps to 7fps) which in turn
increased our overall accuracies.

C. Calibration Sequence
The calibration sequence is important in ensuring that the

models we use for detecting signs of distraction and
drowsiness are effective for each user, accounting for their
facial dimensions and seat position/distance from the
camera. Initially, we had planned on including a calibration
sequence instructing the user to look at the four corners of
their windshield and the two sideview mirrors to determine
the thresholds for “safe” viewing. This choice was made
because, at that point, we had determined that viewing
anywhere within the windshield or either side view mirrors
was considered safe.
While looking at the side view mirrors or the edges of the

windshield do technically constitute attentiveness of the
driver, we have decided that doing so for greater than two
seconds (at speeds above the 5mph threshold at which
feedback is enabled) would be considered unsafe. In these
cases, the driver is looking too far away from the section of
the road directly in front of them and exposing themselves
to risks of distraction. Due to this new definition of where is
safe to look, we altered our calibration process to be based
only on the position of the user relative to the camera and a
predefined range of what constitutes as looking towards the
road.

Our chosen calibration sequence begins when the user
starts the car and the user will be instructed (via audio) to
look at the center of the camera with their mouth closed for
five seconds, after which the device has gained all
information needed to customize the facial detection
algorithms to the user. By requiring less calibration points,
we also improved the ease-of-use of the device and
decreased the time needed for calibration at the start of each
drive.

D. Web Application
We wanted a way to be able to display information about

a user’s driving attention on either a phone or web
application. While a phone app may be more convenient for
the user, we settled on a web app because our team has
more experience with programming web apps using React
during prior internships and classes at CMU.
For hosting and storage on the web app, we had originally

considered using AWS (EC2 instance and S3 storage
bucket) because of our team members’ experience using
AWS in past internships. From the start, we had planned on

using authentication through Firebase, and after more
research learned that Firebase has the capabilities of hosting
and cloud storage as well. We ultimately chose to use
Firebase for hosting and cloud storage instead of AWS
because it was very straightforward to incorporate into our
web application and we were already using it for Google
OAuth authentication.

Another design decision we had to make regarding the
web application was how we would send driver attention
data to it from the user’s DriveWise device. Because the
device must operate in a moving vehicle that does not have
its own WiFi network, we considered two options for
sending the data: connecting the Jetson over WiFi to a
hotspot on the user’s phone and connecting to the web app
or connecting directly to the web app using cellular data.
Each of these would require the addition of a card or dongle
for WiFi or cellular data. While using cellular data may
require less effort on the user’s part, we ultimately settled
on the WiFi dongle option because it didn't require the
purchase of a cellular data plan.
E. Scope

In regard to the scope of the project, there have been
several changes along the way. The most notable one has
been how the device would operate under ideal and
non-ideal conditions.

We had initially hoped to have the device work to a near
perfect accuracy under ideal conditions, which we classified
as with good lighting (not extremely bright or direct
sunlight and not during the night) and with no obstructions
that would drastically alter the computer vision algorithms
(items like sunglasses and hats which could prevent the
camera from picking up on a driver’s eyes), and a little less
than perfect accuracy under nonideal conditions, which
means poorer lighting conditions or certain types of
obstructions to the face. However, when experimenting
with the computer vision algorithms, the difficulty of
tracking a user’s eye movements under nonideal conditions
became very evident and we opted to go about those
situations through detecting a person’s head position
instead. This new method required more time and
deliberation since it would’ve required potentially using
different models which can be an issue when integrating the
code, so it became a bit of a stretch goal to include the
nonideal conditions. However, we were able to
successfully incorporate this feature, and it did require us to
make a design trade-off very late into the project and
change the models of the other features as already
discussed.

VI. SYSTEM IMPLEMENTATION
A. Calibration
The software components of this project consists of two

cycles. When a driver first uses this device, they will be
required to complete a calibration process, which they are
guided through with audio instructions played over the

6
18-500 Final Project Report: DriveWise 05/05/2023

device’s speaker. Afterwards, the driver will be classified as
being drowsy or distracted using computer vision and
machine learning algorithms. This process is summarized in
Figure 4.

Fig. 5. This is the software specification diagram

The calibration process entails the device reading a
driver’s facial dimensions to help better determine whether
a driver is distracted or sleepy. In particular, we are
measuring the distance between the lips when the mouth is
closed as this will serve as a point of reference for a
non-distracted/non-drowsy driver. The calibration process
will also help to ensure that adequate background light is
available as this will enable our computer vision and
machine learning algorithms to correctly determine whether
a driver is distracted or sleepy.

Fig. 6. Block Diagram for Computer Vision Algorithm

B. Computer Vision
The computer vision aspect of this project will allow us

to classify whether a driver is distracted or sleepy. A vital
aspect of this approach is detecting the mouth and eyes of a
driver as these facial structures will be used to determine
driver awareness. This is a two step press: localizing the
face in the image and detecting key facial structures. We
accomplish facial localization through face detection and
detecting key facial structures through the use of facial
landmarks.
In order to obtain facial detection, we use OpenCV and

deep learning [4]. In particular, we are using OpenCV’s
“deep neural networks” (DNN) module which supports a
number of deep learning frameworks such as Caffe,
TensorFlow, and PyTorch. OpenCV’s deep learning face
detector is based on the Single Shot Detector (SSD)
framework with a ResNet base network.
When using OpenCV’s DNN module, a model is required

to be imported from various frameworks compatible with

DNN. The framework we will use in this project is the
Caffe framework. When using OpenCV’s DNN module
with Caffe models, two sets of files are required: .prototxt
and .caffemodel. Prototxt files define the model architecture
(i.e. the layers themselves in the neural network) and
.caffemodel files contain the weights for the actual layers.
Both of these files allow us to read and load a network
model from disk by utilizing
cv2.dnn.readNetFromCaffe(args[”prototxt”],
args[”model”]) which explains why both files are required
when using models trained using Caffe for deep learning.
This returns an artificial neural network where we can pass
our images as passed as a blob image (through
cv2.dnn.blobFromImages[‘path to image’] where mean
subtraction and scaling are used to preprocess these images
and prepare them for classification) to obtain detections and
predictions of a driver’s face. It is important to note that we
aren’t training a neural network-rather, we are making use
of a pre-trained network. Therefore we are just passing the
image through the network (i.e. forward propagation) to
obtain the result (no back-propagation). Our predictions are
represented by localized faces though drawn bounded boxes
around a user’s face.
Facial landmarking is used to localize and label facial

regions such as the eyes and mouth. Therefore, we use this
method for eye and mouth detection. In particular, we are
using Dlib’s facial landmark detection. It is trained on the
iBUG 300-W dataset [6]. This model gives 68 landmarks
that map to 68 (x, y) coordinates of important facial
structures on faces. By passing the Dlib landmark model
along with the predicted face detection rectangles to a
keypoint detector, we can detect our desired key facial
structures in an image.

Fig. 7. Visualizing the 68 facial landmark coordinates from the iBUG 300-W
dataset

In order to detect the eyes and mouth we must get the (x,
y) coordinates from the facial landmark model that
corresponds to these facial structures. In addition, we create
a black mask using NumPy of the same dimensions as our
webcam frame. Using the stored (x, y) coordinates of the
eyes and mouth we draw these points on the mask using the
OpenCV method .fillConvexPoly. Doing this returns a

7
18-500 Final Project Report: DriveWise 05/05/2023

black mask where the eye and mouth areas are drawn in
white. Using bitwise operations on images (provided by
methods from OpenCV), we can apply the mask on the
image to segment out the eyes and mouth. In addition,
thresholding is used to create a binary mask. To obtain a
more precise mouth and eye detection, thresholding
processing steps, namely erosion, dilation, and median blur
will be used. With respect to the eye, the horizontal distance
of the eye is measured by the endpoints of the eye
(keypoints 37 and 40 in Fig. 8) as well as the vertical
distance (yellow dotted line in Fig. 8). From these
distances, we can calculate the horizontal and vertical
threshold boundaries. We classify whether a driver is
looking away from the road when the pupil crosses the
threshold boundaries (noted as the purple and blue dotted
lines in Fig 8). Note that this eye tracking method continues
for each frame in the video. With respect to detecting
whether a driver’s eyes are closed, we check whether the
eye aspect ratio falls below 0.20. Note that this method
continues for each frame in the video. With respect to the
mouth, this method requires us to calculate the distance of
the lips and compare this distance with the closed mouth
distance recorded in the calibration step. When a driver
yawns, their mouth will be open and will have a lip distance
greater than that of a closed mouth, indicating the driver is
sleepy.

Fig. 8. Diagram of eye-detection points and boundaries

In order to detect the position of the driver’s head, six
points of the face are needed i.e nose tip, chin, extreme left
and right points of lips, and the left corner of the left eye
and right corner of the right (Fig 9). The 3D coordinates of
these features are taken and using this, the rotational and
translational vectors at the nose tip are measured. Using
these vectors we can estimate the position of the driver’s
head by calculating the angle between the tip of the nose
and the x and y axis. For classification, there is a preset
angle threshold for the vertical and horizontal axis which
determines whether a driver is looking up, down, left, or
right. This head pose method continues for every frame of
the video as well.

Fig. 9. Head pose estimation visual feedback during testing

C. Sensor Input and Feedback
The device will take and process input from two different

sensors: an accelerometer and a camera. The accelerometer
will report data on the speed of the car and will be
essentially used as an on/off switch for the auditory
feedback component of the device. Once the accelerometer
has detected that the car is moving forward at speeds greater
than 5mph, the feedback logic in the Jetson will be able to
be triggered when the user has been classified to show signs
of inattention. The accelerometer is used in this way to
account for situations in which the driver may be safely
looking away from the road while parked, stopped at a red
light, or reversing (in which case the user could be looking
backwards over their shoulder). The camera acts as another
sensor, providing images at a rate of 7 fps to be processed
as described earlier in the Computer Vision section.

Audio feedback is provided through the speaker plugged
into the Jetson. For each of the feedback cases (looking
away from the road for two seconds and exhibiting signs of
drowsiness) we have pre-made sound files that the Jetson
will trigger to play through the speaker when the
classification logic determines that the corresponding
conditions have been met. Specifically, when distractedness
is detected, the device plays “look at the road” and
“drowsiness detected” is played in the case of drowsiness.
D. Web Application

We are using React.js to program the frontend of the web
app. Firebase is used for hosting, cloud storage (Firestore),
and authentication for the web app.

When visiting the DriveWise web application, users will
first see the login page shown in Fig. 10. Authentication is
implemented using Google OAuth through Firebase. The
user is prompted to log in directly with a signed-in Google
account (via the “Sign in with Google” button) or to
manually enter an email and password. Choosing to sign in
with a Google account redirects the user to the page shown
in Fig. 11. If the user does not already have an account,
they will be prompted to add a device ID from their
DriveWise device (assuming each device will have a unique
ID printed visibly on it) upon logging in for the first time.
This device ID will be used to filter Firestore data so the

8
18-500 Final Project Report: DriveWise 05/05/2023

user is only able to view data from their device.

Fig. 10. This is the completed web application login page

Fig. 11. The Google OAuth page that the user is redirected to by “Sign
in with Google” button

After logging in or creating an account, the user will be
redirected to the Logs Page (i.e. home page) seen in Fig. 12.
This page displays each instance that the DriveWise device
has flagged as unsafe driving with a timestamp and the
corresponding feedback. These logs will be updated
real-time as the device provides feedback in the car.
We had originally planned on including a Metrics Page

with statistics related to the percentage of driving time that
the user had spent distracted over the past month and over
all time. Unfortunately due to integration taking far longer
than planned for, we were unable to implement the Metrics
page.

Fig. 12. Logs page

VII. TEST, VERIFICATION AND

VALIDATION

TABLE I. OVERALL TEST RESULTS

Requirement Metric Results

Driver shouldn’t
take eyes off of
the road for >2

seconds

Eyes looking
away for >2
seconds using
frontal view

95% in ideal
conditions

80% in non-ideal
conditions

Driver shouldn’t
fall asleep at the

wheel

Changes in
yawning and
eyes closed

~100% in ideal
conditions

95% in non-ideal
conditions

Device accuracy
in ideal and
non-ideal
conditions

Aiming for
90% in ideal
conditions
and 85% in
non-ideal
conditions

94% in ideal
conditions

86% in non-ideal
conditions

Driver is
classified and
feedback is
given in <1
second

Feedback is
given in <1

second so user
can react in
<2 seconds

~0 second latency

A. Driver Shouldn’t Take Their Eyes Off of the Road
for More Than Two Seconds

In order to meet the safety guidelines, we require that the
driver cannot take their eyes off of the road for greater than
two seconds at a time. The metric we used to check for this
was timing how long the user would look away from a front
view and checking that auditory feedback was provided if
that length of time was greater than 2 seconds. We did
several trials of having the user look away twenty times and
recorded the number of correct classifications.
Our results showed that our device has a 95% accuracy in

ideal conditions (adequate lighting and no obstructions to
the face) and an 80% accuracy in non-ideal conditions.

B. Driver Shouldn’t Fall Asleep at the Wheel
Another one of our requirements was that the driver

cannot fall asleep at the wheel. The metric we used to
check for this was seeing if a user closed their eyes for more
than two seconds or kept their mouth open for greater than

9
18-500 Final Project Report: DriveWise 05/05/2023

5 seconds, to indicate a yawn. Again, we ran several trials
of the user closing their eyes and simulating a yawn in a
random order twenty times and recorded the number of
correct classifications.

Our results showed that the device has around a 100%
accuracy in ideal conditions and a 95% accuracy in
non-ideal conditions. We recognize that the number of tests
we conducted is not enough to declare a 100% accuracy for
our device on this metric, but all tests that we conducted for
detecting drowsiness in ideal conditions did pass.

C. Device Accuracy in Ideal and Non-Ideal
Conditions

We didn’t want the facial detection algorithm to be fazed
by natural head movement that would be considered safe
when driving, so we had a use case requirement of an
accuracy of at least 90% in ideal conditions and at least
85% in non-ideal conditions. We tested for this by having a
user simulate a series of all the gestures as if they were
driving and recorded the number of correct classifications.

Our results showed that the device has around a 94%
accuracy in ideal conditions and around an 86% accuracy in
non-ideal conditions.

D. Driver is Classified and Feedback is Given in
Under One Second

Our last requirement was that the driver would be
classified and feedback would be given in under one
second. We want the audio feedback to happen within one
second so that the total time taken for computation,
classification, and feedback is under two seconds which
allows the driver to have time to correct their behavior. We
tested this by timing how long it took between a
classification and the end of the feedback being given. This
process was repeated five times.
The results showed that there was virtually no latency

between these two steps.

E. Jetson Subsystem Test

We wanted to perform tests on the Jetson itself before we
tested the entire system as a whole. For these tests, we
specifically wanted to see if the Jetson was able to be
powered by the car, successfully connect to the user’s
personal hotspot and access the computer vision code, and
if it met the product specifications we had. To test this, we
plugged the Jetson into the car’s USB-A port and checked if
it would be powered and stayed on for an extended period
of time, and we tested this several times at different times
during the day. We also tried to connect to the personal
hotspot and ssh into a laptop to access the code, and we also
did this several times during the day. To see if the product
met our specifications, we measured the size of it to make
sure it wouldn’t be a distraction to the user, which we
determined would be a size around or less than that of a
smartphone. All of these tests passed successfully.

F. Accelerometer Subsystem Test

To test the accelerometer, we wanted to see if it was able
to detect changes in speed and provide feedback only when
it needed to, and this meant that feedback would be turned
off if the user is coming to a stop or reversing since these
actions warrant a driver to look away from the road. We
tested this with a rolling cart in the classroom, but we still
have yet to test it in a car. It mostly works, with the
velocity calculated from the acceleration working roughly
half the time since the sensor we have isn’t the best quality.

G. Web Application Subsystem Test

To test the web application, we wanted to see if the data
for different users would be displayed appropriately. We
tested this by making different user accounts and testing our
device with each user to see if their respective data would
be sent to their accounts and displayed on the metrics and
logs page. This test was passed successfully.

VIII. PROJECT
MANAGEMENT

A. Schedule
The updated Gantt chart of the schedule is located in the

appendix. It contains each part of the project and how the
tasks are broken down. We divided it by each member of
the team. The red boxes represent all of us, the purple is
Elinora, the blue is Sirisha, and the green is Yasser.

B. Team Member Responsibilities
In terms of division of labor, we aimed to give each

person two areas to focus on, one being a primary and the
other being a secondary. This division was based on each
person’s strengths, so there will also be a good amount of
overlap. The plan was for Yasser to focus on software in
regards to machine learning and computer vision. Elinora
was planning to focus on hardware and the user interface
part of the software. Sirisha was planning to work on the
user interface part of the software as well as the machine
learning part of the software, and she was also going to
provide assistance with hardware as needed. The actual
breakdown of the work was that Yasser focused on the
majority of the computer vision and some of the machine
learning, Elinora focused on the hardware setup and user
interface part of the software, and Sirisha focused on all
three parts somewhat equally.

For the presentations and reports, we all tried to
contribute as equally as possible. Yasser contributed
marginally less but he spent that time working very
diligently on the computer vision as that part was taking the
longest to get working, so it was a decision we needed to
make. We also all worked equally in terms of integrating
the entire system.

10
18-500 Final Project Report: DriveWise 05/05/2023

C. Bill of Materials and Budget

TABLE II. BILL OF MATERIALS

Component Cost Status

NVIDIA Jetson
Xavier AGX

$1,200-$2,000
x1

DID NOT USE

NVIDIA Jetson
Nano

$100-$150
x1

Borrowed from
department for

free

K-Tech Mini
Portable Speaker

$14.99
x1

Ordered from
Amazon, has
been delivered

ZENVAN
USB-C to

Headphone Jack

$7.98
x1

Ordered from
Amazon, has
been delivered

ELP 2 megapixel
Hd Free Driver
USB Camera

$40.99
x1

DID NOT USE

C922 Logitech
Webcam

$66.28
x1

Ordered on
Amazon

USB-A to
USB-C Charging

Cables

x1 Already had this
part

HiLetGo
MPU-6050

MPU6050 6-axis
Accelerometer
Gyroscope
Sensor

$9.99
x1 (pack comes

with 3)

Ordered on
Amazon

ZTE MF833V
4G LTE USB
Modem Dongle

$54.99
x1

DID NOT
ORDER

EDiMAX
EW-7611ULB
USB WiFi
Dongle

$12.84
x1

Order on
Amazon

SanDisk 128GB
microSD card

x1 Borrowed from
friend

USB-C female to
USB-A male

x1 Borrowed from
friend

adaptor

Total Budget $112.08
used

$487.92
left over

D. Risk Management
Our first potential risk was having malfunctioning

hardware components. We planned to mitigate this by
testing our parts very early on so we could repurchase
anything if necessary since after buying everything, we still
had a very large part of our budget. Luckily, none of our
parts malfunctioned during the process of working on this
project, but we did need to buy parts throughout the
semester, much later than we had planned. This was a result
of needing to either change some hardware or realizing that
we needed extra components, such as dongles, adaptors,
and more storage.

Another risk we knew we could run into was that we
might need to switch between the computer vision models
since certain features work better with certain models, and
we didn’t know how the integration of two different models
would work. To mitigate this, we spent a lot of time testing
each individual feature before and after integration, but due
to unexpected errors and the scope of our project changing,
we did need to switch the models. Luckily, we had planned
for this possibility early enough that the change didn’t take
too much time.

Our last major risk that we considered was being able to
test safely and effectively in a car and make sure we had
enough time. Ideally, we wanted to start testing in the car
much earlier, but integration ended up taking much longer
than we had anticipated. We started by testing in a
classroom setting because we could make sure that the code
would properly run on the Jetson and it was an easy way to
see the outputs being displayed on the monitor. However,
each individual step we needed to take for integration
caused many issues, such as realizing the Jetson didn’t have
enough storage for all of the libraries we needed to
download and we had to buy a microSD card, or dealing
with just how sensitive the code is to lighting conditions
and needing to spend much more time with tuning and
calibration. Installing the needed computer vision libraries
on the Jetson surprisingly took the longest – days more than
we anticipated. We also had a few issues when it came to
setting up the device to work in a car, such as getting the
personal hotspot to work. This lengthy process also ate into
some of the time we had allocated for tuning the
accelerometer and working on our metrics page. Despite all
of these unexpected issues that came up, we were still able
to get our highest priority tasks working in time, and we
were lucky that we were able to start integration as early as
we did.

11
18-500 Final Project Report: DriveWise 05/05/2023

IX. ETHICAL ISSUES
The most relevant ethical issue with our product is that

because it doesn’t have a 100% accuracy, we had to figure
out the best balance of false negative and false positives so
we could minimize the risks to safety since our product
deals with a car. Too many false negatives and a user won’t
get notified of a sign of inattention or drowsiness, and it
may lead to an accident. Too many false positives, and a
user may get distracted or startled by the feedback going
off, and it could also lead to an accident. The best way to
mitigate this issue at the moment would be to choose false
positives over false negatives since it is better to be safer
and as long as the audio feedback is presented in a way that
wouldn’t startle the driver, it shouldn’t be as much of a
distraction since most people are used to listening to
sounds, such as music, other passengers, and talking on the
phone, in their cars. We also made sure to use a
neutral-sounding AI voice to generate the audio feedback
samples and tested that the volume was not loud enough to
be especially startling.
The fact that this device is powered by the car could also

be considered an ethical issue because it may drain the car
of its battery much faster than a user expects, leading to a
car that can’t start unexpectedly. Additionally, one of our
peers brought up that, for some cars, the device may
continue to drain the car’s battery even after the engine is
shut off. To mitigate these concerns, we can instruct the
driver to ensure that the device isn’t plugged in when the
car is off, and since we are using the Jetson Nano over a
more computational device, it shouldn’t use much more
power than, say, charging a device in the car.
Since our device aims at assisting a driver when they are

exhibiting signs of inattention and drowsiness, the driver
may become too reliant on the system and fail to
self-monitor their driving habits. We hope to mitigate this
through the web application so the user can track their
progress and try to make changes to their habits.
Our device uses an auditory feedback system, so it relies

on the fact that the user must be able to hear relatively well.
This means that it doesn’t cater to the deaf or hard of
hearing community which is an issue since those people
may also want to benefit from the use of a device that can
assist them with driving. This could be mitigated by
changing the method of feedback to something that is
visual, like flashing lights, or something that produces a
haptic feedback that they can feel when driving, similar to
how some cars have a feature in their steering wheel that
makes it vibrate when the car is veering too much in either
direction.

X. RELATED WORK
There have been a few products created on the market

similar to what we are proposing to implement. Companies
like Cipia, Smart Eye, Eyeware Tech, and Seeing Machines

have created quite comprehensive products that track many
aspects of a driver’s behaviors, and some even go as far as
to track how other people in the car are behaving. From
research on these companies and their products, they all
seem more focused on commercial applications rather than
the average daily driver, which is what DriveWise aims to
do.
We have also come across research in this field that has

aimed to do similar things as us, particularly in the area of
tracking a driver’s eye in ideal and nonideal conditions.
We have some ideas for future work on DriveWise if time

permits or if we have the chance to work on it even past this
course. These ideas include adding detection of hands on a
steering wheel and some way to remind driver’s to check
their blind spots when changing lanes.

XI. SUMMARY
Our system was able to meet mostly all of our design

specifications and requirements. The biggest issue that we
have yet to tackle is with the accuracy of the accelerometer
because there hasn’t been much we were able to do from
our end since the quality of the sensor itself needs to be
better, and spending more of our time on that feature was
not a priority as we cared more about getting the computer
vision code to work at a high enough accuracy and properly
on the Jetson. Aside from that, everything else works as we
had intended. We were able to achieve around a 94%
accuracy overall in ideal conditions and around an 86%
accuracy overall in non-ideal conditions. If we had more
time, we would love to get a better accelerometer and fully
incorporate that feature as we had planned. We would also
like to work on tuning the computer vision code and maybe
even get a better quality webcam to hopefully increase the
accuracies. We also did not get to add all of the features to
the web application that we had hoped, and with more time
we would add a metrics page with a time-series plot
showing the percentage of driving time that a driver spends
distracted to motivate future improvement of driving
practices.

For future semesters, we want to share some of the
lessons we have learned. Primarily, computer vision is
challenging. It takes much longer than one might think due
to how finicky it can be in different lighting conditions. It
takes a lot of trial and error to find the best thresholds for
certain conditions, and even then, they will always be
changing simply because of all other variables that are out
of control. We also learned how long integration actually
takes. It may seem like it wouldn’t require that much time,
but issues crop up at every step of the way, and they are
usually issues that no one expects. Nonetheless, we hope to
encourage work in this field and with safe driving practices
through the use of our system.

12
18-500 Final Project Report: DriveWise 05/05/2023

GLOSSARY OF ACRONYMS
CV – Computer Vision
NHTSA – National Highway Traffic Safety Administration
DNN – Deep Neural Networks
CNN – Convolutional Neural Networks
I2C – Inter-Integrated Circuit
SVM – Support Vector Machine

REFERENCES
[1] Vardan Agarwal, Face Detection Models: Which to Use and Why?,

July 2, 2020, [Online]. Available:
https://towardsdatascience.com/face-detection-models-which-to-use-
and-why-d263e82c302c

[2] Yin Guobing, cnn-facial-landmark, April 22, 2019. Available:
https://github.com/yinguobing/cnn-facial-landmark

[3] Adrian Rosebrock, Deep Learning with OpenCV, August 21, 2017.
Available:
https://pyimagesearch.com/2017/08/21/deep-learning-with-opencv/

[4] Eric A. Taub, 2-Second Rule for Distracted Driving Can Mean Life
or Death, September 27, 2018. Available:
https://www.nytimes.com/2018/09/27/business/distracted-driving-aut
o-industry.html#:~:text=The%20National%20Highway%20Traffic%
20and,a%20time%2C%20the%20agency%20says.

[5] Rateb Jabbar, Mohammed Shinoy, Mohamed Kharbeche, Khalifa
Al-Khalifa, Moez Krichen, et al.. “Driver Drowsiness Detection
Model Using Convolutional Neural Networks Techniques for
Android Application.” ICIoT 2020, 2020, Doha, Qatar. pp.237-242,
ff10.1109/ICIoT48696.2020.9089484ff. ffhal02479367f

[6] Adrian Rosebrock, Facial landmarks with dlib, OpenCV, and Python,
April 3, 2017, Available:
https://pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv
-python/

https://www.nytimes.com/2018/09/27/business/distracted-driving-auto-industry.html#:~:text=The%20National%20Highway%20Traffic%20and,a%20time%2C%20the%20agency%20says
https://www.nytimes.com/2018/09/27/business/distracted-driving-auto-industry.html#:~:text=The%20National%20Highway%20Traffic%20and,a%20time%2C%20the%20agency%20says
https://www.nytimes.com/2018/09/27/business/distracted-driving-auto-industry.html#:~:text=The%20National%20Highway%20Traffic%20and,a%20time%2C%20the%20agency%20says

13
18-500 Final Project Report: DriveWise 05/05/2023

APPENDIX

Fig. 1. Gantt chart with team member responsibilities

