# DriveWise ECE Capstone Spring 2023 Final Presentation



Sirisha Brahmandam



**Elinora Stoney** 

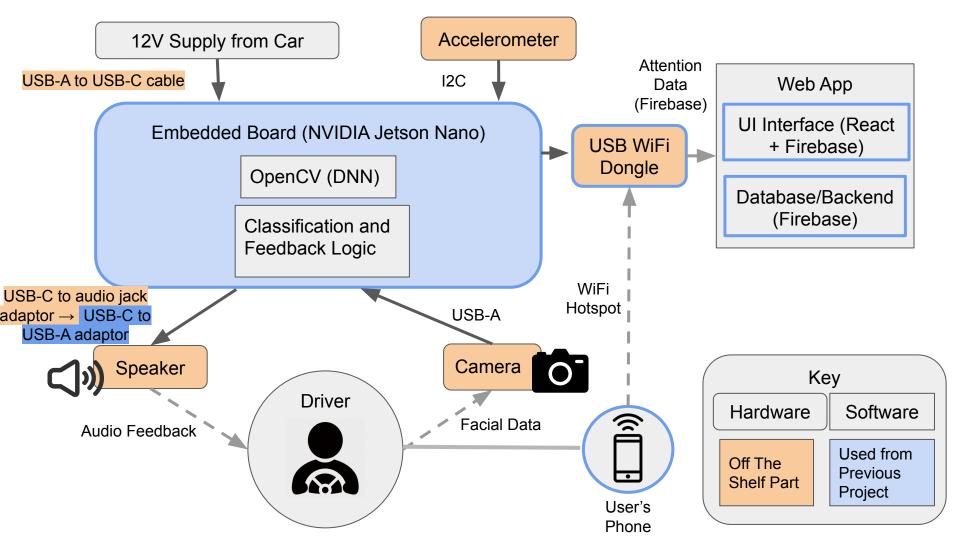


# Use Case Requirements

| Requirement                                                                  | Justification                                                                                                                              |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Clear + concise feedback provided for >2s of inattention                     | Unsafe to keep eyes off the road for > 2s (NHTSA), clear feedback allows the user/driver to adjust behavior                                |
| Inattention detection accuracy is at least 90% in ideal                      | Similar research studies using CNNS produced 95% accuracy in ideal conditions                                                              |
| Computation time for detecting attention to the road and drowsiness < 1000ms | NHTSA determined unsafe to keep eyes off the road for > 2000ms (1000ms gives enough time for the system to give feedback in under 2000 ms) |
| Device should be under 100x100x150mm                                         | Device should be shorter than a phone to minimize obstruction of the driver's view                                                         |
| Device is able to plug into a power source in the user's car.                | Avoid time and burden of recharging and replacing batteries                                                                                |

#### Solution Approach




#### )riveWise

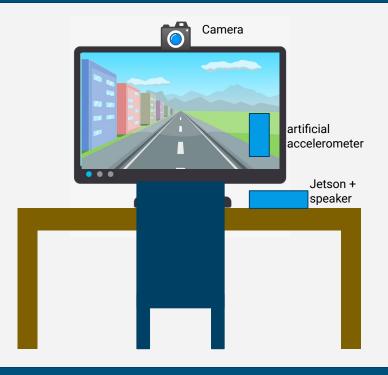
#### Feedback Logs

| Time Stamp            | Feedback                                                |
|-----------------------|---------------------------------------------------------|
| 4/21/2023 12:25:04 PM | Driver looking away from road for more than two seconds |
| 4/21/2023 12:11:55 PM | Yawning detected, driver needs more sleep               |
| 4/20/2023 7:13:10 PM  | Yawning detected, driver needs more sleep               |
| 4/20/2023 7:13:09 PM  | Yawning detected, driver needs more sleep               |
| 4/20/2023 7:13:09 PM  | Yawning detected, driver needs more sleep               |
| 4/20/2023 7:13:08 PM  | Yawning detected, driver needs more sleep               |
| 4/20/2023 7:13:08 PM  | Yawning detected, driver needs more sleep               |
| 4/20/2023 7:12:59 PM  | Driver looking away from road for more than two seconds |
| 4/20/2023 7:12:58 PM  | Driver looking away from road for more than two seconds |
| 4/20/2023 7:12:55 PM  | Driver looking away from road for more than two seconds |
| 4/20/2023 7:12:42 PM  | Yawning detected, driver needs more sleep               |

Back to Home






# Solution Approach

- Evolution of thinking/solution
  - The biggest changes to our solution since the proposal presentation include the hardware we chose to use and the scope of our project
- Ethical Considerations
  - Potential power usage while car is off
  - Camera could be a distraction
  - $\circ$  Over reliance on the system  $\rightarrow$  self-monitoring of safety practices could decrease
  - Language/accent options
  - Doesn't cater to deaf/hard of hearing community



### **Complete Solution**







(Public demo setup, not complete solution in car)

# Testing, Verification, and Metrics - Overall

| Requirement                                                       | Testing Strategy                                                                                                                                                                | Passing Metric                                           |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Driver shouldn't take eyes off of road for<br>more than 2 seconds | After having identified eye position for looking at<br>the road (from calibration step), time how long the<br>driver's eyes are not in scope                                    | Eyes looking away<br>from car for more<br>than 2 seconds |
| Driver shouldn't fall asleep at the wheel                         | After having identified eye position for looking at<br>the road and distance of lips when , test for signs<br>of closed eyes, yawns, changes in blinks based on<br>CV detection | Changes in yawning<br>and eyes closed                    |
| Device accuracy in ideal conditions                               | For three separate users (us), do driving tests and record correctness of feedback                                                                                              | 90% accuracy of identification of driver inattention     |
| Driver is classified and feedback is given in under 1 second      | Measure how long it takes from start to end to produce a result (Repeat 5x). Run computation for one minute and get average fps (Repeat 5x)                                     | Feedback is given in<br><1s so user can react<br>in <2s  |

### Testing, Verification, and Metrics - Subsystems

| Subsystem     | Inputs                                                                  | Testing Strategy                                                                                                                                                      | Passing Metric                                             |
|---------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Jetson        | 12V power from the car,<br>personal hotspot, ssh<br>command from laptop | Plug the Jetson into the car and determine that<br>it turns on and that we are able to ssh into the<br>Jetson when it is connected to our WiFi<br>hotspot (repeat 3x) | Green LED turns on,<br>successfully ssh<br>into the Jetson |
| Accelerometer | Car driving at speeds of:<br>3, 4, 5, and 6 mph                         | Look away from road for ~2s at each of these<br>speeds to test whether feedback is triggered<br>for ONLY speeds >= 5mph (repeat 5x)                                   | 80% accuracy                                               |
| Web App       | Test data for 2 different<br>device IDs and 2 user test<br>accounts     | Log into two different users for two separate driving tests and see how the measurements are                                                                          | Check website logs                                         |



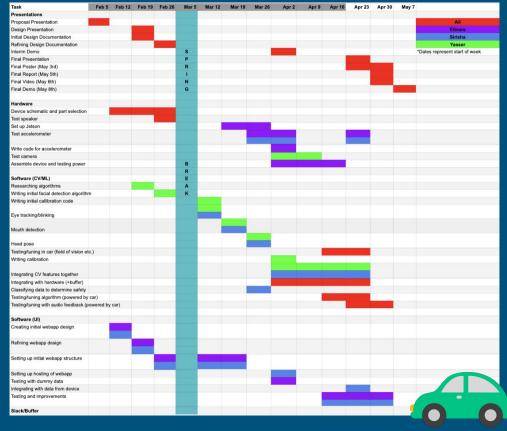
# Testing, Verification, and Metrics – Results

| Requirement                                                        | Metric                                                    | Testing Plan                                                                                      | Results                                                                               |
|--------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Driver shouldn't take<br>eyes off of road for >2<br>seconds        | Eyes looking away for<br>>2 seconds using<br>frontal view | Aimed for 80% accuracy due to difficulties of tracking pupil movement                             | 90% accuracy                                                                          |
| Driver shouldn't fall<br>asleep at the wheel                       | Changes in yawning,<br>eyes closed                        | Aimed for 95% accuracy because it didn't provide issues when coding                               | 100% accuracy                                                                         |
| Device accuracy in ideal conditions                                | 90% accuracy in ideal conditions                          | Test a random combination of gestures in various conditions                                       | Ideal: 95% accuracy<br>Non-Ideal: In progress                                         |
| Driver is classified and<br>feedback is given in<br>under 1 second | Feedback is given in<br><1s so user can react<br>in <2s   | Print start and end times from when a classification is made to when the feedback has been played | ~ 0 seconds, virtually no<br>latency between<br>classifying and providing<br>feedback |



#### **Specifications and Performance**

| Specification        | Our Goal/Required Value | Actual Value        | Meets Initial<br>Requirement? |
|----------------------|-------------------------|---------------------|-------------------------------|
| Jetson Dimensions    | 100mm x 100mm x 150mm   | 100mm x 80mm x 40mm | Yes                           |
| Webcam<br>Dimensions | 100mm x 100mm x 150mm   | 90mm x 40mm x 20mm  | Yes                           |
| Frame Rate           | ~ 5 fps                 | ~ 3 fps             | In progress                   |
| Latency              | <1 second               | ~ 0 seconds         | Yes                           |


# Design Tradeoffs

| Option 1                       | Option 2                            | Decision                                    | Reasoning                                                                                                |
|--------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Jetson Xavier                  | Jetson Nano                         | Jetson Nano                                 | Power requirements, ease of setup, more documentation as first-time users                                |
| DLib                           | CNN-FACIAL-LANDMARKS                | CNN (at the<br>moment, this<br>will change) | It detects facial landmarks when<br>the head is at different angles<br>and the fps wasn't quite an issue |
| Cellular dongle                | Wifi dongle                         | Wifi dongle                                 | Cellular dongle required purchase of cellular data plan                                                  |
| AWS (for hosting and database) | Firebase (for hosting and database) | Firebase                                    | Easily integratable with React<br>app, built-in Google OAuth,<br>includes hosting + cloud storage        |



### **Project Management**

- Main changes since Design Presentation
  - More time for integration of software with hardware
  - More time for tuning the classification
- What remains to be done
  - More testing (specifically in the car) and tuning for higher accuracy

