
18-500 Final Report - WiSpider Page 1 of 11

WiSpider
Authors: Anish Singhani, Thomas Horton King, Ethan Oh

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—With the increasing ability to build tiny
wireless-connected IoT devices, there is massive poten-
tial for hostile actors to infringe on individual, corpo-
rate, and governmental privacy using hidden wireless
devices such as microphones and cameras. We want
to create a device that can detect and localize these
hidden wireless devices. We will also exploit wireless
protocols to obtain some information about the hid-
den device, such as manufacturer or device purpose.
We will create a visual user-interface to display where
any detected devices are located, relative to the user.
Given the pervasiveness of WiFi for communications,
our prototype/MVP will primarily focus on sniffing
WiFi packets.

Index Terms—Privacy, WiFi Localization, Internet-
of-Things, WiFi Security, 802.11

1 INTRODUCTION

With the rapid expansion and adoption of wireless IoT
(Internet-of-Things) devices, it has become easier for hos-
tile actors are to spy on and infringe the privacy of indi-
viduals and corporations. In Surveillance devices can take
the form of cameras, microphones, or presence detectors,
which are either (i) miniaturized to the point of being un-
noticeable to the human eye or (ii) disguised as harmless
devices, such as wall plugs or light bulbs. Existing tech-
nologies to address this problem either focus on detecting
magnetic signatures specifically emitted by cameras, which
are unable to detect other kinds of surveillance devices,
or are designed as ’wands’ that measure the Received Sig-
nal Strength (RSS) at a certain bandwidth, which can be
fooled by intermittently transmitting devices or low trans-
mit power IoT devices.

In this report, we propose WiSpider, a platform to de-
tect and localize these hidden, hostile wireless devices non-
cooperatively. Specifically, we focus on sensing devices op-
erating on the WiFi band, which makes up a large part of
the IoT market [3]. To address the shortfalls of previous
implementations, we will passively sniff device addresses
from the air, then force channels between our product and
target devices by exploiting the 802.11 WiFi protocol. We
will then extract the channel information over a series of
user movements and measurements, and aggregate those
measurements into an AR (Augmented Reality) interface
which shows the user where we suspect the hidden devices
to be. To target the majority of off-the-shelf IoT spyware,
we intend our product to be used by both individual and
corporate users.

2 USE-CASE REQUIREMENTS

2.1 Constraints

Sensing WiFi: While IoT devices span a diverse range
of wireless frequencies and modalities, including and BLE
(Bluetooth Low-Energy), we restrict our implementation
to specifically sensing WiFi devices in 2.4GHz band for
this proof of concept, because of the ease-of-use and wide
availability for non-advanced attackers using commercial
off-the-shelf devices.
Indoors: Our system will be designed and tested solely in-
doors. This is where the majority of privacy-infringing de-
vices are located, and indoor environments are inherently
more challenging for wireless sensing due to obstructions
and dense multipath, so the system could be generalized to
outdoors.
No moving devices: We are focused solely on sensing de-
vices permanently or semi-permanently planted in the en-
vironment - not computer, phones, or laptops, which may
change position with their user.

2.2 Metrics

Weight and Size: We require WiSpider to weigh less than
10 pounds and fit within 1 cubic foot. We envision our de-
vice being easy for user to carry, to move between rooms
as they are scanning, and to pack and take with them if
they are going to a different place. To this end, our device
needs to be both lightweight and small.
Cost: We require WiSpider to cost less than $150. This
places us in-line with most currently available commercial
solutions and puts WiSpider in the price range of both pri-
vate and corporate users.
Detection Rate: We require a device detection rate of
90%, where the detection rate is defined as how often we
are able to detect a device that is located within our mini-
mum range. If a device’s address is observed or sniffed, it
would count as being detected.
Scan time: We require WiSpider to finish scanning within
5 minutes. This enables the end-user to detect devices in
a relatively short period of time.
Lateral accuracy: We require WiSpider to localize a de-
vice within 1m from its actual location. The user can then
easily search manually within the detection zone.
Range: We require a minimum detection range of 10m,
meaning that devices up to 10 m away can be detected by
WiSpider. This is to allow a user to scan an entire room
easily and with little movement (i.e. without needing to
manually sweep across every wall).
Resolution: WiSpider requires a spatial resolution of
0.5m, measuring how well the product is able to distin-

18-500 Final Report - WiSpider Page 2 of 11

guish between co-located devices. Wireless devices may be
very closely located to each-other: in order to provide the
user with information about devices that could be hiding
near another signature, we need to be able to distinguish
closely located devices from each other.

2.3 Features

Detect and locate hidden devices: The main feature
of WiSpider is to detect and locate hidden devices. The
device will sniff WiFi packets to detect devices, and ex-
ploit Polite Wifi[1] behavior to gather Time-of-Flight data.
These data will be used to localize devices.

Non-cooperative: It is likely that a user will want to
scan for hidden IoT devices in an unknown environment.
WiSpider is able to operate in such situations where the
user is not connected to the same network that the IoT
devices are connected to.

Visualization: WiSpider must be able to show the user
where any detected devices are located in the scanned
space.

We acknowledge there is potential for this technology
itself to infringe on the privacy of network users by giving
their location to an unpriveledged third party. However,
this method has already been developed as a vector for at-
tackers to use in other projetcs [2]. Additionally, we believe
that the restriction that WiSpider will only localize immo-
bile devices will make our product much more appealing
in the toolkit of a defender than an attacker.

3 ARCHITECTURE

3.1 Overall System Diagram

Our architecture has 3 major components: a hardware
component, using WiFi chips and a microcontroller; a sig-
nals component, processing those measurements using gra-
dient descent and an MLE (Maximum-Likelihood Estima-
tion) localization algorithm; and a software component,
creating the AR interface and integrating all of WiSpider’s
devices.

Figure 1: The system diagram of WiSpider, showing the
overall pipeline and where each component runs.

The operating steps of WiSpider are as follows: (i) Sniff
WiFi packets and addresses passively from the surrounding
area (ii) Ping those addresses to non-cooperatively create
a channel between WiSpider and the target devices using
the ”Polite WiFi” exploit described in [1]. (iii) Convert
measurements into Time-of-Flight ranging and aggregate
across user movements to localize where the devices are.
(iv) Visualize to the user where the devices are located in
the space, and any information we can glean from their
unencrypted packet headers (i.e. manufacturer, data rate).
This overall pipeline is shown in Figure 1.

3.2 Hardware Diagram

Figure 2: WiSpider operates 2 different WiFi chips simul-
taneously to extract different measurements of the channel.

Due to the limitations of individual WiFi chips, which
will be further described in Section 6, we elect to use two
WiFi chips to sense the channel, as shown in Figure 2.
At a high level, one will be used solely to ping target de-
vices with null packets, and the other device will be used to
measure the time between outgoing packets and incoming
responding acknowledgment packets.

3.3 Localization Diagram

Figure 3: WiSpider extracts information from the WiFi
channel to localize the target in 3 dimensions using an it-
erative gradient descent optimization.

Figure 3 shows the outline of how WiSpider handles the
measurements it receives. In short, WiSpider takes a sam-
ple starting position and calculates the possible total error
when a small step is taken in each dimension from that

18-500 Final Report - WiSpider Page 3 of 11

position. It combines those measurements into a gradient
and steps to the new lower-error position. WiSpider then
iterates this process until the position converges into a final
measurement.

4 DESIGN REQUIREMENTS

Physical: As stated in the use-case requirement, WiSpi-
der needs to be both lightweight and small, and our design
should weigh less than 10 pounds and fit within 1 cubic
foot.
Sniffing rate: WiSpider should sniff and identify access
points for 1 minute, and should use fake beacon packets to
discover devices connected to each access point for another
minute.
Injection rate: 100 fake packets per second should be
sent.
ToF measurement rate: Since half of the fake packets
should be fake beacon packets to prevent the device from
going to sleep, there should be 50 ToF measurements per
second.
ToF accuracy: It is hard to test the ToF accuracy in real
setting. Therefore, in a test setting with clear line of sight,
we expect that the distance calculated from the measured
ToF is off from the actual distance of the device by no more
than 2 meters. The testing method is further discussed in
section 7.
Distinguish devices: WiSpider should distinguish differ-
ent devices by obtaining each device’s unique identifiers,
such as its MAC address, bandwidth, or transmission rate.
This should work even if the devices are physically close
together.
Locate infrequently transmitting devices: Even if a
device transmits infrequently, if the device is detected at
least once, WiSpider should be able to locate it.
Self-localization accuracy: Our self-localization error
should be within 0.3 meters such that tracking devices can
be done to an accuracy of 1 meter across a large number of
measurements.
AR accuracy: In order to make it very clear for a user
where a device is located, the AR visualization error should
be within 0.3 meters of the actual calculated location. The
AR visualization should also be smooth (even if there is
some error or offset, there should be minimal jitter) so that
the user has a comfortable experience looking at it.

5 DESIGN TRADE STUDIES

In reaching our current design, we explored a variety
of dimensions of the design space, both in terms of design
specifications and implementation details.

5.1 End-User Interface

Since our use case is primarily based on allowing users
to easily locate hidden devices, we explored different op-
tions on how to show users where the detected devices are

located. Most existing solutions [4] are in the form of a de-
vice (a wand or handheld antenna) that will beep or show
a display when brought near strong RF (Radio-Frequency)
emitters. We note that these implementations have major
downsides, including needing to sweep the entire room at
a very high granularity, potential interference from other
devices, and the inability to distinguish multiple devices in
the same area.

We also explored doing a hybrid solution, where the
user would be able to see directional and signal strength
information, as well as decoded information distinguishing
multiple devices by MAC address. This would make it
easier for the user to distinguish devices without requiring
the system to have a self-localization stack (since the user
would be able to mentally determine where the devices are,
based on the results they see). While this reduces complex-
ity and cost, it also places a significant cognitive load on
the user, especially if there are many wireless devices (most
of which might be benign) in the room.

We finally settled on using an augmented reality visual-
ization to show the user exactly where the devices are. This
catches the best of all worlds - the user can walk around
for a while before looking at the data; it can distinguish de-
vices from each other (and filter out trusted devices); and
give the user the ability to see where the hidden devices are
located in their environment.

5.2 Wireless Detection: SDR vs Dedi-
cated Receiver

We initially investigated the use of a Software-Defined
Radio (SDR) for detecting wireless devices. There are WiFi
baseband implementations [7] that can run on an SDR.
These implementations can provide us raw IQ-level data
(such as phase-difference between antennas, and extremely-
precise Time-of-Flight) along with the decoded 802.11
packets. This would give us the highest quality of data,
but an SDR with such capabilities would cost $2-4K min-
imum, and require an external power source in order to
function (along with a lot of specialized software). While
this may be appropriate for certain use-cases (including
military and RF spectrum enforcement), our end-users are
mostly individual users and businesses, for whom a several-
thousand-dollar piece of hardware would be unreasonable.

As an alternative, we decided to use hardware contain-
ing dedicated WiFi receiver chips. This meets our end-user
requirements more effectively, since it is much lower in cost
(<$50) and complexity (WiFi cards can be slotted into any
standard laptop, and there are even standalone WiFi mi-
crocontrollers such as the ESP32). These will give us a
lower precision of data - we do not get any raw IQ data,
only Time-of-Flight based on the internal clock. We do get
some limited multi-antenna phase data through the CSI
(Channel State Information) which is normally used for
MIMO (multi-in-multi-out) and beamforming, but it is not
quite as powerful as we would get with an SDR. However,
based on a review of similar work [2][11], we believe that it

18-500 Final Report - WiSpider Page 4 of 11

is still possible to do sufficiently-accurate localization with
only off-the-shelf WiFi hardware.

5.3 WiFi Interface Hardware

We explored several different options for WiFi hard-
ware/software stacks. Because we want as much raw data
as possible (Time-of-Flight, signal strength across multiple
antennas, phase shift) we are limited to stacks which expose
such data to a user-level application (as writing modded
firmware for a WiFi card is out of scope for our work).

5.3.1 AX200 + PicoScenes

The Intel AX200 series of WiFi cards has a rela-
tively good firmware-level support for extracting raw CSI
and timing information, thanks to its support for modern
MIMO and Time-of-Flight protocols. It is also supported
by PicoScenes, which allows us to easily configure the card
and programatically extract most of the raw CSI data that
we care about. The AX200 supports two antennas, allow-
ing us to extract phase-difference across antennas a half-
wavelength apart, and/or see the variation in power across
antennas. The major downsides are (1) this requires a user
to install the card inside their laptop and run an antenna
cable out the back of the laptop and (2) the free version
of PicoScenes doesn’t support high-precision timestamping,
so we cannot do Time-of-Flight analysis.

5.3.2 IWL5300 + Linux CSI Tool

Arguably the most popular stack for WiFi research
(used by thousands of papers), especially before Pi-
coScenes; the IWL5300 supports 802.11n WiFi and three
distinct antennas. The latter feature is particularly useful
for working with directional antennas, as we could use one
omnidirectional and two directional antennas to get a very
strong idea of the orientation towards a device. The ma-
jor downside with the Linux CSI Tool is that there is no
support for 802.11a, which is required for the Polite WiFi
attack that we rely on for Time-of-Flight ranging.

5.3.3 QCA9500 + Atheros CSI Tool

The Atheros CSI tool has (with the Atheros QCA card)
a very similar feature set but slightly higher resolution. It
however suffers from the same other issues as the Intel CSI
tool, including the lack of 802.11a support.

5.3.4 ESP32

The ESP32 is a commonly-used microcontroller which
has a very low overhead (hence we can do clock-
cycle-accurate timestamping in software), well-documented
open-source libraries, and allows us fairly raw access to the
802.11 WiFi stack. Since it can run custom code, we can
use the serial port to relay results back to a computer over
a USB UART connection. It has been used in past ToF-
based research such as [2]. The major downside with the

ESP is that it only supports a single antenna, so we can-
not do phase or CSI measurements. It also doesn’t support
high-precision measurement of frame injection times, so we
must use a second WiFi device to inject frame and then
measure the reception time of the ping, and the response
frames from the ESP.

We eventually settled on using one ESP8266 for pinging
and one ESP32 for receiving the ACK for measuring Time-
of-Flight, interfaced to the localization software (running
on a nearby laptop) using a wireless telemetry radio link.
This allows our project to be both cost-effective and per-
form Time-of-Flight measurement, which is a more robust
metric than RSS or angle-of-arrival.

5.4 Self-Localization

We explored a few different options for self-localization
(tracking the antenna itself, within the room). We looked
at various LiDAR and depth camera options, including
RPLIDAR and Intel Realsense. However, these would very
quickly break our cost requirements - a depth camera like a
RealSense D455 alone costs >$400 and a T265 (their flag-
ship odometry camera) costs around $300. Additionally,
the long-term accuracy of the T265 is not very high, it can
have drift of several meters after a few minutes of move-
ment. It is generally meant to be used when fused with
other data sources such as a 3D scan (obtained with a Li-
DAR or depth camera). This fusion would add additional
cost and software complexity to our system.

Instead, we settled on using a mobile device as our
camera. Because of augmented-reality and 3D scanning
applications, high-end mobile phones come with very well-
calibrated cameras (sometimes even depth cameras) and
IMUs; and augmented reality stacks such as ARKit will
handle 3D scanning and loop closure under-the-hood. This
means that if we develop an augmented reality app using
one of these pre-existing tools, we will also receive accu-
rate, low-drift user localization. This also has the addi-
tional benefit of allowing us to use it for visualization -
instead of having two separate origin points (one for our
antenna reference frame and one for our visualization ref-
erence frame), both are relative to the AR scene so there
are no added error in the visualization. To create an un-
derlying coordinate system, we simply add a visual marker
[8] at an arbitrary location in the environment.

6 SYSTEM IMPLEMENTATION

The overall system works in 4 steps.

6.1 Device Detection

We use Scapy[10] to passively sniff packets and discover
devices, the method of which is inspired by Wi-Peep.[2]
During this phase, WiSpider sniffs and identifies access
points and their SSIDs (Service Set Identifiers) - for this, we
invoke the iw command.[6] For each access point identified,

18-500 Final Report - WiSpider Page 5 of 11

we inject a beacon frame that appears to be coming from
the access point, with the TIM (Traffic Indication Map)
bitmap set to all 1’s. This wakes up and makes the de-
vices on that network send a response packet to the access
point; we can sniff these packets to detect all the devices
connected to that access point. We limit the sniffing time
per access point to 10 seconds, to meet the use-case re-
quirement of a scan time of less than 5 minutes. The user
is given this list of devices and MAC addresses, from which
the user can filter out known-trusted devices (like their own
phones and laptops).

6.2 Device Pinging

Once we have a list of devices, we use the Polite WiFi
mechanism to ping the devices. Specifically, we create a
fake packet with null data frame, and send them to the
devices; the devices respond with an ACK, even though
the packet itself has an invalid source address and no data.
This is because the maximum time to send an acknowledg-
ment, the SIFS (Short-Interframe Space) time, required by
the 802.11 protocol is too short for the device to actually
validate the address before responding. To prevent the de-
vices from going to sleep, we alternate these null packets
with a beacon frame with TIM bitmap set to 1 which will
force all devices connected to each AP to respond. Using
the device responses, we measure the ToF, which is done
by counting the clock cycles between receiving the outgo-
ing packet and the acknowledge packet, using the ESP32
microcontrollers.

The laptop will display some information about the de-
vice (MAC address, manufacturer if known, channel, etc.)
on a separate panel. This information is extracted from the
unprivileged information in the response packets of each
device.

Figure 4: A labeled diagram of the physical component
of WiSpider, including the two ESPs used for pinging and
measuring ToF.

6.3 Device Location Mapping

6.3.1 Data Processing

To perform timestamping, our ESP32 counts the clock
cycles between when a transmitted packet is detected and

the first valid received packet is detected. If the result ar-
rives more than 50% before or after a 10 µs average SIFS
time, we reject the measurement.

Once all ToF measurements have been collected, we per-
form operations on the entire data set. To reject likely
NLoS (Non-Line-of-Sight) samples, we compare the mean
ToF with those at nearby locations, and any locations with
an abrupt increase are removed. Additionally, any mea-
surements that would fall outside 3 standard deviations of
the mean ToF are also removed.

Next, because we transmit 10 self-localization positions
per second and only receive one batch of approximately
500 ToF measurements per second, we need to interpolate
the timestamps and positioning for our data. We subtract
a linear estimate based on the sample number from each
timestamp. Additionally, we perform linear interpolation
on the self-positioning to fit the data to the ToF times-
tamps: we choose linear interpolation to prevent any large
peaks from occurring and to simplify calculations.

To standardize each target’s distribution, we addition-
ally zero-mean the ToF data. This should not change the
localization results since a constant change is accounted for
by the SIFS parameter in the gradient optimization.

6.3.2 Localization

In order to speed up processing, we found that by using
gradient descent, our localization program was able to run
much faster than our initially proposed grid-search method-
ology. Gradient descent functions by iterating a test posi-
tion, calculating the gradient based on the error at the test
position, then stepping the test position in the direction
of the lowest error. First, let us define how we extract a
location error estimate from the measurement ToF.

E1 =

u=U∑
u=1

∣∣∣√(xi − xu)2 + (yi − yu)2 + (zi − zu)2

+ c · (SIFSi − δu)
∣∣∣ (1)

where E1 is the total error, u is the sample index over U
total samples, c is the speed of light, (xu, yu, zu) is our
estimate of the user’s location, (xi, yi, zi, SIFSi) are our
estimates of the target device’s parameters, and δu is the
measured ToF. While we include zi in our estimate, due to
the low amount of variation we expect in the vertical di-
mension, we do not include this value in our visualizations.

Next, in the current formulation of the error, we ob-
served that if there was low variation in ToF along one
dimension, the SIFS could blow up to unreasonable levels
along with the low-variability dimension. to prevent this,
we add a regularizer term, λ, to minimize SIFS and ensure
small gains from increasing the SIFS do not cause explod-
ing gradients.

E2 = E1 +
λ

U
· |SIFSi| (2)

where E2 is the final error we use for creating gradients.

18-500 Final Report - WiSpider Page 6 of 11

Once the norm of our gradient is below a threshold value,
we stop iterating and report the final localization result.

6.4 Self-Localization + AR Visualization

Our system needs to know its own location (the loca-
tion of its antennas) at all times, in order to implement
the aforementioned device mapping algorithms. It is also
very sensitive to drift, since otherwise the accuracy of our
measurements will deteriorate over time (i.e. the measure-
ments taken at the start of a 5-minute scan vs at the end
of the 5 minutes). We use a mobile phone’s augmented
reality stack (ARKit) on top of which we will develop our
front-end application. The ARKit stack includes a fairly
well-calibrated camera model as well as the ability to do
loop-closure by matching against earlier scans, so it is un-
likely to drift significantly while walking around a room.
Since we can get the device’s location and orientation from
the AR app using the toolkit from [9], we will stream this
data back to our server to be fused together (by matching
timestamps) with the measurements taken using the WiFi
front-end.

Figure 5: The AR interface of WiSpider, overlaying a phone
that was being targeted by our localization system.

Once the scan is taken and we have a confident measure-
ment as to the location of a given WiFi device, we visualize
it in the same AR interface. This is done by showing an
overlay on the user’s phone, in the form of a grid at the
floor level. For locations where devices are detected, we
show a 3D cylinder of 1-meter radius around the device
(Figure 5).

Figure 6: The AR interface of WiSpider, overlaying a phone
that was being targeted by our localization system.

We also include a top-down GUI view on the computer
to give additional information to the user that may be hard
to see in the AR interface (Figure 6).

7 TEST & VALIDATION

We conducted a unit test on individual sub-systems to
check if they meet the design requirements, followed by
an integration test of the use-case requirements. We uses
several IoT devices specified in Table 4, along with our per-
sonal devices to test these requirements. Specifically, the
tests were done for non-moving devices that use 2.4 GHz,
and we checked if they meet use-case requirements and de-
sign requirements specified in Sections 2 and 4.

7.1 Unit-Tests for Device Sniffing

The first test for this part was done with a single known
device (i.e. a phone), and detecting whether our device can
detect that device with the mechanism explained in section
6.1. Then, we put several devices - phones, tablets, smart
cameras, etc. - in the same network and determined if
WiSpider can detect all of them.

7.2 Unit-Tests for Device Pinging

First unit test consisted of pinging a single known de-
vice, and seeing whether we are successfully able to get a
response using the Polite WiFi mechanism. Then, we con-
nected it to a known access point, and used the method
explained in section 6.2 to consistently get response from
pings for 2 minutes without the device going to sleep. Then,
we tested it on 5 devices on a single access point, and ob-
served if the devices continuously responded to the pings.
Lastly, we tested the devices on two different access points
on whether they consistently responded to the pings.

18-500 Final Report - WiSpider Page 7 of 11

7.3 Unit-Tests for ToF

Testing for ToF was important, as small inaccuracies in
ToF measurement can lead to large error in localization.
We did this by collecting ToF against one device at known
location. While SIFS is different across devices and there-
fore is unknown, we figured it out by having the device
and WiSpider right next to each other, with distance of
0m. With the SIFS figured out, we moved the known de-
vice with a constant velocity, and compared the measured
time against the expected time. Once we verified that the
measurements were accurate, we tested it with multiple de-
vices.

7.4 Unit-Tests for Localization & AR

To unit-test our localization performance, we set up a
test AR app which logs the user’s position. We then fol-
lowed a known track (measured using a measuring tape)
and compared the user’s located points against the known
shape of the track, to figure out how much positional error
we have. We also did the opposite (drawing AR points on
top of known locations) to verify that our AR visualization
is close enough to the real location.

7.5 Integration Test

After testing and verifying individual components
through unit tests, we integrated all the components and
conducted an integration test. For this, we set up a testbed
using devices listed in Table 4. We then set a point of ori-
gin, from which we measured the ground-truth locations
of individual devices. Then, we ran WiSpider through a
certain path, and verified the results against the ground
truth location, checked if all of our known devices were de-
tected, and visually tested that the AR locations matched
the physical coordinates. We repeated this through differ-
ent devices at different locations through different traces.

Figure 7: A birds-eye view graph showing the path the user
walked along in blue along with the final measured location
as a red marker. The actual target location was at (0,0).

7.6 Evaluation

The results of the unit tests are as listed in Table 1,
in terms of the design requirements described in Section 4.
The results of the integration test are as listed in Table 2,
in terms of the design requirements described in Section
2. Most results are straightforward and do not need ad-
ditional explanation. ToF accuracy for individual packets
were noisy; however, we measure ToF on a large number of
packets, which when aggregated results in about 1 meter of
accuracy. For device detection, we saw that 10 seconds per
access point was occasionally not enough for some devices.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule (with light updates based on how our
project progress evolved over time) is shown in a Gantt
chart in Fig. 8. Early on, we experimented with a lot of
different design parameters and prototyped different com-
ponents of the project individually, before finalizing our
design and working heavily in the second half to integrate
everything together. Allocating a lot of slack time in our
initial plan worked very well, as we were able to take ad-
vantage of this time (despite a setback when we switched
from AX200 to ESP32) to complete our full system inte-
gration and a substantial amount of testing before the final
presentation. This allowed us to confidently assert during
our final presentation that our system works and meets our
metrics. After the final presentation, we worked on finish-
ing up the remaining evaluation testing, and refining our
demo to make it easy to show to the public in the expo-style
demo session.

Our weekly progress reports can also be found on our
WordPress blog.

8.2 Team Member Responsibilities

Thomas primarily worked on the device-localization
subsystem; specifically, he researched and developed all of
the tracking and filtering algorithms, multipath and noise
handling routines, and device localization using the ToF
data from the measurement subsystem. He also worked
on optimizing the implementation to run in real-time and
integrate easily with the measurement software. He also
worked on refining the AR visualizations to be intuitive for
an end-user to use for finding hidden devices.

Anish worked on developing the measurement subsys-
tem, including the physical electronics package, the WiFi
pinging firmware for the two ESP microcontrollers, and
the software on the laptop which used the telemetry ra-
dio to talk to the two microcontrollers and record the ToF
measurements in a format that could be fed to the device-
localization subsystem. He also worked on the frontend UI
to show the localization results.

Ethan worked on the device-detection subsystem and
network-security aspect of the project. He researched the

https://course.ece.cmu.edu/~ece500/projects/s23-teamc2/weekly-status-report/
https://course.ece.cmu.edu/~ece500/projects/s23-teamc2/weekly-status-report/

18-500 Final Report - WiSpider Page 8 of 11

Table 1: Unit Test Results

Design Requirement Metric Result
Physical < 10 lbs, 1 ft3 1.2 lbs, 0.1 ft3 (including user’s phone)
Sniffing rate < 1 min 15 seconds
Injection rate 100 pkt/s ∼400 pkt/s
ToF measurement rate 50 pkt/s ∼200-400 pkt/s depending on target device
ToF accuracy < 2m individually noisy, ∼1m when aggregated
Distinguish devices Yes Yes, by MAC address; even across channels
Infrequent device Yes Yes, using wake-up packets
Self-localization and AR < 0.3m verified < 0.3m with occasional re-localization

Table 2: Integration Test Results

Use-case Requirements Metric Result
Cost < $150 $146.42
Size/Weight < 10 lbs, 1 ft3 1.2 lbs, 0.1 ft3 (including user’s phone)
Detection Rate > 90% 90%
Scan Time < 5 min 3∼5 minutes
Lateral Accuracy < 1m ∼0.8m
Detection Range > 10m verified at >40m range
Detection Resolution < 0.5m can distinguish devices ∼0.2m apart

different protocols and implemented a pipeline to sniff pack-
ets (including real-time channel hopping), detect and iden-
tify devices, ensure devices don’t go to sleep, and feed the
collected data to the measurement system. He also im-
plemented and debugged the initial proof-of-concept of the
pinging attack, which Anish subsequently adapted to use
for real-time ToF measurements.

8.3 Bill of Materials and Budget

Our Bill of Materials for WiSpider is as listed in Table 3.
This includes all of the components required to build the
physical WiSpider device. We expect the end-user would
already own a mobile phone and a laptop, which they can
run our software on (hence we do not include these in the
system cost). The total cost for WiSpider is $146.42, which
is within our $150 target cost.

We also have a second bill-of-materials for an IoT
testbed, listed in Table 4. Our testbed includes a router
and several devices (both cameras and benign IoT devices
such as plugs and lights) which we will use to test our
system’s detection and localization capabilities. We also
included some mobile devices and computers which we had
easily available, in order to increase the number of devices
we used for testing.

Our total expenditures were $357.45. To avoid wast-
ing money on hardware that would only be used for one-
time integration testing, we used borrowed equipment for
the IoT testbed wherever possible, and only ordered equip-
ment which we couldn’t easily get access to. However, the
components for the WiSpider hardware itself (along with
some spares) were all purchased using our project budget
(other than wire, perfboard, and headers, which were read-
ily available in the Makerspace where we did our hardware

assembly).

8.4 Risk Management

We managed risk throughout our project development
by individually unit-testing the different components as we
developed them. This began very early in the project, when
we did basic testing of our detection and pinging method-
ology by typing Scapy commands into a Python console,
looking at the packets in a hex editor, and verifying re-
sponses by looking at them in Wireshark [12] on a different
computer. While this wasn’t efficient, and certainly not
scalable, it allowed us to have a high degree of confidence
that our methodology was correct before spending a lot
of time implementing it on the embedded platform. This
meant that when we ran into issues further down the line,
we knew it was an implementation bug rather than a fun-
damental flaw in our methodology. In general, manually
inspecting packets/frames (both those received and trans-
mitted by our system) was very helpful in iteratively testing
different functionalities before we fully integrated them.

Similarly, we developed and tested our localization al-
gorithms using the open-source Intel RTT Time-of-Flight
dataset [5]. The data wasn’t entirely representative of
our use-case (it was using cooperative localization be-
tween phones and access-points, as opposed to the non-
cooperative localization that we’re using). However, it was
similar enough that we were able to use it to prototype
and test the localization algorithms in parallel with build-
ing the measurement subsystem; and then we just had to
make some small adaptations to make it work with our real
data.

We also allocated a substantial amount of slack time in
our schedule, which was beneficial since we lost some time

18-500 Final Report - WiSpider Page 9 of 11

Table 3: Bill of materials for WiSpider

Description Model # Manufacturer Quantity Cost @ Total
ESP32 Microcontroller ESP32-S2 Saola 1R Espressif 1 $14.50 $14.50
ESP8266 Microcontroller ESP-01S Espressif 1 $6.99 $6.99
915MHz Telemetry Radio SiK Radio V3 Holybro 1 $89.95 $89.95
USB Battery Pack Ultra Slim 6000mAh Miisso 1 $29.98 $29.98
Protoboard, wire, pin-headers (from makerspace) – – ∼$5.00 $5.00

$146.42

Table 4: Bill of materials for IoT testbed

Description Model # Manufacturer Quantity Cost @ Total
WiFi Access Point N300 TP-Link 1 $29.99 $29.99
Hidden Spy Camera iQCharger Alpha Tech 1 $51.99 $51.99
Mini PTZ Camera Wall Plug-in Camera ARMIDO 1 $36.99 $36.99
Name-Brand Security Camera Wyze Cam v3 Wyze 1 $35.98 $35.98
Name-Brand Security Camera Tapo C100 TP-Link 1 $19.99 $19.99
Mobile Phone iPhone 12 mini Apple 1 – –
Mobile Phone Pixel 7 Google 1 – –
Laptop Macbook Pro 14¨ Apple 1 – –
Tablet iPad Air Apple 1 – –

$174.94

due to our switch from AX200 to ESP32 but were still able
to finish our integration and testing in time for the final
presentation.

9 ETHICAL CONSIDERATIONS

Our product is intended to solve the problem of hidden
wireless devices (such as cameras and microphones) being
used to spy on people in places like hotels, Airbnbs, and
even in their own homes. It does this by allowing the user
to build a map of where each WiFi device is located, as
well as extracting some information about the device (to
distinguish trusted devices from unknown ones).

This is generally very beneficial to public welfare, as
it allows people to ensure their privacy and protect them-
selves against hidden surveillance devices. When used ap-
propriately, our product generally improves people’s lives.

However, there are some failure modes and misapplica-
tions that may cause the product to have negative impacts
on society. We detail the most significant ones below:

• Misapplication: Spying on People - One potential
misapplication is a government using our system to
locate specific people and monitor the population.
Given the ubiquity of WiFi-connected devices, we
could imagine people fleeing from a government that
is trying to persecute them, but then being located
using our technology (especially in dense areas like
apartment buildings and public spaces). This risk is
partially reduced by the fact that our implementa-
tion only works on non-moving target devices (and
people tend to move around quite a bit), but is still
a concern.

• Misapplication: Theft & Crime - Cameras and other
surveillance equipment are generally used to provide
legitimate protection to homes and public spaces. A
malicious actor could use our system to find all of
the cameras in a space and either disarm them, or
abuse their blind-spots to engage in unscrupulous ac-
tivities (such as theft) without being caught by the
cameras. One could also imagine this system being
used to locate possible objects to steal (phones, com-
puters) inside a building during a break-in.

• False Positive: If the system had too many false posi-
tives, it could cause the user significant lost time and
sanity trying to hunt down a ”hidden” device that
the system detects, but isn’t actually there.

• False Negative: If a user were too confident in the
accuracy of the system and it ever missed a device,
they may inadvertently have unfounded confidence in
the privacy of their space (i.e. having sensitive con-
versations in a room, and then it turns out there was
a hidden wireless microphone there all along).

After thoroughly considering the worst-case scenarios,
we still believe that our system has an overall positive ben-
efit to society as it can help individual people regain their
privacy.

While there is considerable potential for harm with
misapplication, such large threat-actors (especially govern-
ments) likely have other effective ways to obtain similar
results.

18-500 Final Report - WiSpider Page 10 of 11

10 RELATED WORK

Polite WiFi[1] is a behavior in which a WiFi device will
respond to any frame with an ACK, if the destination ad-
dress matches its own MAC address. This can create many
opportunities as well as threats; for instance, while it can
be used to make WiFi sensing more convenient, one can
also use this behavior to identify and localize many devices
that they should not be able to, or drain a target device’s
battery by forcing it to continuously acknowledge the pings.

Wi-Peep[2] is one such example of how this behavior
might be used maliciously. Using off-the-shelf WiFi mod-
ules and a cheap drone, they were able to detect devices
on a network they’re not connected to, measure ToF using
Polite WiFi behavior, and localize devices from outside a
building.

Lumos[11] is a similar work aimed at identifying and
locating hidden devices with their phone. Lumos differs in
the approach they take, in that they fingerprint the devices
with a machine learning approach, and use RSSI and VIO
for localization.

PicoScenes[7] is an OSS framework for WiFi CSI and
metadata collection. It supports CSI measurement from
commercial off-the-shelf NICs and SDRs, while also allow-
ing for packet injection. It also is possible to use MATLAB
and python with its CSI format, as well as creating plugins.

The Intel Open WiFi RTT Dataset[5] is an open-source
dataset of Time-of-Flight WiFi measurements between var-
ious client devices and access-points in an office environ-
ment. This dataset has been used to develop localization
algorithms based on WiFi measurements, however we do
note that the dataset was captured using an API for coop-
erative WiFi localization (the access points support a ded-
icated method of getting Time-of-Flight measurements, as
opposed to the non-cooperative approach we used in WiSpi-
der).

11 SUMMARY

WiSpider is a platform that detects and localizes hidden
wireless devices in a non-cooperative environment. Using
the device, the user is able to easily locate where hidden
devices are, by looking at the AR interface. Additionally,
the device is easy to carry around and low-cost.

We learned the challenges in creating a full-stack sys-
tem, including trying to integrate disparate components,
prioritizing areas needed to create an MVP for testing, and
making sure programs created by different people can com-
municate with each other. We all also got experience deal-
ing with WiFi protocols, including CSI, ToF measurements,
and packet generation.

One possible expansion for WiSpider is expanding the
target of devices to a larger set, such as devices in 5GHz
WiFi band or devices using Bluetooth. Additionally, it
would be interesting to see if it is possible to collect
RSS/CSI data and use those to improve the accuracy of
the localization. WiSpider also currently requires the user’s

laptop and phone to work; an improvement would be to ab-
stract out the laptop and do processing on the phone or on
the cloud.

12 ACKNOWLEDGEMENTS

We would like to thank Professor Hyong Kim and
Omkar Savkur for their feedback and guidance throughout
this entire semester.

We would also like to thank Quinn Hagerty and the
other course staff for assisting in hardware acquisition and
purchasing (especially when some of the devices for our IoT
testbed had to be from not-so-reputable brands).

Finally, we would like to thank Zhiping Jiang for do-
nating a PicoScenes evaluation license. While our final
implementation ended up not relying on PicoScenes due
to design constraints, having access to the tool’s datalog-
ging capabilities was invaluable in our experimentation and
testing.

Glossary of Acronyms

AR Augmented Reality. 1, 2, 3

BLE Bluetooth Low-Energy. 1

CSI Channel State Information. 3, 4

IMU Inertial Measurement Unit. 4

IoT Internet of Things. 1, 2

IQ In-phase Quadrature. 3

LiDAR Light Detection And Ranging. 4

MAC Media Access Control. 3, 5

MIMO Multiple-Input Multiple-Output. 3, 4

MLE Maximum-Likelihood Estimation. 2

MVP Minimum Viable Product. 1

NLoS Non-Line-of-Sight. 5

RF Radio Frequency. 3

RSS Received Signal Strength. 1, 4

SDR Software-Defined Radio. 3

SIFS Short Interframe Space. 5

SSID Service Set Identifier. 4

TIM Traffic Indication Map. 5

ToF Time-of-Flight. 3, 4, 5

18-500 Final Report - WiSpider Page 11 of 11

UART Universal Asynchronous Receiver / Transmitter.
4

USB Universal Serial Bus. 4

References

[1] Ali Abedi and Omid Abari. “WiFi Says ”Hi!” Back to
Strangers!” In: Proceedings of the 19th ACM Work-
shop on Hot Topics in Networks. HotNets ’20. Virtual
Event, USA: Association for Computing Machinery,
2020, 132–138. isbn: 9781450381451. doi: 10.1145/
3422604 . 3425951. url: https : / / doi . org / 10 .
1145/3422604.3425951.

[2] Ali Abedi and Deepak Vasisht. “Non-Cooperative
Wi-Fi Localization amp; Its Privacy Implications”.
In: Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking.
MobiCom ’22. Sydney, NSW, Australia: Associa-
tion for Computing Machinery, 2022, 570–582. isbn:
9781450391818. doi: 10 . 1145 / 3495243 . 3560530.
url: https : / / doi . org / 10 . 1145 / 3495243 .

3560530.

[3] Jacob Arellano. “Bluetooth vs. Wi-Fi for IoT: Which
is Better?” In: (July 9, 2019). url: https://www.
verytechnology.com/iot-insights/bluetooth-

vs-wi-fi-for-iot-which-is-better.

[4] Brick House Security. “Concealable wand detects hid-
den RF and wireless signals”. In: (2019 [Online]).
url: https : / / www . brickhousesecurity . com /

counter-surveillance/rf-wand/.

[5] Nir Dvorecki et al. Intel Open Wi-Fi RTT Dataset.
2020. doi: 10.21227/h5c2-5439. url: https://dx.
doi.org/10.21227/h5c2-5439.

[6] iw. 2015. url: https://wireless.wiki.kernel.
org/en/users/documentation/iw.

[7] Zhiping Jiang et al. “Eliminating the Barriers:
Demystify Wi-Fi Baseband Design And Introduce
PicoScenes Wi-Fi Sensing Platform”. In: CoRR
abs/2010.10233 (2020). arXiv: 2010 . 10233. url:
https://arxiv.org/abs/2010.10233.

[8] Edwin Olson. “AprilTag: A robust and flexible visual
fiducial system”. In: 2011 IEEE International Con-
ference on Robotics and Automation. 2011, pp. 3400–
3407. doi: 10.1109/ICRA.2011.5979561.

[9] Nuno Pereira et al. “ARENA: The Augmented Re-
ality Edge Networking Architecture”. In: 2021 IEEE
International Symposium on Mixed and Augmented
Reality (ISMAR). 2021, pp. 479–488. doi: 10.1109/
ISMAR52148.2021.00065.

[10] Philippe Biondi. “Scapy”. In: (2008). url: https:
//scapy.net/.

[11] Rahul Anand Sharma et al. “Lumos: Identifying and
Localizing Diverse Hidden IoT Devices in an Unfamil-
iar Environment”. In: 31st USENIX Security Sympo-
sium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 1095–1112. isbn: 978-
1-939133-31-1. url: https : / / www . usenix . org /

conference / usenixsecurity22 / presentation /

sharma-rahul.

[12] Wireshark open-source packet analysis. 1998. url:
https://www.wireshark.org/.

https://doi.org/10.1145/3422604.3425951
https://doi.org/10.1145/3422604.3425951
https://doi.org/10.1145/3422604.3425951
https://doi.org/10.1145/3422604.3425951
https://doi.org/10.1145/3495243.3560530
https://doi.org/10.1145/3495243.3560530
https://doi.org/10.1145/3495243.3560530
https://www.verytechnology.com/iot-insights/bluetooth-vs-wi-fi-for-iot-which-is-better
https://www.verytechnology.com/iot-insights/bluetooth-vs-wi-fi-for-iot-which-is-better
https://www.verytechnology.com/iot-insights/bluetooth-vs-wi-fi-for-iot-which-is-better
https://www.brickhousesecurity.com/counter-surveillance/rf-wand/
https://www.brickhousesecurity.com/counter-surveillance/rf-wand/
https://doi.org/10.21227/h5c2-5439
https://dx.doi.org/10.21227/h5c2-5439
https://dx.doi.org/10.21227/h5c2-5439
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://arxiv.org/abs/2010.10233
https://arxiv.org/abs/2010.10233
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/ISMAR52148.2021.00065
https://doi.org/10.1109/ISMAR52148.2021.00065
https://scapy.net/
https://scapy.net/
https://www.usenix.org/conference/usenixsecurity22/presentation/sharma-rahul
https://www.usenix.org/conference/usenixsecurity22/presentation/sharma-rahul
https://www.usenix.org/conference/usenixsecurity22/presentation/sharma-rahul
https://www.wireshark.org/

18-500 Final Report - WiSpider Page 12 of 11

F
ig
u
re

8
:
G
a
n
tt

C
h
a
rt

	INTRODUCTION
	USE-CASE REQUIREMENTS
	Constraints
	Metrics
	Features

	ARCHITECTURE
	Overall System Diagram
	Hardware Diagram
	Localization Diagram

	DESIGN REQUIREMENTS
	DESIGN TRADE STUDIES
	End-User Interface
	Wireless Detection: sdr vs Dedicated Receiver
	WiFi Interface Hardware
	AX200 + PicoScenes
	IWL5300 + Linux csi Tool
	QCA9500 + Atheros CSI Tool
	ESP32

	Self-Localization

	SYSTEM IMPLEMENTATION
	Device Detection
	Device Pinging
	Device Location Mapping
	Data Processing
	Localization

	Self-Localization + AR Visualization

	TEST & VALIDATION
	Unit-Tests for Device Sniffing
	Unit-Tests for Device Pinging
	Unit-Tests for ToF
	Unit-Tests for Localization & AR
	Integration Test
	Evaluation

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Management

	ETHICAL CONSIDERATIONS
	RELATED WORK
	SUMMARY
	ACKNOWLEDGEMENTS

