
18-500 Design Review - WiSpider Page 1 of 8

WiSpider
Authors: Anish Singhani, Thomas Horton King, Ethan Oh

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—TODO: With the increasing ability to
build tiny wireless-connected IoT devices, there is mas-
sive potential for hostile actors to infringe on individ-
ual, corporate, and governmental privacy using hidden
wireless devices such as microphones and cameras. We
want to create a device that can detect and localize
these hidden wireless devices. We will also exploit
wireless protocols to obtain some information about
the hidden device, such as manufacturer or device pur-
pose. We will create a visual user-interface to display
where any detected devices are located, relative to the
user. Given the pervasiveness of WiFi for communi-
cations, our prototype/MVP will primarily focus on
sniffing WiFi packets.

Index Terms—privacy, wifi localization, internet of
things, wifi security, 802.11

1 INTRODUCTION

With the rapid expansion and adoption of wireless IoT
(Internet-of-Things) devices, it has become easier for hos-
tile actors are to spy on and infringe the privacy of indi-
viduals and corporations. In Surveillance devices can take
the form of cameras, microphones, or presence detectors,
which are either (i) miniaturized to the point of being un-
noticeable to the human eye or (ii) disguised as harmless
devices, such as wall plugs or light bulbs. Existing tech-
nologies to address this problem either focus on detecting
magnetic signatures specifically emitted by cameras, which
are unable to detect other kinds of surveillance devices,
or are designed as ’wands’ that measure the Received Sig-
nal Strength (RSS) at a certain bandwidth, which can be
fooled by intermittently transmitting devices or low trans-
mit power IoT devices.

In this report, we propose WiSpider, a platform to de-
tect and localize these hidden, hostile wireless devices non-
cooperatively. Specifically, we focus on sensing devices op-
erating on the WiFi band, which makes up a large part of
the IoT market [3]. To address the shortfalls of previous
implementations, we will passively sniff device addresses
from the air, then force channels between our product and
target devices by exploiting the 802.11 WiFi protocol. We
will then extract the channel information over a series of
user movements and measurements, and aggregate those
measurements into an AR (Augmented Reality) interface
which shows the user where we suspect the hidden devices
to be. To target the majority of off-the-shelf IoT spyware,
we intend our product to be used by both individual and
corporate users.

2 USE-CASE REQUIREMENTS

2.1 Constraints

Sensing WiFi: While IoT devices span a diverse range
of wireless frequencies and modalities, including LoRa and
BLE (Bluetooth Low-Energy), we restrict our implemen-
tation to specifically sensing WiFi devices for this proof of
concept, because of the ease-of-use and wide availability for
non-advanced attackers.
Indoors: Our system will be designed and tested solely in-
doors. This is where the majority of privacy-infringing de-
vices are located, and indoor environments are inherently
more challenging for wireless sensing due to obstructions
and dense multipath, so the system could be generalized to
outdoors.
No moving devices: We are focused solely on sensing de-
vices permanently or semi-permanently planted in the en-
vironment - not computer, phones, or laptops, which may
change position with their user.

2.2 Metrics

Weight and Size: We require WiSpider to weigh less than
10 pounds and fit within 1 cubic foot. We envision our de-
vice being easy for user to carry, to move between rooms
as they are scanning, and to pack and take with them if
they are going to a different place. To this end, our device
needs to be both lightweight and small.
Cost: We require WiSpider to cost less than $150. This
places us in-line with most currently available commercial
solutions and puts WiSpider in the price range of both pri-
vate and corporate users.
Detection Rate: We require a device detection rate of
90%, where the detection rate is defined as how often we
are able to detect a device that is located within our mini-
mum range. If a device’s address is observed or sniffed, it
would count as being detected.
Scan time: We require WiSpider to finish scanning within
5 minutes. This enables the end-user to detect devices in
a relatively short period of time.
Lateral accuracy: We require WiSpider to localize a de-
vice within 1m from its actual location. The user can then
easily search manually within the detection zone.
Range: We require a minimum detection range of 10m,
meaning that devices up to 10 m away can be detected by
WiSpider. This is to allow a user to scan an entire room
easily and with little movement (i.e. without needing to
manually sweep across every wall).
Resolution: WiSpider requires a spatial resolution of
0.5m, measuring how well the product is able to distin-
guish between co-located devices. Wireless devices may be

18-500 Design Review - WiSpider Page 2 of 8

very closely located to each-other: in order to provide the
user with information about devices that could be hiding
near another signature, we need to be able to distinguish
closely located devices from each other.

2.3 Features

Detect and locate hidden devices: The main feature
of WiSpider is to detect and locate hidden devices. The
device will sniff WiFi packets to detect devices, and exploit
Polite Wifi[1] behavior to gather Time of Flight and RSS
data. These data will be used to localize devices.
Non-cooperative: It is likely that a user will want to
scan for hidden IoT devices in an unknown environment.
WiSpider is able to operate in such situations where the
user is not connected to the same network that the IoT
devices are connected to.
Visualization: WiSpider must be able to show the user
where any detected devices are located in the scanned
space.

We acknowledge there is potential for this technology
itself to infringe on the privacy of network users by giving
their location to an unpriveledged third party. However,
this method has already been developed as a vector for at-
tackers to use in other projetcs [2]. Additionally, we believe
that the restriction that WiSpider will only localize immo-
bile devices will make our product much more appealing
in the toolkit of a defender than an attacker.

3 ARCHITECTURE

3.1 Overall System Diagram

Our architecture has 3 major components: a hardware
component, using WiFi chips and a microcontroller; a sig-
nals component, processing those measurements using an
MLE (Maximum-Likelihood Estimation) localization algo-
rithm; and a software component, creating the AR interface
and integrating all of WiSpider’s devices.

Figure 1: The system diagram of WiSpider, showing the
overall pipeline and where each component runs.

The operating steps of WiSpider are as follows: (i) Sniff
WiFi packets and addresses passively from the surrounding
area (ii) Ping those addresses to non-cooperatively create a
channel between WiSpider and the target devices using the

”Polite WiFi” exploit described in [1]. (iii) Convert mea-
surements into 2d positioning characteristics (range, angle)
and aggregate across user movements to localize where the
devices are. (iv) Visualize to the user where the devices
are located in the space, and any information we can glean
from their unencrypted packet headers (i.e. manufacturer,
data rate). This overall pipeline is shown in Figure 1.

3.2 Hardware Diagram

Figure 2: WiSpider operates 2 different WiFi chips simul-
taneously to extract different measurements of the channel.

Due to the limitations of individual WiFi chips, which
will be further described in Section 6, we elect to use two
different WiFi chips to sense different aspects of the chan-
nel, as shown in Figure 2. At a high level, one will be used
for range measurement and another will be used for angle
measurement. The diagram also shows the rate at which
we expect data transfer between each platform.

3.3 Localization Diagram

Figure 3: WiSpider extracts information from the WiFi
channel to localize the target in both angle and range, sum-
ming the z-score of the 2 estimates to combine them.

Figure 3 shows the outline of how WiSpider handles the
measurements it receives. In short, it scans a set of possible
target (x, y) locations and calculates how likely the target
device is to land there based on WiSpider’s measurements.
It then combines those two estimates over thousands of
measurements per each device, and uses the most likely
location as our position estimate.

18-500 Design Review - WiSpider Page 3 of 8

4 DESIGN REQUIREMENTS

Physical: As stated in the use-case requirement, WiSpi-
der needs to be both lightweight and small, and our design
will weigh less than 10 pounds and fit within 1 cubic foot.
Sniffing rate: WiSpider will sniff and identify access
points for 1 minute, and will use fake beacon packets to
discover devices connected to each access point for another
minute.
Injection rate: 100 fake packets per second will be sent.
ToF measurement rate: Since half of the fake pack-
ets will be fake beacon packets to prevent the device from
going to sleep, there will be 50 ToF (Time-of-Flight) mea-
surements per second.
ToF accuracy: It is hard to test the ToF accuracy in real
setting. Therefore, in a test setting with clear line of sight,
we expect that the distance calculated from measured ToF
is off from the actual distance of the device by no more than
2 meters. Testing method is further discussed in section 7.
Distinguish devices: WiSpider will distinguish differ-
ent devices by obtaining each device’s unique identifiers,
such as its MAC address, bandwidth, or transmission rate.
This should work even if the devices are physically close
together.
Locate infrequently transmitting devices: Even if a
device transmits infrequently, if the device is detected at
least once, WiSpider will be able to locate it.
Self-localization accuracy: Our self-localization error
would be within 0.3 meters such that tracking devices can
be done to an accuracy of 1 meter across a large number of
measurements.
AR accuracy: In order to make it very clear for a user
where a device is located, the AR visualization error will
be within 0.3 meters of the actual calculated location. The
AR visualization will also be smooth (even if there is some
error or offset, there should be minimal jitter) so that the
user has a comfortable experience looking at it.

5 DESIGN TRADE STUDIES

In reaching our current design plan, we explored a va-
riety of dimensions of the design space, both in terms of
design specifications and implementation details.

5.1 End-User Interface

Since our use case is primarily based on allowing users
to easily locate hidden devices, we explored different op-
tions on how to show users where the detected devices are
located. Most existing solutions [4] are in the form of a de-
vice (a wand or handheld antenna) that will beep or show
a display when brought near strong RF (Radio-Frequency)
emitters. We note that these implementations have major
downsides, including needing to sweep the entire room at
a very high granularity, potential interference from other
devices, and the inability to distinguish multiple devices in
the same area.

We also explored doing a hybrid solution, where the
user would be able to see directional and signal strength
information, as well as decoded information distinguishing
multiple devices by MAC address. This would make it
easier for the user to distinguish devices without requiring
the system to have a self-localization stack (since the user
would be able to mentally determine where the devices are,
based on the results they see). While this reduces complex-
ity and cost, it also places a significant cognitive load on
the user, especially if there are many wireless devices (most
of which might be benign) in the room.

We finally settled on using an augmented reality visual-
ization to show the user exactly where the devices are. This
catches the best of all worlds - the user can walk around
for a while before looking at the data; it can distinguish de-
vices from each other (and filter out trusted devices); and
give the user a relatively accurate idea of where the hidden
devices might be.

5.2 Wireless Detection: SDR vs Dedi-
cated Receiver

We initially investigated the use of a Software-Defined
Radio (SDR) for detecting wireless devices. There are Wi-
Fi baseband implementations [6] that can run on an SDR.
These implementations can provide us raw IQ-level data
(such as phase-difference between antennas, and extremely-
precise time-of-flight) along with the decoded 802.11 pack-
ets. This would give us the highest quality of data, but
an SDR with such capabilities would cost $2-4K minimum,
and require an external power source in order to function
(along with a lot of specialized software). While this may
be appropriate for certain use-cases (including military and
RF spectrum enforcement), our end-users are mostly indi-
vidual users and businesses, for whom a several-thousand-
dollar piece of hardware would be unreasonable.

As an alternative, we decided to use hardware contain-
ing dedicated Wi-Fi receiver chips. This meets our end-user
requirements more effectively, since it is much lower in cost
(¡$50) and complexity (Wi-Fi cards can be slotted into any
standard laptop, and there are even standalone Wi-Fi mi-
crocontrollers such as the ESP32). These will give us a
lower precision of data - we do not get any raw IQ data,
only time-of-flight based on the internal clock. We do get
some limited multi-antenna phase data through the CSI
(Channel State Information) which is normally used for
MIMO (multi-in-multi-out) and beamforming, but it is not
quite as powerful as we would get with an SDR. However,
based on a review of similar work [2] [8], we believe that it
is still possible to do sufficiently-accurate localization with
only off-the-shelf Wi-Fi hardware.

5.3 Wi-Fi Interface Hardware

We explored several different options for Wi-Fi hard-
ware/software stacks. Because we want as much raw data
as possible (time-of-flight, signal strength across multiple

18-500 Design Review - WiSpider Page 4 of 8

antennas, phase shift) we are limited to stacks which ex-
pose such data to a user-level application (as writing mod-
ded firmware for a Wi-Fi card is out of scope for our work).

5.3.1 AX200 + PicoScenes

The Intel AX200 series of Wi-Fi cards has a rela-
tively good firmware-level support for extracting raw CSI
and timing information, thanks to its support for modern
MIMO and time-of-flight protocols. It is also supported
by PicoScenes, which allows us to easily configure the card
and programatically extract most of the raw CSI data that
we care about. The AX200 supports two antennas, allow-
ing us to extract phase-difference across antennas a half-
wavelength apart, and/or see the variation in power across
antennas. The major downsides are (1) this requires a user
to install the card inside their laptop and run an antenna
cable out the back of the laptop and (2) the free version
of PicoScenes doesn’t support high-precision timestamping,
so we cannot do time-of-flight analysis.

5.3.2 IWL5300 + Linux CSI Tool

Arguably the most popular stack for Wi-Fi research
(used by thousands of papers), especially before Pi-
coScenes; the IWL5300 supports 802.11n Wi-Fi and three
distinct antennas. The latter feature is particularly useful
for working with directional antennas, as we could use one
omnidirectional and two directional antennas to get a very
strong idea of the orientation towards a device. The ma-
jor downside with the Linux CSI Tool is that there is no
support for 802.11a, which is required for the Polite WiFi
attack that we rely on for time-of-flight ranging.

5.3.3 QCA9500 + Atheros CSI Tool

The Atheros CSI tool has (with the Atheros QCA card)
a very similar feature set but slightly higher resolution. It
however suffers from the same other issues as the Intel CSI
tool, including the lack of 802.11a support.

5.3.4 ESP32

The ESP32 is a commonly-used microcontroller which
has a very low overhead (hence we can do clock-
cycle-accurate timestamping in software), well-documented
open-source libraries, and allows us fairly raw access to the
802.11 WiFi stack. Since it can run custom code, we can
use the serial port to relay results back to a computer over
USB. It has been used in past ToF-based research such as
Wi-Peep. The major downside with the ESP is that it only
supports a single antenna, so we cannot do phase or CSI
measurements. It also doesn’t support high-precision mea-
surement of frame injection times, so we must use a second
Wi-Fi device to inject frame and then measure the recep-
tion time of the ping, and the response frames from the
ESP.

We eventually settled on using a combination of AX200
+ PicoScenes (for sniffing, injection, and phase informa-
tion) and ESP32 (for time-of-flight), interfaced together via
a USB serial port.

5.4 Self-Localization

We explored a few different options for self-localization
(tracking the antenna itself, within the room). We looked
at various LIDAR and depth camera options, including
RPLIDAR and Intel Realsense. However, these would very
quickly bust our cost requirements - a depth camera like a
RealSense D455 alone costs ¿$400 and a T265 (their flag-
ship odometry camera) costs around $300. Additionally,
the long-term accuracy of the T265 is not very high, it can
have drift of several meters after a few minutes of move-
ment. It is generally meant to be used when fused with
other data sources such as a 3D scan (obtained with a LI-
DAR or depth camera). This fusion would add additional
cost and software complexity to our system.

Instead, we settle on using a mobile device as our cam-
era. Because of augmented-reality and 3D scanning ap-
plications, high-end mobile phones come with very well-
calibrated cameras (sometimes even depth cameras) and
IMUs; and augmented reality stacks such as ARKit will
handle 3D scanning and loop closure under-the-hood. This
means that we can develop an augmented reality app using
one of these tools under-the-hood, and it will give us ac-
curate, low-drift localization. This also has the additional
benefit of allowing us to use it for visualization - instead of
having two separate origin points (one for our antenna ref-
erence frame and one for our visualization reference frame),
both will be relative to the AR scene so there will be no
added error in the visualization.

6 SYSTEM IMPLEMENTATION

The overall system works in 4 steps.

6.1 Device Detection

We will use Scapy[7] to passively sniff packets and dis-
cover devices, the method of which is inspired by Wi-
Peep.[2] During this phase, WiSpider sniffs and identifies
access points and their SSIDs (Service Set Identifiers). For
each access point identified, we inject a beacon frame that
appears to be coming from the access point, with the TIM
(Traffic Indication Map) bitmap set to all 1’s. This will
make the devices on that network send a response packet
to the access point; we can sniff these packets to detect all
the devices connected to that access point.

6.2 Device Pinging

Once we have a list of devices, we use the Polite Wifi
mechanism to ping the devices. Specifically, we create a

18-500 Design Review - WiSpider Page 5 of 8

fake packet with null data frame, and send them to the de-
vices; the devices respond with an ACK, even though the
packet itself has an invalid source address and no data. This
is because the maximum time to send an acknowledgment,
the SIFS (Short-Interframe Space) time, required by the
802.11 protocol is too short for the device to actually vali-
date the address before responding. To prevent the devices
from going to sleep, we alternate these null packets with a
beacon frame with TIM bitmap set to 1 which will force
all devices connected to each AP to respond. Using the
device responses, we can measure ToF, CSI (Channel State
Information), and RSS (Received Signal Strength) data to
use for localization. The measurement of RSS data will be
done with the PicoScenes framework, using Intel’s AX200
WiFi card, while the ToF measurements will be done by
counting the clock cycles between receiving the outgoing
packet and the acknowledge packet, using the ESP32 mi-
crocontroller. The ESP32 is not capable of the one-way
CSI measurement the AX200 is, while the AX200 is not
capable of the lightweight clock measurement the ESP32
is.

6.3 Device Location Mapping

We will localize the target devices in the range and an-
gle domains separately, then combine those measurements
to find the true location. In order to speed up processing,
instead of using gradient descent or other large-processing
methods, we formulate our problem as a highly paralleliz-
able grid search. We define a set of (xi, yi) that spans the
entire space scanned by the user. First, let us define how we
extract the location estimate from the measurement ToF.

di =minSIFS{|
u=U∑
u=1

√
(xi − xu)2 + (yi − yu)2

+ c · (SIFS − δu)|}

(1)

where di is the sum of absolute distances between point i
and each ToF measurement, u is the sample index over U
total samples, (xu, yu) is our estimate of the user’s location,
c is the speed of light, SIFS is optimized over the range
(6µs, 16µs) to account for the unknown SIFS of the device,
and δu is the measured ToF.

Next, let us define how WiSpider will extract the angle.
Using PDoA (Phase Difference of Arrival), we can compare
the phase across the two RX antennas of the AX200 to de-
termine the AoA of the WiFi signal. However, with only
two antennas, this will be fairly imprecise, so we will get a
finer estimate by comparing the RSS of a directional and
non-directional antenna.

θ1 = sin−1(
λ ∗ (∆ϕ− ϕc)

2 ∗ pi ∗ l
) (2)

where θ1 is the rough angle estimate, λ is the wavelength
of WiFi, l is the distance between antennas, and ∆ϕ is the
measured phase difference across antennas minus a con-
stant ϕc, which we will experimentally measure, to account
for different antenna lengths.

minθ2=−5◦:5◦{|
RSSd,u

RSSo,u
−Rx(θ1 + θ2)|}

θf,u = θ1 + θ2,min

Where θf,u is our final angle estimate for each sample
u, RSSd is our directional antenna’s RSS, RSSo is the om-
nidirectional antenna’s RSS, and Rx(θ) is a pre-measured
transfer function between the of the actual radiation pat-
tern comparison between the two antennas. This function
will essentially search the nearby angles from θ1 to see
which angle most closely matches the radiation pattern we
observe. This may output multiple angles due to the sym-
metry of antenna radiation patterns, but this is accounted
for in our next aggregation step.

Φi = minθf,u{
u=U∑
u=1

tan2−1(
yi − yu
xi − xu

) + Φu − θf,u} (3)

Where Phii is the sum angle error, tan2 is a tangent
function that will give a full 2π output, and Φu is the mea-
sured user orientation.

We aggregate both measurements together via calcu-
lated z-scores with σ’s derived from our unit tests and
choose the point (xi, yi) with the minimum zi as our es-
timated device location.

zi =
Φi

σθ
+

di
σd

(4)

6.4 Self-Localization + AR Visualization

Our system needs to know its own location (the loca-
tion of its antennas) at all times, in order to implement
the aforementioned device mapping algorithms. It is also
very sensitive to drift, since otherwise the accuracy of our
measurements will deteriorate over time (i.e. the measure-
ments taken at the start of a 5-minute scan vs at the end
of the 5 minutes). We will use a mobile phone’s augmented
reality stack (ARKit) on top of which we will develop our
frontend application. The ARKit stack includes a fairly
well-calibrated camera model as well as the ability to do
loop-closure by matching against earlier scans, so it is un-
likely to drift significantly while walking around a room.
Since we can get the device’s location and orientation from
the AR app, we will stream this data back to our server
to be fused together (by matching timestamps) with the
measurements taken using the Wi-Fi frontend.

Once the scan has been taken and we have a confident
measurement as to the location of a given Wi-Fi device, we
will visualize it in the same AR interface. This will be done
by showing an overlay on the user’s phone, in the form of
a grid at the floor-level. For locations where devices are
detected, we will show a 3D box around the device. Look-
ing directly at the 3D box will pop up a textual display of
some info about the device (MAC address, manufacturer if
known, datarate, etc.). We will also have a list of devices

18-500 Design Review - WiSpider Page 6 of 8

and MAC addresses shown on a separate floating panel in
the AR world, from which the user can filter out known-
trusted devices (like their own phones and laptops).

7 TEST & VALIDATION

We will conduct a unit test on individual sub-systems
to check if they meet the design requirements, followed by
an integration test of the use-case requirements. We will
use several IoT devices specified in Table 2, along with our
personal devices to test these requirements. Specifically,
the tests will be done for non-moving devices that use 2.4
GHz, and will check if they meet use-case requirements and
design requirements specified in Sections 2 and 4.

7.1 Unit-Tests for Device Sniffing

The first test will be done with a single known device,
and detecting whether our device can detect that device
with the mechanism explained in section 6.1. Then, we
will put several devices - phones, tablets, smart cameras,
smart plugs, smart lights - in the same network and deter-
mine if WiSpider can detect all of them. Then, we will put
these devices under two different access points and test if
WiSpider can detect all of them.

7.2 Unit-Tests for Device Pinging

First unit test will consist of pinging a single known
device, and seeing whether we are successfully able to get
a response using the Polite WiFi mechanism. Then, we
will have it connected to a known access point, and use
the method explained in section 6.2 to consistently get re-
sponse from pings for 2 minutes without the device going
to sleep. Then, we will test it on 5 devices on a single ac-
cess point, and test if the devices continuously respond to
the pings. Lastly, we will test the devices on two different
access points on whether they consistently respond to the
pings.

7.3 Unit-Tests for ToF

We need to test for ToF, as small inaccuracies in ToF
measurement can lead to large error in localization. We do
this by collecting ToF against one device at known loca-
tion. While SIFS is different across devices and therefore
is unknown, we can figure it out by having the device and
WiSpider right next to each other, with distance of 0m.
With the SIFS figured out, we will move the known de-
vice with a constant velocity, and compare the measured
time against the expected time. Once we verify that the
measurements are accurate, we will test it with multiple
devices.

7.4 Unit-Tests for Localization & AR

To unit-test our localization performance, we will set up
a test AR app which datalogs the user’s position. We will

then follow a known track (measured using a measuring-
tape)

follow known track, check deviation of measurements
from track. place AR objects at known locations relative
to origin, visually verify that they match the location

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in a Gantt chart in Fig. 4. Most
of the parts in the first half are individual and therefore
parallelizable. This is intended to make sure that we’re
able to test each parts, which we allocate a week for. After
a week of testing the initial version on a laptop, we allocate
the latter half to integrating the individual parts into a full
system, and a week of testing those. We allocate a week of
slack, and also reserve spring break as empty, so that team
members who feel ahead or on schedule can take a break
accordingly, and those who are behind can use the break
to catch up.

8.2 Team Member Responsibilities

Thomas will be in charge of the signal processing and lo-
calization algorithm; specifically, he will deal with tracking
and filtering algorithm, multipath and noise handling, and
device localization using the ToF and RSSI data collected.
Ethan will be in charge of the software side, dealing with
packet sniffing, device detection and identification, mea-
surement using PicoScenes, and software pipeline during
integration. Anish will be in charge of hardware, sensing,
AR localization, and visualization - he will work with an-
tenna and sensing, as well as the AR visualization with
which the user will interact and the localization in said
AR.

8.3 Bill of Materials and Budget

Our Bill of Materials for WiSpider is as listed in Table 1.
This includes the WiFi network card and antenna used for
sniffing and injecting packets, ESP32 to accurately measure
ToF, and the associated cables and connectors. We expect
the end-user would already own a mobile phone and a lap-
top, which they can run our software on (hence we do not
include these in the system cost). The total cost for WiSpi-
der is $118.28, which is well within our $150 target.

We also have a second bill-of-materials for an IoT
testbed, listed in Table 2. Our testbed includes a router and
several devices (both cameras and benign IoT devices such
as plugs and lights) which we will use to test our system’s
detection and localization capabilities. Our testbed comes
to a cost of $234.89, which is reasonable given how many
distinct devices we are testing (including hidden surveil-
lance cameras).

Our total cost comes to $353.17 which is well within our
$600 cap, giving us enough buffer for unexpected additions,

18-500 Design Review - WiSpider Page 7 of 8

Table 1: Bill of materials for WiSpider

Description Model # Manufacturer Quantity Cost @ Total
Intel AX200 Wi-Fi card AX200 Intel 1 $31.81 $31.81
Antenna Coax Extender 5m RP-SMA 2-pack Bingfu 1 $8.99 $8.99
ESP32 Microcontroller ESP32-S2 Saola 1R Espressif 1 $14.50 $14.50
Micro-USB Cable Micro-USB to USB-A Generic 1 $3.00 $3.00
2.4 GHz Directional Antenna High Gain Yagi TECHTOO 2 $29.99 $59.98
Phone Varies Varies 1 Owned by User $0.00
Laptop Varies Varies 1 Owned by User $0.00

$118.28

Table 2: Bill of materials for IoT testbed

Description Model # Manufacturer Quantity Cost @ Total
WiFi Router Archer A54 TP-Link 1 $34.99 $34.99
Indoor Security Camera IPC-TA22CP-G IMOU 1 $29.99 $29.99
Security Camera Speed 23T WGV 1 $24.99 $24.99
Spy Camera B0837S522C ALPHA TECH 1 $49.99 $49.99
Spy Camera B0B8NHZ2XJ HDCOO 1 $35.96 $35.96
Smart plug B5081 Govee 1 $28.99 $28.99
Smart light KL110 TP-Link 1 $9.99 $9.99
Motion Sensor Switch MFA05 Lesim 1 $19.99 $19.99

$234.89

mechanical parts/3D printing, and spare parts in case we
damage anything while testing.

8.4 Risk Mitigation Plans

We mitigate our risks by thoroughly unit testing indi-
vidual components before integration, and following it with
an integration test. Additionally, we allocate enough time
and slack in our schedule to have a buffer in case something
gets delayed.

9 RELATED WORK

Polite WiFi[1] is a behavior in which a WiFi device will
respond to any frame with an ACK, if the destination ad-
dress matches its own MAC address. This can create many
opportunities as well as threats; for instance, while it can
be used to make WiFi sensing more convenient, one can
also use this behavior to identify and localize many devices
that they should not be able to, or drain a target device’s
battery by forcing it to continuously acknowledge the pings.

Wi-Peep[2] is one such example of how this behavior
might be used maliciously. Using off-the-shelf WiFi mod-
ules and a cheap drone, they were able to detect devices
on a network they’re not connected to, measure ToF using
Polite WiFi behavior, and localize devices from outside a
building.

Lumos[8] is a similar work aimed at identifying and lo-
cating hidden devices with their phone. Lumos differs in
the approach they take, in that they fingerprint the devices

with a machine learning approach, and use RSSI and VIO
for localization.

PicoScenes[6] is an OSS framework for WiFi CSI and
metadata collection. It supports CSI measurement from
commercial off-the-shelf NICs and SDRs, while also allow-
ing for packet injection. It also is possible to use MATLAB
and python with its CSI format, as well as creating plugins.

The Intel Open Wi-Fi RTT Dataset[5] is an open-source
dataset of time-of-flight Wi-Fi measurements between var-
ious client devices and access-points in an office environ-
ment. This dataset has been used to develop localization
algorithms based on Wi-Fi measurements, however we do
note that the dataset was captured using an API for co-
operative Wi-Fi localization (the access points support a
dedicated method of getting time-of-flight measurements,
as opposed to the non-cooperative approach we intend to
take in our work).

10 SUMMARY

WiSpider is a platform that detects and localizes hid-
den wireless devices in a non-cooperative environment. Us-
ing the device, the user will be able to easily locate where
hidden devices are, by looking at the AR interface. Addi-
tionally, the device will be easy to carry around and low-
cost. Upcoming challenges include accurately capturing
ToF data, accurately localizing devices with collected data,
and integrating all the parts together.

18-500 Design Review - WiSpider Page 8 of 8

References

[1] Ali Abedi and Omid Abari. “WiFi Says ”Hi!” Back
to Strangers!” In: Proceedings of the 19th ACM Work-
shop on Hot Topics in Networks. HotNets ’20. Virtual
Event, USA: Association for Computing Machinery,
2020, 132–138. isbn: 9781450381451. doi: 10.1145/
3422604.3425951. url: https://doi.org/10.1145/
3422604.3425951.

[2] Ali Abedi and Deepak Vasisht. “Non-Cooperative Wi-
Fi Localization amp; Its Privacy Implications”. In:
Proceedings of the 28th Annual International Confer-
ence on Mobile Computing And Networking. MobiCom
’22. Sydney, NSW, Australia: Association for Comput-
ing Machinery, 2022, 570–582. isbn: 9781450391818.
doi: 10.1145/3495243.3560530. url: https://doi.
org/10.1145/3495243.3560530.

[3] Jacob Arellano. “Bluetooth vs. Wi-Fi for IoT: Which
is Better?” In: (July 9, 2019). url: https://www.
verytechnology.com/iot- insights/bluetooth-

vs-wi-fi-for-iot-which-is-better.

[4] Brick House Security. “Concealable wand detects hid-
den RF and wireless signals”. In: (2019 [Online]). url:
https://www.brickhousesecurity.com/counter-

surveillance/rf-wand/.

[5] Nir Dvorecki et al. Intel Open Wi-Fi RTT Dataset.
2020. doi: 10.21227/h5c2-5439. url: https://dx.
doi.org/10.21227/h5c2-5439.

[6] Zhiping Jiang et al. “Eliminating the Barriers: Demys-
tify Wi-Fi Baseband Design And Introduce PicoScenes
Wi-Fi Sensing Platform”. In: CoRR abs/2010.10233
(2020). arXiv: 2010.10233. url: https://arxiv.
org/abs/2010.10233.

[7] Philippe Biondi. “Scapy”. In: (2008). url: https://
scapy.net/.

[8] Rahul Anand Sharma et al. “Lumos: Identifying and
Localizing Diverse Hidden IoT Devices in an Unfamil-
iar Environment”. In: 31st USENIX Security Sympo-
sium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 1095–1112. isbn: 978-
1-939133-31-1. url: https : / / www . usenix . org /

conference / usenixsecurity22 / presentation /

sharma-rahul.

18-500 Design Review - WiSpider Page 9 of 8

F
ig
u
re

4
:
G
a
n
tt

C
h
a
rt

