
S23 18500 Team C2:
WiSpider
Presenter: Anish Singhani
Group: Ethan Oh, Anish Singhani, Thomas Horton King

Application / Use Case
● Hidden wireless devices are infringing privacy

○ Cameras, microphones, sensors, etc.

● We want to build a product to detect and locate

these hidden Wi-Fi devices indoors

● Detect devices even if user is not connected to the

same Wi-Fi network

Use-Case Requirements
Requirement Metric Reason

Cost < $150 Accessible to a variety of end-users

Size/Weight < 10lbs, 1ft^3 Carryable, easy to transport and use

Detection Rate > 90% Catch frequently-transmitting devices

Scan Time < 5 min Relatively quick for end-user to scan area

Lateral Accuracy < 1m Enough accuracy that user can then search
manually within the detection zone

Detection Range > 10m Detect hidden devices in a large space

Detection Resolution < 0.5m Distinguish devices located near each other

Solution Approach
● Building a product with which a user can walk around a room and it will

detect Wi-Fi devices and build a map of their locations

○ Limited to indoors, tracking non-moving devices

● Show the locations of detected devices to the end-user in an

Augmented Reality visualization

○ Using the same cameras for self-localization and AR, hence there is

no offset between visualization and tracking origin

○ User can then find devices manually within the ~1m detection zone

System Design - Components
● Device detection

○ Passively-sniffing Wi-Fi packets to find devices

● Device pinging

○ Sending 802.11 pings to devices to measure ToF/RSSI/CSI

● Device location tracking

○ Grid histogram filter to estimate location of devices from ToF/RSSI/CSI

● Self-localization + AR visualization

○ Show user the relative location of detected devices

Design - Physical Layer
● AX200 WiFi Chip for receiving

○ PicoScenes to recover ToF, RSSI, CSI
● Directional + omnidirectional antennas
● Raspberry Pi for control and data uplink

○ Interfaces with AX200 WiFi card
● Phone for Localization and AR Visualization

AX200 RasPi CM4 AWS Cloud
Processing Phone (ARKit)

~100 packet/s 10 updates/s

Design - Algorithmic Layer

Sniffed Packets Ping with fake
MAC headers MLE Positioning

Heuristic
Fingerprinting

MAC information,
packet frequency

MAC addresses

Overlay Devices
in ARKit

Lightweight
Response Timing

Signals / Localization System

Incoming WiFi
Packets

Extract ToF
from RasPi
Timestamp

Average ToF
into per-device

SIFS
Aggregate over
1000s of packets

Match ToFs to
probability
distribution

(from Intel RTT)

Compare
relative RSS

cross antennas

Remove
tail-end NLoS

samples

Estimate
probability ‘arc’

per sample

Grid Sum
Maximum
Likelihood

Implementation Plan
● Wireless data collection: AX200 Wi-Fi card + RasPi CM4 + PicoScenes

○ Off-the-shelf hardware / open-source software

○ Custom mechanical assembly of antenna array

● Wireless packet construction: Python w/ Scapy library
○ Custom code to craft packets + Linux network libraries to transmit them

● Localization/filtering algorithms: MATLAB scripts
○ Custom implementation of algorithms to detect and track devices

● Self-Localization + AR Visualization: ARKit on mobile phone
○ Will develop an interface using ARKit/WebXR to handle visualization

Testing Procedure
● De-risking: Manually sanity-testing

each component before integration

○ Allows us to find workarounds to

things that don’t work as expected

● Set up testbed in a room, try various

different antenna movement patterns

○ Zig-zag through the room

○ Spiraling out from center of room

○ Rotating in-place at different points

Integration Testing
● Set up testbed with a variety of Wi-Fi devices

○ Different channels and data rates to test detection accuracy and range

○ Different kinds of devices: cameras, microphones, sensors, etc.

● Set an origin point, measure ground-truth location of each device

● Capture a variety of test traces (3min, 5min, 10min long traces)

○ Verify positional accuracy against ground-truth

○ Verify percentage of devices detected (and time taken to detect)

● Visually test that AR locations match the physical coordinates

Project Management

Anish - Antenna & sensing
bringup, AR localization &
visualization

Thomas - Tracking/filtering
algorithm, Multipath/noise
handling, Device localization

Ethan - Software bringup,
MAC spoofing, Device
metadata collection

