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Abstract—Sunlight often serves as an annoyance to people by
obstructing their vision, and adversely affecting their visual
comfort, eye health, and productivity. However, completely
eliminating natural light has been shown to negatively impact a
person’s mood and mental health. To combat this issue, BLINDS
will eliminate the manual process of turning blinds while
maintaining optimal room’s lighting. The system will
automatically adjust blinds to appropriate height if it detects
sunlight hitting a person in the room.

Index Terms—LIDAR, Smart Blinds, Computer Vision,
OpenCV, Arduino, Photoresistor, Suncalc, GeoPy

I. INTRODUCTION
PREVIOUS research shows that direct exposure to sunlight

affects people negatively in a multitude of ways, including
obstructing their vision and negatively impacting their
eyesight [1]. Overexposure to the sun’s harmful UV rays can
also cause a variety of eye diseases [2]. However, completely
removing sunlight is not an optimal solution, because
eliminating natural light can prove detrimental to a person’s
mood, mental health, and productivity [3]. In other words, to
maximize quality of life, one must continuously adjust a
room’s blinds in a way that minimizes the amount of light that
hits one’s face, but maximizes the amount of natural light in
the room. However, continuously adjusting blinds can disrupt
concentration and in turn, decrease one’s productivity. To
combat this, we aim to create blinds, for people who spend a
lot of time at home, that will adjust automatically in a way that
prevents light from hitting a person’s face, but lets in maximal
sunlight. This type of product is particularly relevant, as the
number of people who work remotely and spend copious
amounts of time at home has skyrocketed since the COVID-19
pandemic [4].
Although other motorized blinds exist, most require the use

of a remote control that the user has to press to adjust the
blinds. However, pressing a remote control also disrupts
concentration, which conflicts with its original purpose of
providing convenience and allowing the user to focus on other
tasks. Other competing technologies include blinds that move
according to the time the sun rises and sets. However, this type
of system fails to take into account the position of the user in
the room, and whether the light hits them at that location. Our
proposed solution seeks to increase a person’s quality of life
by balancing the amount of sunlight they are exposed to, while
solving the existing issues of alternate solutions.

II. USE-CASE REQUIREMENTS

We want our system to be beneficial enough so that a user
may be able to focus on the task at hand without being
hindered by sunlight. In order to quantify this, our group ran a
short survey on a group of college students to ask what the
minimum accuracy rate they would be able to tolerate for
purchasing a system like this would be. The average came out
to 90%. Given this answer, we aim to have our overall system
be able to block sunlight from a person’s face, by adjusting the
blinds so that the light projected from the window into the
room will only reach a person’s face 90% of the time.
On the other hand, we do not want our blinds to be a source

of distraction either. Many widely used face detection systems
take under 1 second to detect a face, which is quite fast [5].
However, a constantly moving blinds system may be more of a
nuisance than a source of convenience. It may also potentially
frighten users and create an unpleasant experience. In the
same survey as mentioned above, we asked participants
whether they would prefer a constantly moving blinds system,
or one that would wait for a set amount of time for a user to
stop moving before adjusting the blinds. Additionally, if a
participant answered that they preferred the system to wait, we
asked how long of a period the system should standby before
making the adjustment. The results showed that the
participants would be startled if the blinds were constantly
moving, and on average preferred a wait time of 10 seconds.
Therefore, we want the feedback latency, which is the time it
will take for our blinds to react after a user’s movement, to be
around 10 seconds.
We also want our physical latency (the time it takes for the

blinds to physically adjust upwards or downwards) to be on
par with existing motorized blinds. Popular motorized blinds
on the market take around 60 seconds to fully roll upwards or
downwards [6]. Therefore, our motorized blinds system
should have at most a 60 second physical latency in order to
compete with similar existing products.
Finally, we want to be able to achieve our accuracy goal

within a reasonable workspace: the average bedroom size in
the US, which is 132 ft2 [7]. This means we want to be able to
block sunlight from a user’s face within our accuracy goal in a
132 ft2 space.
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1 Full physical blinds system

Our full system consists of 3 primary interconnected
systems, each with separate subsystems:

1. Sensor System
a. LIDAR camera
b. Light Detection Circuit

2. Processing Unit (RPi)
a. User Position Algorithm
b. Sun Calculation API
c. Light Area of Effect Algorithm (LAOE)

3. Motor Control
The sensor system (1) consists of two “sensors”, each for

different purposes. The first sensor is the Intel RealSense
Depth Camera D455. This integrated depth and camera system
will provide information to determine the 3D coordinates of
where a person is located within the room in question. Another
sensor is the sunlight detection circuit, which uses
photoresistors to determine if the weather is sunny enough to
warrant adjusting the blinds.
The Processing Unit, the RPi, (2) will be where the

necessary calculations are done on the software side. One of
the software systems is a user position calculation algorithm.
This employs OpenCV and depth information from the
LIDAR to calculate the 3D coordinates of a user in the room
space. Another component of the software system is the sun
calculation API. This function will use the location of the
window (latitude, longitude) in addition to the time of day to
find the azimuth and altitude of the sun relative to the blinds
system. Finally, the last algorithm we will be writing is the
LAOE algorithm. Using the measurements of the window, the
user position, and the sun data, this algorithm will determine
an adjustment so that sunlight is not in the user’s face, as well
as maximizing the amount of sunlight entering the room.
The motor control, or the physical blinds system (3), will

consist of a few working parts. This consists of an Arduino
Uno, which takes in adjustments as inputs, and the motor
system attached to the controls of the blind, which will receive
the adjustments from the Arduino. The motor system will be
attached through a 3-D printed gear that will hold tightly onto

the beads of the blinds’ cord lock.
The relationship between these parts and a greater

breakdown of each subsystem are illustrated and can be better
seen in Appendix C at the end of this document.
One change we have made to this system since the design

report is the use of the magnetometer. We have opted to
remove that from the system and instead use a one-time input
at the beginning of installing the system at a new location.

IV. DESIGN REQUIREMENTS

We want our sensor subsystem to contain parts that are at
least 90% accurate, to match with our overall accuracy
requirements. To limit the impact of polling rate on feedback
latency, we want our sensor system to poll for real-world
information as much as possible. However, because feedback
latency is mainly limited by processing unit limitations, which
will take at least a second, it’s best to wait for the processing
unit to perform its calculations before polling again. So we
want our system to poll for information at least once per
second.
As for the photoresistor circuit in this system, the threshold

that determines whether light is considered sunlight, which
determines whether the blinds move or not, will be determined
in the future with thorough testing with real sunlight. Because
this threshold is dependent on a variety of factors, including
the type of photoresistor used, it has not yet been determined.

Our motor control system needs to be able to fully
open/close the blinds in 60 seconds. Because the standard
window height is 60 inches, the motors in our system need to
be able to rotate at a fast enough speed to allow the blinds to
move at a rate of 1 inch per second. The motor system must
also be able to allow for precise position control by increments
of 1 cm with a margin of 0.5cm. We currently believe that a 1
cm precision is precise enough to cut off light at the optimal
level, but this is subject to change, as it depends on the results
of the previously mentioned survey involving user satisfaction
in maximizing the sunlight in the room.
To meet our overall accuracy requirement of 90% accuracy

in a 132 ft^2 room, we want our processing unit to correctly
identify whether the user’s position is in the area of direct
sunlight identified by the LAOE algorithm 90% of the time.
Although we know that the total accuracy a typical user would
want is 90%, we do not know how much error is allowed
within each subsystem to achieve this overall error of 90%.
We do know that if a single subsystem is less than 90%
accurate then the overall accuracy of our integrated system
can’t reach 90%. Thus we are currently giving each subsystem
a hard 90% accuracy minimum.
To be able to capture more real-world data and to increase

the reaction speed to the user’s movements, we also want our
processing and calculations to take less than 1 second; this
will help us more closely reach a feedback latency of 10
seconds. And, once again, although the requirements for
minimizing sunlight on the user’s face for this are fairly
defined, more requirements will be made later on after the
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survey about the blinds’ position to maximize sunlight in the
room has been conducted.

V. DESIGN TRADE STUDIES

A. User Position Extraction
There were other methods we were considering using to

calculate the position of the user in the room. One such
method was using multiple cameras around the room, and
using triangulation to identify the position of the user in the
room. This method would allow us to forgo looking for a
LIDAR device, and would be fairly accurate. However, using
multiple cameras complicates the design, as the particular
angle and position of which the cameras are put up have to be
taken into account. It would also provide inconvenience to the
user when setting up our BLINDS. To slightly simplify the
design, as well as provide more convenience to the user, we
decided to use a LIDAR and camera integrated device.
Another similar method that was under consideration was
using Bluetooth beacons, but that requires the user to hold
onto a device to communicate with, which is also inconvenient
for the user, which contradicts our goal to maximize
convenience for the user.
Another design choice we made was the choice of using

Haar cascades over other forms of facial detection. Although
Haar cascades tend to be slightly less accurate compared to
other methods, it is also faster than other methods. This is also
particularly pertinent because its lower latency makes it not
only run well on a microcontroller, but helps us achieve our
latency requirements. Yet another design choice we made was
using a Fast Super-Resolution Convolutional Neural Network
(FSRCNN) model to increase the resolution of the camera
image, over other models. We decided to use a FSRCNN
model over an EDSR model because although EDSR’s gives
the best results in terms of accuracy, it is slower [10]. Because
we want our BLINDS to react in real-time, it is better to use a
model like FSRCNN.

B. Sun Position Calculation
Initially, we considered a few different options for

calculating the data on the sun. One was the use of a sun
sensor or a sundial to determine where the sun is in respect to
the window. The benefit of these physical forms of data
measurement is that it can help us determine whether or not
sunlight is being blocked from the window in some way, such
as by weather or by objects such as trees or buildings. For
instance, a lighter shadow or lack of shadow for the sundial
may indicate that it is cloudy. However, there are quite a few
drawbacks. The sun sensor would be an expensive option for
finding information that could be calculated with just location
and time of day. There would also be the issue of where
exactly such a device would be placed, as putting it outside

would make it separate from the entire blinds system. Our
team also considered the use of a sundial, but methods of
retrieving data and data accuracy would also be quite messy.
We needed something that would be as accurate as possible, so
we decided to simply calculate the location of the sun using
Python modules, which would also only require the time, date
and location.

C. Sensor System
To support the software solution we chose in the previous

section, the sensors we need are a photoresistor, a Depth
Camera, and a Microcontroller with analog pins. For our
photoresistor, we chose the Elagoo photoresistor, as this is a
component that we already own and will work sufficiently for
our purposes. Finally, we chose the Arduino Uno for our
microcontroller because this was also a device that we already
had our hands on, and a component we have confidence and
experience with in the past.
For our depth camera, we were originally contemplating

between the Astra Depth Camera from Orbbec 3D, Intel
RealSense Depth Camera L515, and RealSense Depth Camera
D455. Our original plan was to use the Intel RealSense Depth
Camera L515 because the CMU ECE inventory conveniently
already owned one, and its range of up to 10 meters would fit
our design requirements. Unfortunately, after some initial
testing, we learned that the L515’s effective range is reduced
down to 1.5 meters in sunlight, which is a huge problem given
the nature of our project. We then considered the Astra Depth
Camera from Orbbec 3D, as it was relatively cheap and had a
range up to 8 meters. However, we decided against it because
there were no reviews for this depth camera, and therefore we
were not able to confirm if the range was reliable. The Astra
also did not have good documentation which we feel would be
a huge issue. Thus, we settled with the more expensive
camera, the Intel RealSense Depth Camera D455, which has
many reviews affirming its 4.2 meter range even in direct
sunlight and is well-documented enough for us to quickly
learn how to utilize.

D. Motor Control
For our motorized blinds, we were choosing between the

Automatic Window Roller Blinds [11] and the Arduino
Automatic Blinds Opener [12]. The Automatic Window Roller
Blinds is a design plan to make our own custom blinds, where
the stepper motor will directly turn the rollers the blind’s cloth
is attached to. On the other hand, the Arduino Automatic
Blinds Opener is a design which has an external motor with a
gear that hooks onto the beaded string of the shade and
controls the shade through the string. Both designs take 60
seconds to fully unroll/roll up. We decided to go with the
Blinds Opener over the Roller Blinds because the Blinds
Opener seems more versatile as it works with every blind as
long as it has beaded strings. The Blinds Opener also fits our
project better because the motor can sit on the window sill;
this way, we don’t need a long wire from our RPi all the way
to the top of the window, which would have been necessary if
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we were to use the other design.

Figure 1: Sample Output of the Intel Realsense Depth Camera D455

VI. SYSTEM IMPLEMENTATION

A. Sensor System
The sensor subsystem consists of the Intel Realsense Depth

Camera D455, and light detection circuit. The Intel Realsense
Depth Camera D455 provides both a RGB camera feed and
also lidar data at a resolution of 1240px x 720 px at 30fps as
shown below in figure x. The Camera would be connected to
the RPi via a USB-C to USB 3.1 cable. The lidar camera
worked as expected. The sample output of this device can be
seen in Fig. 1.
The other component of the sensor system is the light

detection circuit. The light detection circuit is constructed by
connecting a 10 kΩ resistor in series with a photoresistor to
form a voltage divider. The voltage reading would be
connected to the Arduino Uno analog pin with a wire. The
Arduino Uno would measure the voltage level across the

photoresistor and determine if it’s below the threshold to be
considered direct sunlight. The result would send light
detection results to the RPi serially using PySerial via a USB
connection when the RPi sends a request for the data.
One of the sensors we decided to no longer utilize was the

magnetometer. This was because we realized that it doesn’t
make sense to have a whole sensor for data we will only
collect once. We determined that making the installer
manually enter the window orientation into the BLINDS once
is worth the $5 dollar decrease in the cost of the BLINDS
considering that the installer already has to input the user’s
address anyways.

B. Processing Unit - User Position Extraction
From the sensor system, the processing unit (the RPi)

obtains real-world information. This information includes, but
is not limited to, an image of the user and the room, as well as
data from the LIDAR, which depicts the distance of the
system to objects in the room, as shown in the previous
section.

Using this information, the User Position Extraction
Algorithm is run on the processing unit. Its goal is to obtain
the location of the user’s chin, which will be used in tandem
with the LAOE algorithm to determine if the user is hit by
direct light or not. First, it uses OpenCV’s Haar cascades to
perform face detection on the camera input which it will
obtain using the pyrealsense2 API, to detect the location of the
user’s face. Both the frontal and side profile cascades will be
used, so that we can identify the user’s face in multiple

orientations. We can convert the face detection output to pixels
on the user’s chin from the camera input. Given the pixels of
the user’s chin, we can map this pixel to pixel to the LIDAR
data using the pyrealsense2 API, and from that we can identify
the radial distance the user’s chin is from the system. Then, by
using the number of pixels away the user is from the center of
the image, we can identify the angle of the user to the system.
Using the distance and angle of the user, we can determine the
3-D coordinates of the user, as represented by the coordinates
of their chin.
In our initial design, we wanted to use image processing to

increase image resolution using OpenCV’s Super Resolution
module and TensorFlow’s Fast Super-Resolution
Convolutional Neural Network (FSRCNN) model. However,
this was deemed unnecessary, as upon further testing,
OpenCV’s face detection worked adequately for the distances
described in our use case.
Although the final method to calculate User Position was

consistent with our initial design document, another
calculation method was also attempted. This method
accounted for the non-linearity in the relationship between the
number of pixels away from the center of the camera’s view
and the angle away from the center [15]. However, after the
testing of this method, it was shown that although using this
method decreased error in the x-direction, it increased error in
the y-direction, and this created an averagely larger error
across all directions, so we reverted to the previous method
mentioned above.

C. Processing Unit - LAOE Algorithm
As shown in the full architecture diagram in Appendix C

and described in Section III of this document, the LAOE
algorithm receives data on the user’s position, the sun
(azimuth, altitude, photoresistors), and the window’s
orientation. The user position is found from the algorithm
above, the sun data is found through the python modules
Suncalc.py and Geopy.py and the photoresistor circuit., and
the window orientation is set as a one time input before the
use of the product. We want to check first whether or not the
weather is affecting the sunlight. This is done through the data
sent by the photoresistor sensor circuit. If there is no direct
sunlight, we will keep the windows open/open them fully as
the sunlight will not bother anyone. Otherwise, in order to find
the adjustment that needs to be made to the blinds, our
algorithm will be divided into a few functions. First, it will
figure out if the user’s position lies within the “area of effect”
of the sun. This area, or more accurately, volume, is a
trapezoidal prism of the projection of the sun from the window
into the room. The idea is rooted in the fact that light travels in
straight rays from the sun [8]. The rays will hit the corners of
the window and travel into the room, at certain angles of
altitude and azimuth. The projection of light traversing into
the room at each of the four corners is what forms this
box-shaped prism. It is better visualized and illustrated in Fig
2. In order to do this, there are three helper functions.
The first function is the getProjectionCoords() function,
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which maps the four coordinates of the window into the
projection of the same four coordinates onto the floor by using
the azimuth and altitude of the sun as the directions of the rays
as they enter the room. Because the sun is very far away from
the window in question, we can estimate all rays entering the
room to have the same altitude and azimuth. The function will
return the four coordinates of the corners of the light cast by
the window. The coordinates are represented with the x-value
representing the distance to the left or right of the window, the
y-value representing the distance from the wall where the
window is located, and the z-value being the physical height
within the room. The origin is set at the floor under the
window, with x value at the middle of the window.
The second function, intersect, determines whether or not

there is an intersection between the user and the LAOE. Using
the eight corners we have found so far (four from the corners
of the window + four from the corners of light projected onto
the floor), we now have the eight vertices of the trapezoidal
prism formed from the light. We can simplify the intersection
to a calculation of whether or not the point lies between the
two lines existing in each plane (XY plane and YZ plane). The
equations for the four lines (two for each plane) can be found
from the two coordinate points we have for each line (the
previously calculated eight total points). This is illustrated in
Fig. 3 and 4, and the intersection is calculated with a simple
inequality intersection calculation.

Figure 2: Visualization of Light Area of Effect

Figure 3: View from the YZ plane of LAOE

Figure 4: View from XY plane of LAOE

If we did not find an intersection, we can open the blinds
fully so that light is maximized. However, if we did find an
intersection, we must adjust the blinds. The last function,
blindsChange(), calculates the adjustment that must be made
in order to prevent light from hitting the user’s face. To do
this, our algorithm will backwards trace a ray hitting a target
point (the bottom of the person’s face) back until it reaches the
wall where the window is located. This ray will use the same
altitude and azimuth for its direction. This will allow us to
calculate what the z-value of the bottom of the blinds should
be (bottom of the blinds = top of the window), and adjust the
blinds accordingly to that position. The result is sent to the
motor control.
There were a few bugs throughout the process of writing

this code. Some prominent issues were flipped intersections
and leniency for intersections. The flipped intersections
happened as the sun moved from one side of the window to
the other, and to mitigate this, we simply checked for whether
or not a person’s coordinates were between the maximum and
minimum of the inequalities. Additionally, we also wanted
greater leniency for the edge cases of the intersection function,
as it is better to close the blinds in the case that a person is on
the edge rather than not close the blinds, and we set an
leniency of 1 cm within the bounds of the edges of the LAOE.

D. Motor Control
This subsystem has 3 components: Usongshine Nema 17

Stepper Motor 42BYGH, HiLetgo 5pcs A4988 Stepstick
Stepper Motor Driver Module, and Arduino Uno Rev3. The
process begins with the RPi sending a request to set the Blind
to a certain position via a USB-to-USB connection serially.
The Arduino Uno would then send the series of stepper motor
control signals (Step size, direction, enable, etc) to the Stepper
Motor Driver Module which interfaces with the Stepper Motor
itself to rotate the number of rotations in units of 1/16 step to
achieve the requested position. The motor would be connected
to a gear that hooks onto the beads on the blinds string to
control the blinds. This whole architecture is shown in figure 5
on page 6 and the physical system is labeled in figure 2 on
page 2.
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Figure 5: Motor Control System Architecture

VII. TEST, VERIFICATION AND VALIDATION

A. Results for Sensor System
We tested the Intel RealSense Depth Camera D455 by

having a person stand at a wide variety of angles (the whole
FOV of the camera) and distances (from 0.5m - 6m) in front of
the camera. We visually confirmed that the person is portrayed
at the right spot on the camera and measured the actual
distance between the person and the camera. The D455
datasheet stated to expect ~5% and our test matched that.
We also tested the light detection circuit by moving it

between the circuit between areas of direct sunlight and areas
of ambient light or shadow. After some number of iterations to
find the best threshold value, our circuit had an 100%
accuracy in determining whether it’s exposed to direct
sunlight.

B. Results for User Position Extraction
To test the User Position Extraction, we made a person

stand at set distances (1 meter, 2 meters, and 3 meters) away
from the system, and we tested each distance both at an angle
of 30 degrees to the right of the camera, and 30 degrees to the
left of the camera. Then, we ran our User Position Extraction
algorithm and compared its outputs to the actual measured
angle and distances of the user. We want to achieve two
different types of goals, and thus will have two different
quantitative targets, when testing: Maximizing sunlight in the
room, and minimizing the sunlight that hits the user’s face.
Although we initially tested these distances at an angle of zero
degrees (at the center of the camera), we decided not to as this
skewed our data a lot. This is because we wanted to use
percent error as our metric, since our system has to be more
precise for people closer to the window who are more likely to
be hit by the sun. However, this meant that the x-distance error
would be massive for degrees near zero, even if the actual
difference was only a couple of decimeters. Other measures of
error were looked into to address this issue, but none fit our
needs as accurately as percent error, so we decided to just test
at certain angles.
For minimizing sunlight, we wanted to meet our overall

accuracy requirement of 90% accuracy in a 132 ft2 space; this
accuracy was defined as the percentage of times our system
accurately identifies the user is in the area of the room that
gets hit by direct sunlight, as found by the LAOE algorithm.
To test this 90% accuracy, the User Position Extraction

algorithm was broken down into four, separately tested
components: Determining where the chin of the user is using
OpenCV, using that information to find the radial distance of
the user using LIDAR data, calculating the angle of the user
using pixels to the center of the image, and overall percent
error of our calculated position compared to the actual user
position. For the first one, we defined our accuracy as the
percentage of times that the found location of the chin, given
an image, was at or within 5 cm of the actual chin 90% of the
time, within a 5 cm range, to ensure light does not hit above
the chin. During testing, we were fairly accurate in this aspect
and met our initial accuracy goals, as this was largely
dependent on OpenCV.
The second portion, finding the radial distance of the user

using LIDAR data, is solely determined by how accurate the
LIDAR data is. We aimed for this distance to be within ~5%
of the actual distance; this is more heavily discussed in the
sensor system section. For the third portion, we wanted the
angle of the user to be as precise as possible, down to the
pixel, as this can heavily affect whether the user is determined
to be standing in the light or not, and affect our accuracy
goals. Using the Depth Camera D455’s maximum resolution
and angle of view, we calculated each pixel to be
approximately 0.703 degrees horizontally and 0.090 degrees
vertically, so we initially wanted our calculated angle to be
within those angle ranges [13]. Although we later realized that
at extreme degrees, our system is not as accurate as the
relationship between angle and pixel are not linearly related,
other calculations attempting to address this issue surprisingly
increased our error, so we decided to stick with our initial
linear interpretation that we came up with. Overall, we met
our goal, using our linear assumption. For the last portion, the
overall accuracy, we had 87% for the x-direction, 85% for
y-direction, and 94% for the z-direction, with an overall
average of all the directions at 88.7%. Although this did not
meet our goal of 90%, the difference is fairly negligible, and
it’s likely our system still functions fairly well.

C. Results for LAOE Algorithm
In order to test the correctness of the LAOE program, we

tested the coordinate values of the rectangular projection from
the sun through the window and onto the floor. We collected
data points at varying times of the day with sunlight, from 10
am to 6 pm. These data points are the coordinates points of the
rectangular prism projected onto the ground, with four points
per data point representing the top left, top right, bottom left,
and bottom right corners of the rectangle. There were a total of
32 data points collected, varying in time, location, and corner
of the projection.

The accuracy was measured as relative accuracy, and the
results over 32 data points had 96.93% accuracy. This met and
exceeded our requirement of 90% accuracy.

Some possible limiting factors of this accuracy include
human error in measurements, issues with the window
orientation, and small differences in the altitude and azimuth
of a specific location. The greatest issue with window
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orientation was that our measurement device was not giving a
consistent number. It gave values within a 20 degree range,
which is a huge discrepancy, and it led us to results that were
very different from the expected value. However, once we had
gotten a consistently correct orientation measurement, the
results were very close to the expected values, with within
10% error.

D. Results for Motor Control
There are two factors we care about for the motor: physical

latency and consistency. Physical latency is the duration it
takes the motor to fully unroll or to fully roll back up. Our
user requirements stated that we needed the physical latency to
be under 60 seconds. We tested this by making the shade to
fully unroll and record that value then repeat this process
while the shade rolls back up. After repeating this process a
few times and adjusting the motor speed we got our physical
latency to 58.6s. Increase in motor speed causes
inconsistencies where the beads will occasionally pop out of
the gear causing the motor to not move the intended distance
by a few milli-metter. This issue could be combated by placing
the motor in a specific orientation in respect to the beaded
string to reduce motor jitter's effect on blind consistency. With
optimal orientation, the consistency of the motor is ~98%.

E. Results for Overall Integrated System
Overall testing for our project entails testing whether or not

a change is made and whether or not that change is correct.
We conducted tests including variations and edge cases such
as when a person is on the edge of the LAOE, not within the
LAOE, and around the inside of the LAOE. Overall, we got a
result of 90% success, where success is denoted by the
existence of a change and the correct change. This is exactly
the value in our system requirements. Some limitations
include limitations of the subsystems, which is further
explained in their individual subsections.

VIII. PROJECT MANAGEMENT

A. Schedule
Our project is on schedule the whole project, and made no

adjustments. The Gantt chart for our schedule is shown below
in Appendix B.

B. Team Member Responsibilities
All the group members have rough experience in all the

subsystems of the project, so we will all have a secondary task
of helping each other with subtasks. However to utilize the
specializations of each group member, the project work has
been divided into two main parts: The hardware component,
which involves working with the Arduino and motors, and the
software component, which largely consists of implementing
the LAOE and User Position Extraction algorithm on the
Raspberry Pi. The work has been split up such that Jeff is in
charge of the hardware portion of the project, and Dianne and

Elizabeth will work closely together on the software
components. All group members will be responsible for
integration of the different components of the project.

C. Bill of Materials and Budget
A breakdown of the materials bought and used can be found

in Appendix A below. The majority of our planned purchases
were bought and used except for the magnetometer. There are
also a bunch of PVC pipes and LED lights that were bought
since we realized we needed them to build a fake window
frame for demo purposes.

D. Risk Management
Our project was a success and was able to stay on schedule

because of the risk mitigation and management plans we
utilized. The risk mitigation plans we employed are rigorous
early research and planning phase, flexible work schedule,
strong communication within the group, and leaving buffers
for the unexpected.
The first risk management plan and arguably the most

impactful risk mitigation factor was our early research and
planning phase. We performed thorough research on all the
possible solution options for the first two weeks after deciding
on the problem we wanted to tackle. This allowed us to make
a realistic schedule (Appendix B) and a good solution design
that was mostly untouched.
Another reason why we think we were able to successfully

avoid major risks was the flexible work schedule and strong
emphasis on team communication within the group. We
recognized early on that having a tight schedule with lots of
deadlines for smaller tasks will only hinder us because we all
have other school commitments we have to address and
breaking down tasks too specifically would only serve as a
limiting factor for our adaptability. We also recognized that the
downside of a looser schedule is that people could end up
cramming their portion last minute and not make it in time.
We offsetted this by maintaining constant communication
between group members to hold each other accountable.
The last risk mitigation plan we had in place was leaving

buffers in case of unforeseen circumstances. This buffer is
primarily in two forms, a time buffer and a monetary buffer.
We recognized that our product could only be tested on sunny
days so we set a 4 week period for integration and testing to
maximize our chance of getting enough sunny days for field
testing. We also set a monetary buffer of about $50 in case we
needed anything that was unexpected during our planning
which we used later to purchase stuff needed for our demo.

IX. ETHICAL ISSUES
Decisions about technology design and engineering can

influence how people communicate, work, travel, and live,
and it is therefore important to consider ethical issues that
pertain to how our product is designed. One such ethical
concern is the existence of bias in the facial detection
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algorithm we use in our product to identify the position of the
user. Because of how data is collected, datasets are weak to
bias, and tend not to be equally representative of every race
and gender. Research shows that for Haar cascades and their
given default datasets (which we used in our project), the most
detectable class of faces is European men [14]. In other words,
our product will have a higher rate of failure for those who
aren’t European men. Although this is a non-negligible issue,
creating our own dataset to train on would likely result in
worse bias, as it is likely we would not be able to collect a
dataset large enough to generalize better than the default
datasets.
One other ethical issue is the security of our device.

Although we initially did not plan to allow remote access to
our device, we found that this made it impossible to set up our
device without a monitor. Each time our device was
disconnected from power, a monitor was required to re-run our
program on the Raspberry Pi. To resolve this issue, we set up
SSH on our Raspberry Pi. Although this increases the attack
vectors for our device, we thought the ease in set-up was well
worth the trade-off. Moreover, the Raspberry Pi is password
protected, so although this places the burden of security on the
user (to pick a good password), the Pi is still fairly secure.
Another issue is that we determine what is the best amount

of sunlight for the user to adjust our blinds. We assumed that
the ideal amount of light would be minimizing light on the
face, but maximizing overall light in the room. Although we
may have satisfied most users, in reality, the best amount of
light in reality is fairly user-dependent. If a user is very
deficient in vitamin D, they may want some sunlight on their
face. On the other extreme, if a user is very sensitive to
sunlight, they may want sunlight blocked from their entire
body. Another case where the user might want the blinds
closed more than they will be automatically adjusted is if they
are doing something private in their home, and want the blinds
completely closed. Our product does not take into account
these situations, and we recommend that future work on our
project involves creating a web application where the user can
override our optimal light algorithm if they so wish.

X. RELATED WORK

Serena Shades by Lutron [9] are the only smart blinds on
the market that have a light optimization feature built into the
blinds. The blinds, over the course of the day, automatically
tilt themselves at an angle that prevents direct sunlight from
entering the house, but allows natural light to fill the room.
The Natural Light Optimization algorithm that Serena Shades
implements utilizes a person’s address and window
orientation, information which has to be manually inputted via
the Lutron app, to calculate the angle the blinds should be
tilted at.
Our project differs from Serena Shades by a few key

factors. For one, when calculating how our blinds should
move in order to optimize light in a room, our project not only
takes in a person's address and window orientation, but it also

takes into account a user’s position within a room. This means
that our BLINDS allows more natural light in a room, by
letting in direct sunlight that does not negatively impact or hit
the user. Additionally, our BLINDS also considers if light is
really coming through the window or not, as a factor of
whether or not an adjustment should be made, while Serena
Shades functions the same regardless even if the weather
doesn’t have sunlight. Our system will only adjust if it detects
the presence of direct sunlight through our light sensing
circuit, thereby expanding on Serena Shades’ Natural Light
Optimization algorithm.

XI. SUMMARY

Our system was able to meet most of the design
specifications. In some cases, such as the LAOE accuracy and
feedback latency, and range of position detection, our project
was able to greatly exceed our goals. The specifications that
fell short were some of the accuracy measurements along
certain axes in user position detection. This was limited in part
to the accuracy of the face detection model.
Overall, this project was an incredible learning experience.

We gained so much knowledge on topics we had not come
across before, such as working with LIDAR, computer vision,
and hands-on project pipeline experience. If future groups
were to take on a project similar to this, we would recommend
keeping track of upcoming sunny days to test data, as well as
making sure the physical system has an easy way to be
transported and displayed.

GLOSSARY OF ACRONYMS

API - Application Programming Interface
LAOE - Light Area Of Effect Algorithm
RPi – Raspberry Pi
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Appendix A: Bill of Materials and Budget

Color Code: Blue - Planned and bought
Green - Planned and not bought
Red- Not Planned and bought
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Appendix B: Gantt Chart of Schedule
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Appendix C: Full Architecture Block Diagram


