
1
18-500 Design Project Report: Team C1, 03/03/2023

B.L.I.N.D.S
Blocking Light IN Domestic Spaces

Jeff Chen, Elizabeth Chuei, Dianne Ge

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Sunlight often serves as an annoyance to people by
obstructing their vision, and adversely affecting their visual
comfort, eye health, and productivity. However, completely
eliminating natural light has been shown to negatively impact a
person’s mood and mental health. To combat this issue, our
project aims to create a system that will eliminate the manual
process of turning blinds, and optimize a room’s lighting. The
system will automatically close certain blinds if it detects sunlight
hitting a person in the room.

Index Terms—LIDAR, Smart Blinds, Computer Vision,
OpenCV, Arduino, Magnetometer, Photoresistor, Suncalc, GeoPy

I. INTRODUCTION

PREVIOUS research shows that direct exposure to sunlight
affects people negatively in a multitude of ways, including
obstructing their vision and negatively impacting their
eyesight [1]. Overexposure to the sun’s harmful UV rays can
also cause a variety of eye diseases [2]. However, completely
removing sunlight is not an optimal solution, because
eliminating natural light can prove detrimental to a person’s
mood, mental health, and productivity [3]. In other words, to
maximize quality of life, one must continuously adjust a
room’s blinds in a way that minimizes the amount of light that
hits one’s face, but maximizes the amount of natural light in
the room. However, continuously adjusting blinds can disrupt
concentration and in turn, decrease one’s productivity. To
combat this, we aim to create blinds, for people who spend a
lot of time at home, that will adjust automatically in a way that
prevents light from hitting a person’s face, but lets in maximal
sunlight. This type of product is particularly relevant, as the
number of people who work remotely and spend copious
amounts of time at home has skyrocketed since the COVID-19
pandemic [4].

Although other motorized blinds exist, most require the use
of a remote control that the user has to press to adjust the
blinds. However, pressing a remote control also disrupts
concentration, which conflicts with its original purpose of
providing convenience and allowing the user to focus on other
tasks. Other competing technologies include blinds that move
according to the time the sun rises and sets. However, this type
of system fails to take into account the position of the user in
the room, and whether the light hits them at that location. Our
proposed solution seeks to increase a person’s quality of life
by balancing the amount of sunlight they are exposed to, while
solving the existing issues of alternate solutions.

II. USE-CASE REQUIREMENTS

We want our system to be beneficial enough so that a user
may be able to focus on the task at hand without being
hindered by sunlight. In order to quantify this, our group ran a
short survey on a group of college students to ask what the
minimum accuracy rate they would be able to tolerate for
purchasing a system like this would be. The average came out
to 90%. Given this answer, we aim to have our overall system
be able to block sunlight from a person’s face, by adjusting the
blinds so that the light projected from the window into the
room will only reach a person’s face 90% of the time.

On the other hand, we do not want our blinds to be a source
of distraction either. Many widely used face detection systems
take under 1 second to detect a face, which is quite fast [5].
However, a constantly moving blinds system may be more of a
nuisance than a source of convenience. It may also potentially
frighten users and create an unpleasant experience. In the
same survey as mentioned above, we asked participants
whether they would prefer a constantly moving blinds system,
or one that would wait for a set amount of time for a user to
stop moving before adjusting the blinds. Additionally, if a
participant answered that they preferred the system to wait, we
asked how long of a period the system should standby before
making the adjustment. The results showed that the
participants would be startled if the blinds were constantly
moving, and on average preferred a wait time of 10 seconds.
Therefore, we want the feedback latency, which is the time it
will take for our blinds to react after a user’s movement, to be
around 10 seconds.

We also want our physical latency (the time it takes for the
blinds to physically adjust upwards or downwards) to be on
par with existing motorized blinds. Popular motorized blinds
on the market take around 60 seconds to fully roll upwards or
downwards [6]. Therefore, our motorized blinds system
should have at most a 60 second physical latency in order to
compete with similar existing products.

Finally, we want to be able to achieve our accuracy goal
within a reasonable workspace: the average bedroom size in
the US, which is 132 ft2 [7]. This means we want to be able to
block sunlight from a user’s face within our accuracy goal in a
132 ft2 space.

Although we have gathered requirements pertaining to
minimizing sunlight that directly hits the user’s face, we
currently lack knowledge about user satisfaction regarding
maximizing sunlight in the room. Moving forward, we will
conduct a survey in the future on students at Carnegie Mellon
University about how far light should be from their face in
order to maximize light in the room.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our full system consists of 3 primary interconnected
systems, each with separate subsystems:

1. Sensor System
2. Processing Unit (RPi)

a. User Position Algorithm
b. Sun Calculation API



2
18-500 Design Project Report: Team C1, 03/03/2023

c. Light Area of Effect Algorithm (LAOE)
3. Motor Control

The sensor system (1) consists of 3 “sensors”, each for
different purposes. The first sensor is the Intel RealSense
Depth Camera D455. This integrated depth and camera system
will provide information to determine the 3D coordinates of
where a person is located within the room in question. Another
sensor is the sunlight detection circuit, which uses
photoresistors to determine if the weather is sunny enough to
warrant adjusting the blinds. The last sensor is a
magnetometer, which will tell the system the cardinal direction
of the window, and thus help us determine the azimuth of the
sun in respect to the window.

The Processing Unit, the RPi, (2) will be where the
necessary calculations are done on the software side. One of
the software systems is a user position calculation algorithm.
This employs OpenCV and depth information from the
LIDAR to calculate the 3D coordinates of a user in the room
space. Another component of the software system is the sun
calculation API. This function will use the location of the
window (latitude, longitude) in addition to the time of day to
find the azimuth and altitude of the sun relative to the blinds
system. Finally, the last algorithm we will be writing is the
LAOE algorithm. Using the measurements of the window, the
user position, and the sun data, this algorithm will determine
an adjustment so that sunlight is not in the user’s face, as well
as maximizing the amount of sunlight entering the room.

The motor control, or the physical blinds system (3), will
consist of a few working parts. This consists of an Arduino
Uno, which takes in adjustments as inputs, and the motor
system attached to the controls of the blind, which will receive
the adjustments from the Arduino. The motor system will be
attached through a 3-D printed gear that will hold tightly onto
the beads of the blinds’ cord lock.

The relationship between these parts and a greater
breakdown of each subsystem are illustrated and can be better
seen in Appendix C at the end of this document.

IV. DESIGN REQUIREMENTS

We want our sensor subsystem to contain parts that are at
least 90% accurate, to match with our overall accuracy
requirements. To limit the impact of polling rate on feedback
latency, we want our sensor system to poll for real-world
information as much as possible. However, because feedback
latency is mainly limited by processing unit limitations, which
will take at least a second, it’s best to wait for the processing
unit to perform its calculations before polling again. So we
want our system to poll for information at least once per
second.

As for the photoresistor circuit in this system, the threshold
that determines whether light is considered sunlight, which
determines whether the blinds move or not, will be determined
in the future with thorough testing with real sunlight. Because
this threshold is dependent on a variety of factors, including
the type of photoresistor used, it has not yet been determined.

Our motor control system needs to be able to fully

open/close the blinds in 60 seconds. Because the standard
window height is 60 inches, the motors in our system need to
be able to rotate at a fast enough speed to allow the blinds to
move at a rate of 1 inch per second. The motor system must
also be able to allow for precise position control by increments
of 1 cm with a margin of 0.5cm. We currently believe that a 1
cm precision is precise enough to cut off light at the optimal
level, but this is subject to change, as it depends on the results
of the previously mentioned survey involving user satisfaction
in maximizing the sunlight in the room.

To meet our overall accuracy requirement of 90% accuracy
in a 132 ft^2 room, we want our processing unit to correctly
identify whether the user’s position is in the area of direct
sunlight identified by the LAOE algorithm 90% of the time.
Although we know that the total accuracy a typical user would
want is 90%, we do not know how much error is allowed
within each subsystem to achieve this overall error of 90%.
We do know that if a single subsystem is less than 90%
accurate then the overall accuracy of our integrated system
can’t reach 90%. Thus we are currently giving each subsystem
a hard 90% accuracy minimum.

To be able to capture more real-world data and to increase
the reaction speed to the user’s movements, we also want our
processing and calculations to take less than 1 second; this
will help us more closely reach a feedback latency of 10
seconds. And, once again, although the requirements for
minimizing sunlight on the user’s face for this are fairly
defined, more requirements will be made later on after the
survey about the blinds’ position to maximize sunlight in the
room has been conducted.

V. DESIGN TRADE STUDIES

A. User Position Extraction
There were other methods we were considering using to

calculate the position of the user in the room. One such
method was using multiple cameras around the room, and
using triangulation to identify the position of the user in the
room. This method would allow us to forgo looking for a
LIDAR device, and would be fairly accurate. However, using
multiple cameras complicates the design, as the particular
angle and position of which the cameras are put up have to be
taken into account. It would also provide inconvenience to the
user when setting up our BLINDS. To slightly simplify the
design, as well as provide more convenience to the user, we
decided to use a LIDAR and camera integrated device.
Another similar method that was under consideration was
using Bluetooth beacons, but that requires the user to hold
onto a device to communicate with, which is also inconvenient
for the user, which contradicts our goal to maximize
convenience for the user.

Another design choice we made was the choice of using
Haar cascades over other forms of facial detection. Although
Haar cascades tend to be slightly less accurate compared to
other methods, it is also faster than other methods. This is also



3
18-500 Design Project Report: Team C1, 03/03/2023

particularly pertinent because its lower latency makes it not
only run well on a microcontroller, but helps us achieve our
latency requirements. Yet another design choice we made was
using a Fast Super-Resolution Convolutional Neural Network
(FSRCNN) model to increase the resolution of the camera
image, over other models. We decided to use a FSRCNN
model over an EDSR model because although EDSR’s gives
the best results in terms of accuracy, it is slower [10]. Because
we want our BLINDS to react in real-time, it is better to use a
model like FSRCNN.

B. Sun Position Calculation
Initially, we considered a few different options for

calculating the data on the sun. One was the use of a sun
sensor or a sundial to determine where the sun is in respect to
the window. The benefit of these physical forms of data
measurement is that it can help us determine whether or not
sunlight is being blocked from the window in some way, such
as by weather or by objects such as trees or buildings. For
instance, a lighter shadow or lack of shadow for the sundial
may indicate that it is cloudy. However, there are quite a few
drawbacks. The sun sensor would be an expensive option for
finding information that could be calculated with just location
and time of day. There would also be the issue of where
exactly such a device would be placed, as putting it outside
would make it separate from the entire blinds system. Our
team also considered the use of a sundial, but methods of
retrieving data and data accuracy would also be quite messy.
We needed something that would be as accurate as possible, so
we decided to simply calculate the location of the sun using
Python modules, which would also only require the time, date
and location.
C. Sensor System

To support the software solution we chose in the previous
section, the sensors we need are a magnetometer, a
photoresistor, Microcontroller with analog pins, and a Depth
Camera. For our magnetometer we chose the Adafruit
triple-axis Magnetometer MMC5603 because it is a reliable
device with a heading accuracy of 1 degree. Although other
magnetometers listed on Amazon are cheaper, their reviews in
terms of reliability were quite low, and we did not want to take
that risk. For our photoresistor, we chose the Elagoo
photoresistor, as this is a component that we already own and
will work sufficiently for our purposes. Finally, we chose the
Arduino Uno for our microcontroller because this was also a
device that we already had our hands on, and a component we
have confidence and experience with in the past.

For our depth camera, we were originally contemplating
between the Astra Depth Camera from Orbbec 3D, Intel
RealSense Depth Camera L515, and RealSense Depth Camera
D455. Our original plan was to use the Intel RealSense Depth
Camera L515 because the CMU ECE inventory conveniently
already owned one, and its range of up to 10 meters would fit

our design requirements. Unfortunately, after some initial
testing, we learned that the L515’s effective range is reduced
down to 1.5 meters in sunlight, which is a huge problem given
the nature of our project. We then considered the Astra Depth
Camera from Orbbec 3D, as it was relatively cheap and had a
range up to 8 meters. However, we decided against it because
there were no reviews for this depth camera, and therefore we
were not able to confirm if the range was reliable. The Astra
also did not have good documentation which we feel would be
a huge issue. Thus, we settled with the more expensive
camera, the Intel RealSense Depth Camera D455, which has
many reviews affirming its 4.2 meter range even in direct
sunlight and is well-documented enough for us to quickly
learn how to utilize.

D. Motor Control
For our motorized blinds, we were choosing between the

Automatic Window Roller Blinds [11] and the Arduino
Automatic Blinds Opener [12]. The Automatic Window Roller
Blinds is a design plan to make our own custom blinds, where
the stepper motor will directly turn the rollers the blind’s cloth
is attached to. On the other hand, the Arduino Automatic
Blinds Opener is a design which has an external motor with a
gear that hooks onto the beaded string of the shade and
controls the shade through the string. Both designs take 60
seconds to fully unroll/roll up. We decided to go with the
Blinds Opener over the Roller Blinds because the Blinds
Opener seems more versatile as it works with every blind as
long as it has beaded strings. The Blinds Opener also fits our
project better because the motor can sit on the window sill;
this way, we don’t need a long wire from our RPi all the way
to the top of the window, which would have been necessary if
we were to use the other design.

VI. SYSTEM IMPLEMENTATION

A. Sensor System
The sensor subsystem consists of the Intel Realsense Depth

Camera D455, Adafruit MMC5603 Magnetometer, and light
detection circuit. The Intel Realsense Depth Camera D455
provides both a RGB camera feed and also lidar data at a
resolution of 1240px x 720 px at 30fps as shown below in
figure x. The Camera would be connected to the RPi via a
USB-C to USB 3.1 cable. The sample output of this device
can be seen in Fig. 1.

The second component of the sensor system is the Adafruit
MMC5603 Magnetometer. This would be connected to the
RPi via wires with I2C communication protocol. The Adafruit
MMC5603 Magnetometer would generate and send magnetic
orientation data to the RPi.

The last component of the sensor system is the light
detection circuit. The light detection circuit is constructed by
connecting a 10 kΩ resistor in series with a photoresistor to
form a voltage divider. The voltage reading would be
connected to the Arduino Uno analog pin with a wire. The



4
18-500 Design Project Report: Team C1, 03/03/2023

Figure 1: Sample Output of the Intel Realsense Depth Camera D455

Arduino Uno would be constantly communicating with the
RPi via USB to USB via the Arduino Uno Serial Monitor if
the measured voltage level is over the threshold for the light to
be considered direct sunlight.

B. Processing Unit - User Position Extraction Algorithm
From the sensor system, the processing unit (the RPi)

obtains real-world information. This information includes, but
is not limited to, an image of the user and the room, as well as
data from the LIDAR, which depicts the distance of the
system to objects in the room, as shown in the previous
section.

Using this information, the User Position Extraction
Algorithm will be run on the processing unit. Its goal is to
obtain the location of the user’s chin, which will be used in
tandem with the LAOE algorithm to determine if the user is
hit by direct light or not. First, it will use OpenCV’s Haar
cascades to perform face detection on the camera input which
it will obtain using the pyrealsense2 API, to detect the location
of the user’s face. Both the frontal and side profile cascades
will be used, so that we can identify the user’s face in multiple
orientations. However, face detection issues may arise if the
user is too far from the camera, and the resolution of the image
of their face is not high enough. In this case, image processing
to increase image resolution will be done using OpenCV’s
Super Resolution module and TensorFlow’s Fast
Super-Resolution Convolutional Neural Network (FSRCNN)
model. Using the processed image, face detection will be
performed again. We can convert the face detection output to
pixels on the user’s chin from the camera input. Given the
pixels of the user’s chin, we can map this pixel to pixel to the
LIDAR data using the pyrealsense2 API, and from that we can
identify the radial distance the user’s chin is from the system.
Then, by using the number of pixels away the user is from the
center of the image, we can identify the angle of the user to
the system. Using the distance and angle of the user, we can
determine the 3-D coordinates of the user, as represented by
the coordinates of their chin.
C. Processing Unit - LAOE Algorithm

As shown in the full architecture diagram in Appendix C
and described in Section III of this document, the LAOE
algorithm receives data on the user’s position, the sun
(azimuth, altitude, photoresistors), and the window’s
orientation. The user position is found from the algorithm
above, the sun data is found through the python modules
Suncalc.py and Geopy.py as well as the photoresistor, and the
window orientation is found through the magnetometer. We

want to check first whether or not the weather is affecting the
sunlight. This is done through the data sent by the
photoresistors. If there is no direct sunlight, we will keep the
windows open/open them fully as the sunlight will not bother
anyone. Otherwise, in order to find the adjustment that needs
to be made to the blinds, our algorithm will be divided into a
few functions. First, it will figure out if the user’s position lies
within the “area of effect” of the sun. This area, or more
accurately, volume, is a trapezoidal prism of the projection of
the sun from the window into the room. The idea is rooted in
the fact that light travels in straight rays from the sun [8]. The
rays will hit the corners of the window and travel into the
room, at certain angles of altitude and azimuth. The projection
of light traversing into the room at each of the four corners is
what forms this box-shaped prism. It is better visualized and
illustrated in Fig 2.

The first function maps the four coordinates of the window
into the projection of the same four coordinates onto the floor
by using the azimuth and altitude of the sun as the directions
of the rays as they enter the room. Because the sun is very far
away from the window in question, we can estimate all rays
entering the room to have the same altitude and azimuth. The
function will return the four coordinates of the corners of the
light cast by the window. The coordinates are represented with
the x-value representing the distance to the left or right of the
window, the y-value representing the distance from the wall
where the window is located, and the z-value being the
physical height within the room. The origin is set at the floor
under the window, with x value at the middle of the window.

The second function determines whether or not there is an
intersection between the user and the LAOE. Using the eight
corners we have found so far (four from the corners of the
window + four from the corners of light projected onto the
floor), we now have the eight vertices of the trapezoidal prism
formed from the light. We can simplify the intersection to a
calculation of whether or not the point lies between the two
lines existing in each plane (XY plane and YZ plane). The
equations for the four lines (two for each plane) can be found
from the two coordinate points we have for each line (the
previously calculated eight total points). This is illustrated in
Fig. 3 and 4, and the intersection is calculated with a simple
inequality intersection calculation.

Figure 2: Visualization of Light Area of Effect



5
18-500 Design Project Report: Team C1, 03/03/2023

Figure 3: View from the YZ plane of LAOE

Figure 4: View from XY plane of LAOE

If we did not find an intersection, we can open the blinds
fully so that light is maximized. However, if we did find an
intersection, we must adjust the blinds. The last function
calculates the adjustment that must be made in order to
prevent light from hitting the user’s face. To do this, our
algorithm will backwards trace a ray hitting a target point (the
bottom of the person’s face) back until it reaches the wall
where the window is located. This ray will use the same
altitude and azimuth for its direction. This will allow us to
calculate what the z-value of the bottom of the blinds should
be (bottom of the blinds = top of the window), and adjust the
blinds accordingly to that position. The result is sent to the
motor control.

I. Motor Control
For our motorized blinds, we were choosing between the

Automatic Window Roller Blinds [11] and the Arduino
Automatic Blinds Opener [12]. The Automatic Window Roller
Blinds is a design plan to make our own custom blinds, where
the stepper motor will directly turn the rollers the blind’s cloth
is attached to. On the other hand, the Arduino Automatic
Blinds Opener is a design which has an external motor with a
gear that hooks onto the beaded string of the shade and
controls the shade through the string. Both designs take 60

seconds to fully unroll/roll up. We decided to go with the
Blinds Opener over the Roller Blinds because the Blinds
Opener seems more versatile as it works with every blind as
long as it has beaded strings. The Blinds Opener also fits our
project better because the motor can sit on the window sill;
this way, we don’t need a long wire from our RPi all the way
to the top of the window, which would have been necessary if
we were to use the other design.

A. Tests for Sensor System
We will be testing the Depth Camera by making a person

stand 1 meters, 2 meters, and 3 meters away from the camera
at 0 degree, 30 degree, and 60 degree angles from the camera
center. If all the distance measured by the depth camera is
within ~2% of the actual distance, we can say the Depth
Camera is fully functional because the D455 datasheet said to
expect roughly 2% error. We can also check manually to make
sure the RGB camera feed matches the real life scene it is
filming.

We will test the Light Detection Circuit by moving in and
out of different environments and checking the response. The
environments we will be testing the circuit against are: in
normal room light, in a dark room, in direct sunlight, and in
sunlight that passes through clouds. The circuit is considered
working if it only returns the result that there is light under the
condition with direct sunlight hitting the photoresistor.

The Magnetometer would be tested against the result from
the compass app on our phones. We will turn the
magnetometer around every angle in a circle with 1 degree
increments. It needs to be 1 degree increments because every
degree of error would severely impact our LAOE prediction.
The Magnetometer would be considered functional if it
matches the result from our compass app for all of the angles.
B. Tests for User Position Extraction

Like the tests for the Depth Camera, we will test the
User Position Extraction by making a person stand at set
distances (1 meter, 2 meters, and 3 meters) away from the
system. Then, we will run our User Position Extraction
algorithm and compare its outputs to the actual measured
angle and distances of the user. We want to achieve two
different types of goals, and thus will have two different
quantitative targets, when testing: Maximizing sunlight in the
room, and minimizing the sunlight that hits the user’s face. For
maximizing sunlight, we need to conduct the previously
mentioned survey regarding the amount of light the blinds
should let in for optimal user satisfaction, so this section will
mainly focus on minimizing light that hits the user’s face.

For minimizing sunlight, we want to meet our overall
accuracy requirement of 90% accuracy in a 132 ft2 space. If
the user is in the area in the room that gets hit by direct
sunlight, as found by the LAOE algorithm, we want to be able
to accurately identify that 90% of the time. To meet this 90%,
the User Position Extraction algorithm can be broken down
into three parts that can be tested separately: Determining
where the chin of the user is using OpenCV, using that



6
18-500 Design Project Report: Team C1, 03/03/2023

information to find the radial distance of the user using
LIDAR data, and calculating the angle of the user using pixels
to the center of the image. When determining where the chin
of the user is, we want our found location of the chin given an
image, to be at or below the actual chin 90% of the time, to
ensure light does not hit above the chin. The accuracy
regarding how far below the chin our calculations should stay
within pertains to maximizing sunlight in the room and will be
determined after the aforementioned survey. Finding the radial
distance of the user using LIDAR data is solely determined by
how accurate the LIDAR data is, and we want this distance to
be within ~2% of the actual distance, as mentioned in the
sensor system section. For calculating the angle, we want the
angle of the user to be as precise as possible, down to the
pixel, as this can heavily affect whether the user is determined
to be standing in the light or not, and affect our accuracy
goals. Using the Depth Camera D455’s maximum resolution
and angle of view, and linear interpolation, we can calculate
each pixel to be approximately 0.0431 degrees, so we would
want our calculated angle to be within that angle range [13].
C. Tests for LAOE

Similar to the tests for User Position Extraction, we will be
using real-life scenarios where a person is affected by sunlight
to conduct testing. We will use data with user positions and
times of day where people are affected by light and when they
are not, and testing if the algorithm returns the correct
adjustment accordingly.

In order to meet our overall accuracy goal of 90%, we want
the algorithm to both be able to determine whether or not a
person lies within the area of effect or not 90% of the time,
and also ensure that the face is covered 90% of the time after
an adjustment is made. We can do this by manually finding the
minimum height at which the blinds can be lowered to and
cover the face, and seeing if the adjustment covers more than
the minimum height or not.

Additionally, we want to test whether the light is in a range
such that the light entering the room is maximized. Once we
have completed the previously mentioned survey to gauge
how often and within what range the light from the adjusted
blinds should end at in respect to the person (ex. 80% of the
time within 5 cm of the person’s chin), we want to collect data
to determine what the adjustment should be in a real-life
scenario. On a sunny day, we can find the upper and lower
limits at which the height of the blinds should be at so that the
light falls within an acceptable range to maximize light, and
then test those height values against the output of the LAOE
algorithm given the time of day, user position, and location at
which we took the data.

D. Tests for Motor Control System
We will test that our Motor Control System can move the

Blinds to the directed position within a 2 cm margin of error.

There is a 2 cm margin of error because the stepper motor’s
smallest step size is ⅛ turn so it is not possible to move the
blinds to every position. We will send the blind controls
request to set the Blinds to every position from the top of the
blinds downwards at 5 cm intervals. The blinds control would
have to be able to do this in downwards, upwards, and mixed
up order to move a spontaneous position (i.e. “move to ¾
closed then to ¼ closed then to ½ closed”). The Motor Control
System is only considered functional if it works 100% of the
time.

E. Tests for Overall Integrated System
The fully integrated system would be tested in a real life

setting where we will make a person walk into sunlight and
stand there and see if the blinds move so that the direct
sunlight cuts off within the 10cm area below the person’s chin.
The person would then walk outside of the sunlight and we
will see if the blinds fully open to let more sunlight into the
room. If the blinds passed the first two tests then we would
move to the final test where a person would be sitting in the
room all day on a sunny day and we would observe if the blind
adjusts properly throughout the day to block direct sunlight
from hitting the person’s face. The overall system would be
considered functional if 90% of the time when the user is
stationary, the sunlight is cut off at the optimal position as
described in the requirement section.

VII. PROJECT MANAGEMENT

A. Schedule
Our project is on schedule, and no adjustments are currently

necessary. The Gantt chart for our schedule is shown below in
Appendix B. Some tasks have already been started, such as the
physical building of the blinds, as well as the development of
the LAOE algorithm and User Position Extraction algorithm.
Moving forward, we will continue to adapt and code our
LAOE algorithm, develop our User Position Extraction
algorithm, and continue to build our hardware.

B. Team Member Responsibilities
All the group members have rough experience in all the

subsystems of the project, so we will all have a secondary task
of helping each other with subtasks. However to utilize the
specializations of each group member, the project work has
been divided into two main parts: The hardware component,
which involves working with the Arduino and motors, and the
software component, which largely consists of implementing
the LAOE and User Position Extraction algorithm on the
Raspberry Pi. The work has been split up such that Jeff is in
charge of the hardware portion of the project, and Dianne and
Elizabeth will work closely together on the software
components. All group members will be responsible for
integration of the different components of the project.

C. Bill of Materials and Budget
A breakdown of the materials bought and used can be found

in Appendix A below.



7
18-500 Design Project Report: Team C1, 03/03/2023

D. Risk Mitigation Plans
There are two risks our project may be facing: 1) the lack of

experience with working Raspberry Pi 2) the difficulty of
conducting real life tests. The Raspberry Pi 4 in our design is
the microprocessor to perform the User Position detection,
LAOE algorithm, and communication with the arduino.
Therefore, it is a critical part of our project and a bulk of the
computational work. The mitigation plan in this first case is to
use a laptop as the processor instead. The second risk of our
project, however, is more tricky since the weather is outside of
our control. Our mitigation plan includes getting the MVP
done early so we have a long window of time to test, and
therefore more sunny days to work with. We are also
collecting data throughout the semester, so we can test with
past data, as well as utilizing artificial light to trick our light
sensing circuit and whether or not the blinds will block the
artificial light in the same way it blocks sunlight.

VIII. RELATED WORK

Serena Shades by Lutron [9] are the only smart blinds on
the market that have a light optimization feature built into the
blinds. The blinds, over the course of the day, automatically
tilt themselves at an angle that prevents direct sunlight from
entering the house, but allows natural light to fill the room.
The Natural Light Optimization algorithm that Serena Shades
implements utilizes a person’s address and window
orientation, information which has to be manually inputted via
the Lutron app, to calculate the angle the blinds should be
tilted at.

Our project differs from Serena Shades by a few key
factors. For one, when calculating how our blinds should
move in order to optimize light in a room, our project not only
takes in a person's address and window orientation, but it also
takes into account a user’s position within a room. This means
that our BLINDS allows more natural light in a room, by
letting in direct sunlight that does not negatively impact or hit
the user. Additionally, our BLINDS also considers if light is
really coming through the window or not, as a factor of
whether or not an adjustment should be made, while Serena
Shades functions the same regardless of actual light. Our
system will only adjust if it detects the presence of direct
sunlight through our light sensing circuit, thereby expanding
on Serena Shades’ Natural Light Optimization algorithm.

IX. SUMMARY

Our BLINDS project aims to improve users’ quality of life
by freeing them from the duty of manually adjusting blinds.
By automatically adjusting to the optimal position that will let
in the most beneficial light to the user, our BLINDS will
simultaneously protect users from the sun’s harmful UV rays,
and encourage users to let in more natural light into their
room, improving their mental health. To do this, our smart
blinds will adjust its position based on a multitude of factors,
such as whether it detects light coming through the window,
the angle of the sun, the user’s address, and their position in a
room. Our BLINDS will also only adjust after a user has

maintained the same position, to avoid startling the user and to
provide a smooth experience that they will enjoy.

One of the challenges that need to be tackled include
developing our algorithms in a way that meets our project’s
accuracy requirements, as both our LAOE and User Position
algorithm inherently have some amount of error. This is
because our LAOE models light in a simplified way, and our
User Position algorithm utilizes OpenCV which isn’t always
very accurate. To reduce error in our algorithms, we will focus
our efforts on testing and continually adapting our algorithms
to improve their accuracy. Another challenge that exists is the
difficulty of performing real-life testing, as the amount of
testing we can do with real sunlight is dependent on a
multitude of volatile factors, such as weather. Although
mitigation plans have been implemented to counteract this
challenge, it is possible that these plans may not proceed as
expected. Finally, one last challenge is the integration of the
very different subsystems in this project. However, we will do
our best to stay on schedule, which provides some leeway in
case problems occur.

GLOSSARY OF ACRONYMS

API - Application Programming Interface
LAOE - Light Area Of Effect Algorithm
RPi – Raspberry Pi

REFERENCES

[1] Boyce, Peter R. “Review: The Impact of Light in Buildings on Human
Health.” Indoor and Built Environment, vol. 19, no. 1, Feb. 2010, pp.
8–20, 10.1177/1420326x09358028.

[2] Young RW. The family of sunlight-related eye diseases. Optometry and
Vision Science : Official Publication of the American Academy of
Optometry. 1994 Feb;71(2):125-144. DOI:
10.1097/00006324-199402000-00013. PMID: 8152745.

[3] Shishegar, N, and M Boubekri. “Natural Light and Productivity:
Analyzing the Impacts of Daylighting on Students’ and Workers’ Health
and Alertness.” International Journal of Advances in Chemical
Engineering and Biological Sciences, vol. 3, no. 1, 21 May 2016,
10.15242/ijacebs.ae0416104.

[4] Mitchell, Travis. “Covid-19 Pandemic Continues to Reshape Work in
America.” Pew Research Center's Social & Demographic Trends
Project, Pew Research Center, 23 Mar. 2022,
https://www.pewresearch.org/social-trends/2022/02/16/covid-19-pandem
ic-continues-to-reshape-work-in-america/.

[5] Kazanskiy, Nikolay, et al. ‘Performance Analysis of Real-Time Face
Detection System Based on Stream Data Mining Frameworks’. Procedia
Engineering, vol. 201, 2017, pp. 806–816,
https://doi.org10.1016/j.proeng.2017.09.602.

[6] Graywind, "Graywind Motorized Blackout Roller Shades." Graywind,
2020,
https://www.graywindblinds.com/collections/roller-shades/products/sma
rt-shades-blackout-designed

[7] Helling, Author Andrew. “Average Bedroom Sizes in a Home - The
Ultimate Guide.” REthority, 14 Feb. 2023,
https://rethority.com/average-bedroom-size/.

[8] Bird, J. O., and P. J. Chivers. ‘31 - Light Rays’. Newnes Engineering and
Physical Science Pocket Book, edited by J. O. Bird and P. J. Chivers,
Newnes, 1993, pp. 248–255,
https://doi.org10.1016/B978-0-7506-1683-6.50034-5.

[9] Serena Shades. SerenaShades, Lutron, 2016,
https://www.serenashades.com/.

[10] Vardan Agarwal, Lipi Patnaik, et al. “Super Resolution in Opencv.”
LearnOpenCV, 18 Oct. 2021,
https://learnopencv.com/super-resolution-in-opencv/#sec3.



8
18-500 Design Project Report: Team C1, 03/03/2023

[11] “Automatic Window Roller Blinds.” Projecthub.arduino.cc, 10 June
2021,
projecthub.arduino.cc/twinsen01/85418824-2918-44ac-87c5-dc7deb4be
4b5.

[12] Klements, Michael. “Arduino Automatic Blind Opener .” The DIY Life,
2 Apr. 2020,
www.the-diy-life.com/arduino-automatic-blind-opener-works-with-a-re
mote-control-alexa/.

[13] Coffin, Jerry. “OpenCV: Calculate Angle between Camera and Pixel.”
Stack Overflow, 1 May 1960,
https://stackoverflow.com/questions/17499409/opencv-calculate-angle-b
etween-camera-and-pixel.

http://www.the-diy-life.com/arduino-automatic-blind-opener-works-with-a-remote-control-alexa/
http://www.the-diy-life.com/arduino-automatic-blind-opener-works-with-a-remote-control-alexa/


9
18-500 Design Project Report: Team C1, 03/03/2023

Appendix A: Bill of Materials and Budget



10
18-500 Design Project Report: Team C1, 03/03/2023

Appendix B: Gantt Chart of Schedule



11
18-500 Design Project Report: Team C1, 03/03/2023

Appendix C: Full Architecture Block Diagram


