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Abstract—A system capable of estimating and predicting the 

occupancy of lab spaces at Carnegie Mellon’s Hamerschlag 1300 

wing. People Counter helps users save travel time by presenting a 

real-time estimation of room occupancy and an interactive element 

that predicts ahead of time whether the spaces will be busy. The 

system combines video feed processing, computer vision, as well as 

a web application deployed on server; For both estimation and 

prediction, People Counter surpassed the 80% accuracy 

benchmark, and we have shown that it can deliver up-to-date 

occupancy levels and useful prediction data for users. 

 
Index Terms— Arducam, classification, computer vision, 

Google Colaboratory, Ngrok, web application, object detection, 

prediction, Raspberry Pi, room occupancy, people movement, 

video processing 

I. INTRODUCTION 

Several travel-related applications such as Google Maps and 

the New York MTA TrainTime mobile app have evolved in 

recent years to introduce real-time capacity tracking and 

estimation features. However, these applications currently do 

not combine the usage of historical data and real-time video 

processing techniques to make accurate predictions. Google 

Maps’ prediction algorithm relies on users’ historical location 

data [1], while the TrainTime mobile application is only able 

to show real-time occupancy data of the train cars [2] and does 

not have the capability to let users know whether their train is 

going to be packed ahead of time.  
Thus, we propose People Counter, a system that uses both 

live camera feed to CV processing as well as analysis of 

historical data to count, estimate, and – most importantly – 

predict the occupancy levels of the Hamerschlag Hall 1300 

hallway at Carnegie Mellon University. The system is an 

amalgamation of computer software and digital hardware 

technologies, as the live video feed will be captured by 

Arducam B0205 cameras and fed into the local backend 

through wireless connection. Then, a backend program that is 

able to recognize a person passing through a door for both 

entering and exiting scenarios through computer vision 

algorithms, namely Yolo and SORT, will be run on Google 

Colab, a cloud platform for interactive computing. The 

resulting data is stored on a ElephantSQL database 

management system in the cloud, and at last the occupancy 

and prediction data will be connected to a frontend web user 

interface through Django’s model-view-controller (MVC) 

design pattern. 

People Counter’s intended users are students enrolled at 

Carnegie Mellon University who would like to learn about the 

current and predicted occupancy data of the 1300 hallway at 

Hamerschlag, which is among the most popular study spots 

for students in the Electrical & Computer Engineering 

department. Through our observation over the past several 

years of students who enter the hallway, many students would 

struggle to find a seat when the labs are in session or when the 

rooms are busy. They tend to quickly exit when no seats are 

available. Over time, the time wasted walking to and from 

study spaces like the 1300 hallway has become a major pain 

point for students. That is why we believe People Counter has 

the capability to solve this user pain point.  
By interacting with People Counter’s web application, users 

will not only be able to know the accurate current occupancy 

data of the Hamerschlag 1300 hallway but also obtain the 

predicted occupancy of the two individual lab spaces in the 

Hamerschlag 1300 wing at a time of the user’s choosing up to 

1 hour in advance. With this information, users will be able to 

make a better-informed decision about whether they would 

like to go study at the Hamerschlag labs. The project’s 

ultimate goal is for our users to save valuable time during their 

day that they would otherwise spend on traveling to and from 

Hamerschlag without the data from People Counter, only to 

find a hallway packed with studious individuals at times. 

II. USE-CASE REQUIREMENTS 

We formulated the use-case requirements for People 

Counter based on the needs of our intended users. One of the 

critical use-case requirements for our system is to have a 

greater than 80% occupancy estimation accuracy for the two 

enclosed lab spaces on the Hamerschlag 1300 wing. The 

reason behind the 80% benchmark is due to the fact that the 

larger of the two lab rooms has a capacity of 50 people, while 

the smaller one only has a maximum occupancy of 25. The 

80% benchmark would allow for a maximum of 5-people 

margin for error in the smaller lab space which would suffice 

the needs for our target users, as a difference in occupancy of 

2 or 3 individuals would in general not affect a user’s decision 

of whether or not they would want to spend time studying at 

the 1300 wing. However, if the estimation accuracy metric is 

set at a much lower mark, such as 50%, then it would not be 

sufficient for our use case, because the difference between 10 

and 20 people in a room with 25 seats in total is significant for 

users who hope to find a less busy, relatively quiet place to do 
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work. Additionally, the 80% benchmark must be reached 

consistently for at least 3 hours without dropping below the 

threshold, which is the amount of time that we believe 

constitute a middle ground between the maximum amount of 

time we are allowed to perform continuous testing and the 

minimum amount of time needed to show that our system is 

adequately consistent and accurate. 
Other than real-time estimation, another key feature of the 

People Counter system is same-day occupancy prediction for 

the two lab rooms on the Hamerschlag 1300 wing. We plan to 

implement our prediction feature through categorization, 

characterizing occupancy levels of the rooms into 4 

categories: “almost empty” (up to 19.9% full), “not busy” 

(20%-39.9% full), “busy” (40%-69.9% full), and “almost full” 

(70% full or more). The prediction feature is limited to 1 hour 

in advance and provided to the users in 15-minute intervals, so 

if the current time is 5:00PM, users will be able to view the 

predicted category of the rooms when the time is 5:15, 5:30, 

5:45, and 6:00 on the web application. The aforementioned 

categorization and the percentage of capacity associated with 

each category are not set arbitrarily. Both lab rooms on the 

1300 wings at Hamerschlag do not have individual, separate 

seating areas but rather feature contiguous work benches 

intended for better collaboration. If there are more than 70% 

of the total seats taken in one of the lab spaces, this would 

mean that the room is effectively almost full, because there 

will rarely be two consecutive occupied seats (having both 

neighboring seats taken is less ideal for individual studying) 

[3] when total occupancy is above 70%. On the other hand, 

when the occupancy levels of a room are below 40%, then it is 

guaranteed that there will be at least 1 seat in the room where 

there is at least 1 unoccupied neighboring seat. This would 

warrant a “not busy” categorization. Similar to the live 

estimation benchmark, we set the prediction accuracy to 80%, 

which means that when a user selects any time later during a 

particular day, the predicted occupancy categorization must 

exactly match the actual percentage of the rooms at the chosen 

time more than 80% of the time over a 15-hour period. 
Lastly, another use-case requirement that, if not achieved, 

would impact the usability of our application is the overall 

latency of the system. Ideally, the latency from hardware 

video processing to end users shall be less than 1 minute (60 

seconds) at any given time when the server of People 

Counter’s web application is running. Given the nature of 

people movement (moving in and out of a room on foot takes 

at least several seconds), we do not expect any non-malicious 

user to be checking People Counter’s web application in an 

interval less than 60 seconds for the up-to-date information 

regarding real-time occupancy estimation. However, given 

that occupancy in a room, especially multi-use spaces like the 

Hamerschlag 1300 labs, can shift swiftly (such as the start and 

end of class sessions), it could potentially be beneficial to 

users if the total latency of our system is consistently kept at 

under 60 seconds. 

 

 

 

TABLE I. SUMMARY OF USE-CASE REQUIREMENTS 

Name Specification Requirement 

Estimation 

Accuracy 

Users will receive via the web 

application an estimate of how 

many people are currently in the 

HH1300 rooms that is at least 

80% accurate (i.e., a margin of 

error that is less than or equal to 

20% from the actual number of 

people in the rooms. If there are 

in fact 50 people in total, People 

Counter’s estimate should fall 

between 40 and 60.) The 80% 

benchmark shall be reached 

continuously for at least 3 hours. 

80% 

Prediction 

Accuracy 

Users will receive a categorical 

prediction out of the 4 possible 

values (almost empty, not busy, 

busy, almost full) for a time that 

is at most 60 minutes in the 

future from the current time (the 

4 times displayed are 15, 30, 45, 

and 60 minutes from current 

time). We expect that the 

category users receive for all of 

these times falls into the 

accurate category 80% of the 

time.  

80% 

Latency Users will receive the up-to-date 

occupancy estimation on the 

web application that has a 

maximum lag of 60 seconds (1 

minute) whenever a change in 

the actual occupancy of the 

rooms occurs. 

60 seconds 

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our product contains 4 main sub-systems: camera module, 

computer vision module, prediction module, and web 

application. Our camera module consists of two ArduCAM 

B0205 cameras, each connected to a Raspberry Pi, which will 

send live video feed to our backend through Ngrok web tunnel 

running on the Raspberry Pi. The camera set-up is shown in 

figure 1 on page 4. Since the design review, we added another 

camera into our camera module in order to improve accuracy of 

our computer vision module, we also started using Ngrok to 

transmit video footage in order to access the video feed on 

Google Colaboratory. Our computer vision module is deployed 

on Google Colab, which uses object detection and object 

tracking to count the number of people entering and exiting the 

four monitored rooms in Hamerschlag 1300 Wing. We update 

the count data related to each room every minute to a database 

hosted by ElephantSQL. Since the design review, we moved 

our computer vision module to Google Colab in order to 

improve processing speeds to meet our FPS requirements. We 

also started using a web hosted database instead of a local 

database in order to communicate data from the computer 

vision subsystem to our prediction module and web application. 

https://www-jstor-org.cmu.idm.oclc.org/stable/26893773
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The prediction module uses a decision tree, which we trained 

on prior occupancy data for rooms in Hamerschlag 1300 Wing. 

We can predict future occupancy levels for the four monitored 

rooms within 1 hour based on the current time and occupancy. 

The web application uses the Django framework, and gets 

occupancy data from the database, it has access to the trained 

decision tree to get the predicted occupancy levels. CMU users 

can register for an account on the web app and access real-time 

occupancy and future occupancy data on the web application. 

Figure 2 on page 4 shows the detailed submodules within each 

subsystem. Please note an image of our physical system will be 

included in the Design Requirements Section. 
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Fig. 1. Overall system block diagram 

Fig. 2. Approximate location and setup of main cameras in HH1300 hallway 
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IV. DESIGN REQUIREMENTS 

The primary goal of our design requirements is to ensure 

that the system we develop meets the estimation and 

prediction accuracy as well as the overall latency requirements 

previously mentioned for our use case of the Hamerschlag 

1300 hallway. 

A. Number of Cameras 

In order to maximize the accuracy of the system as well as 

other use-case requirements, we have increased the scale and 

capability of our system after the design review stage to 

incorporate 4 total cameras. The final system that we build 

shall contain 2 main cameras (of which we will be measuring 

the estimation accuracy) and 2 validation cameras that will be 

used to test whether the output from the main cameras are 

consistent. Given that the validation cameras will have a field 

of view that is different from the main cameras, their purpose 

is to validate the flow of people in and out of the rooms in the 

HH1300 wing. During testing, the validation cameras and the 

main cameras will run simultaneously. After each test, the 

database file from the validation cameras will be matched with 

that of the main cameras through a script written in Python to 

compare the outputs from each set of cameras. 

B. Location of Cameras 

To image the Hamerschlag corridor completely, we will 

utilize a vision system that comprises a single camera placed 

directly above the main entrance way of the hallway. The 

camera will face the main hallway, with a slightly angled 

downward view. The purpose of positioning the camera at this 

location is to capture a single image that encompasses all 

room entrances, enabling our computer vision systems to 

receive as much information as possible. This approach aims 

to maximize the accuracy of our estimation and prediction 

systems though this maximized coverage. Fig. 3 shows all four 

cameras being installed in the HH1300 Hallway on three wood 

poles. From near to far on the right-hand side of the image: 

Wood pole with 2 main cameras facing opposite sides of the 

hallway as detailed in Fig. 2, validation camera on wood pole 

#2, and the other validation camera on wood pole #3. 

 

Fig. 3. Camera on wood poles located in Hamerschlag 1300 hallway 

C. Camera Resolution 

We have determined that the minimum resolution necessary 

for our computer vision algorithms to accurately estimate 

occupancy is 1280 by 720p. To arrive at this conclusion, we 

captured sample images at various resolutions using the 

Arducam camera, from the angle at which we plan to mount 

the camera during testing. We then utilized our Yolov5 

detection algorithm to evaluate whether people were correctly 

detected in the varying resolution images. We observed that 

the accuracy of our detection algorithm began to decrease 

below a resolution of 720p, which led us to select this 

resolution for our computer vision pipeline. We also decided 

against using a higher resolution in order to reduce the Wi-Fi 

bandwidth requirements between the Raspberry Pi and the 

laptop running our CV system, so that we can consistently 

meet our latency requirement of 60 seconds. 

D. Camera Frame Rate 

To minimize the burden on our computer vision pipeline, 

we have decided to transmit our live video feed at a frame rate 

of 10 frames per second. If the frame rate were too high, it 

would be difficult for our local computation of the object 

detection and tracking on our laptop to keep up with the 

incoming frames. We believe that a frame rate of 10 fps is 

sufficient for our use case of the Hamerschlag 1300 hallway, 

as this is an indoor environment where pedestrians are 

unlikely to run at high speeds in a narrow hallway. We have 

determined that 10 frames per second is the minimum required 

frame rate for our vision pipeline to accurately estimate 

occupancy, as it is a low framerate where our DeepSORT 

object tracking algorithm can still follow walking people 

between frames, in order to meet our requirement of 80% 

estimation accuracy. 

V. DESIGN TRADE STUDIES 

During the design phase of our project, we took into 

account the implementation complexity, the fulfillment of our 

use-case and design requirements, and the practicality for our 

system when making design decisions. Our aim was to strike a 

balance between these factors with our design choices. 

A. Number of Cameras 

Initially, we designed our imaging system with only a single 

camera to cover all the doors in the Hamerschlag 1300 wing. 

However, after some rounds of testing, we shifted our design to 

use two cameras in conjunction instead, due to multiple reasons. 

Firstly, it was found that a singular camera was unable to 

sufficiently track all the doorways in the Hamerschlag 1300 

wing. The addition of a second camera angle was critical in 

reducing the effects of occlusion between pedestrians, and 

allowed for much greater flexibility in camera positioning now 

that the coverage of doorways can be split between the two 

cameras. Secondly, it was discovered that the incorporation of 

a second camera was not as difficult to implement and 

synchronize as originally estimated. Due to the migration of the 

CV processing to the cloud, it became much easier to coordinate 

the multiple video streams from a single program, and to post 
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our estimation results from the two cameras asynchronously to 

a shared cloud database. Overall, the inclusion of a second 

camera did not overly delay our development process, nor 

significantly spike latency issues. Thus, we have decided to 

revise our system to use two cameras, ensuring that we can still 

meet our use-case requirements consistently. 

B. Camera Model 

We selected the Arducam B0205 as the camera model for 

our imaging system. The specific camera model used in the 

imaging system is not crucial, as long as it fulfills our design 

requirements of covering the vertical span of the 

Hammerschlag hallway and exporting video at a minimum 

resolution of 1280 x 720p and a framerate of 10 FPS. We 

ultimately opted for the Arducam B0205 since it met these 

design requirements and had a small form factor that made it 

easy to mount during testing. Additionally, it could connect 

via USB to the Raspberry Pi, simplifying integration of the 

camera and microcontroller. 

C. Microcontroller 

When it came to choosing a microcontroller for our 

imaging system, we weighed up the options of the Raspberry 

Pi and Jetson Nano. Ultimately, we opted for the Raspberry Pi 

due to several reasons. Firstly, we felt that the extra 

capabilities provided by the GPU on the Jetson Nano would be 

unnecessary for our imaging system. The main function of the 

microcontroller in our design is to transmit live video from a 

connected camera over Wi-Fi, where the actual computer 

vision algorithms are executed. The video processing done on 

the microcontroller is minimal, involving only sending our 

video feed to the web application, thus negating the need for 

the processing capabilities of a GPU. Furthermore, the design 

requirements of our video pipeline are relatively low, with 

only a 720p resolution and a 10FPS framerate, further 

reducing the processing requirements of the microcontroller. 

Lastly, our team members were more familiar with the 

Raspberry Pi, having used the microcontroller before in other 

projects. As such, continuing to use the Raspberry Pi for our 

project would significantly reduce implementation time for 

our imaging system. For all these reasons, we then decided to 

select the Raspberry Pi for our microcontroller. 

D. Object Detection Algorithm 

We decided to choose DeepSORT tracking algorithm due to 

its ability to handle occlusion of objects and prevention of re-

id of tracked objects by running feature extraction of tracked 

person [8], as well as the multiple object tracking capabilities, 

as we expect to track multiple people walking in the hallway. 

Having an accurate tracking algorithm is very important to 

achieving our accuracy requirement of 80% prediction 

accuracy. This is because if our tracker cannot track each 

person appearing in the video with high accuracy, there would 

be compounding error when we try to interpret the results of 

our CV system and result in compounding error in our 

estimations. Therefore, we have chosen to use DeepSORT as 

our object tracking algorithm. However, one drawback is that 

in order to perform feature matching on tracked objects, 

DeepSORT runs a pretrained CNN, which could lead to 

increasing computational complexity, potentially leading to 

failing our latency requirements. As mentioned in the previous 

section on Object Detection model, after switching to a 

smaller detection model and deploying our computer vision 

module onto Google Colab, we were able to meet our 

processing latency requirements of at least 10 frames per 

second. During initial testing, we also explored other tracking 

algorithms such as the MedianFlow tracking algorithm, which 

is a Lucas-Kanade based algorithm built into the OpenCV 

library. However, while the processing speed was faster than 

DeepSORT, it was less accurate with more frequent ID 

switching, causing cascading errors in counting accuracy, 

therefore we eventually chose to use DeepSORT as our 

tracking algorithm despite higher latency (since we were still 

able to meet our latency requirements).  

E. Location of Computer Vision Processing 

During our design phase for the project, we initially 

decided against the possibility of performing object detection 

and tracking on the cloud, mainly due to concerns over high 

latency and cost. However, after switching to two cameras for 

the main vision system, our local laptop was unable to handle 

the increased load from double the amount of input frames, 

causing the system to miss our original 60 second latency 

target. As a result, transferring our computer vision processing 

program from a local laptop to the cloud became necessary. 

When we first thought about performing our CV tasks on 

the cloud, we thought about using the Google Cloud Platform, 

but we found that it lacked the necessary video processing 

modules and was not supported by our CMU 

budget.  Eventually, we discovered a workaround that did not 

involve using GCP. Instead, we used the Flask API for Python 

and ngrok to redirect a web stream of the camera feed from 

the Raspberry Pi to a VM running in Google Colab for 

processing. During testing, we measured the latency of our 

system and found that, contrary to our initial assumptions, we 

were able to reliably meet our 60-second latency requirement. 

This was due to the drastically improved performance 

provided by the GPUs on Google Colab, and the protection 

against network variance from the integrated video buffer in 

the Flask API. Since the benefits of computing on the cloud 

now outweighed the initial costs of moving from local 

computation, we decided to continue with our web tunnel 

setup throughout the remainder of our project. 

F. Prediction Algorithm 

While there were many available machine learning 

classification algorithms for us to use, we decided that in order 

to meet People Counter’s use-case requirements, it was ideal 

to apply decision tree classification. In general, for decision 

tree algorithms, there was no need to produce real valued 

outputs, as prediction only needs categories for occupancy. 

Over a short development cycle (14 weeks), we could not 

gather enough data to train a vastly more complex 

classification system such as neural networks. Additionally, 

given our 60-second latency requirement, we need to be able 
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to predict in a relatively short amount of time, as other parts of 

our system already require a large number of computational 

resources. Furthermore, decision tree classification supports 

multiple categories during classification, making our use-case 

requirement a suitable goal. We believe that occupancy is 

highly correlated to time-based attributes such as time of the 

day, day in the week, classes currently being held in the 

classrooms, and these are usable features for the decision tree 

to learn in order to accurately predict and output a category-

based result. 

VI. SYSTEM IMPLEMENTATION 

A. Camera Module 

The architecture of our hardware components mainly 

consists of the Arducam camera module and our Raspberry Pi 

microcontroller. The configuration of the video stream from 

the camera will be done in by the Python program, with 

OpenCV setting the video connection to have a resolution of 

1280 x 720p. OpenCV will also be responsible for controlling 

the framerate of the video pipeline, pulling new frames from 

the camera at a rate 10 frames per second. These cameras and 

microcontrollers were mounted on wooden poles at angles that 

would provide the clearest images possible for later computer 

vision processing, with each camera pointing down at a 

slightly lowered angle. During our test runs, we calibrated the 

position of these wooden frames to ensure that the pedestrians' 

images were clear and not overlapping or going out of focus. 

After capturing the individual frames using Python, 

OpenCV encodes the frames into JPEG format before posting 

the frames to a web application. The original raw format of the 

images stored by OpenCV is not suitable for transmitting over 

a standard Wi-Fi connection due to its storage inefficiency. 

Therefore, the images are converted into JPEG format to 

reduce the bandwidth requirements for the CMU Wi-Fi. The 

recording program passes the video frames to the Flask API in 

Python, which allows for the video to be available via HTTP 

request. The video stream is provided as a continuous MJPEG 

buffer, from which the receiving end can segment to obtain the 

individual JPEG frames and perform the necessary processing. 

Due to only being able to run Google Colab programs within a 

VM, a web tunnel was necessary in order to facilitate 

communication between the Flask server on the Raspberry Pi 

and the Google Colab instance. To achieve this, Ngrok is used 

to direct our web server with the camera feed from localhost 

on the Raspberry Pi, over the CMU-DEVICE network, to a 

generated URL accessible from any device, including the VM 

on Google Colab. 

B. Computer Vision Module 

There are three main parts to our computer vision module: 

Object Detection, Object Tracking, and translating tracks into 

occupancy data. We set up our camera in a way such that we 

did not need to define the region of interest, and each frame 

from the video feed gets resized in our Camera Module to the 

correct dimensions. Thus, we could simply fetch the frames 

sent through Ngrok web tunnel in our computer vision module 

and process it with our object detection model.  

 Before we could process the video with object detection and 

tracking models, we needed to fetch the video from Ngrok 

web tunnel. This was done through starting background 

threads in our backend python code in Google Colab. These 

threads will continuously fetch byte data of frames from the 

Ngrok tunnel URL by using GET requests and reconstruct the 

image using OpenCV’s function “imdecode”. This part of our 

code was inspired by Han’s project [4]. After fetching the 

data, we will process each frame with our object detection 

model.  
We chose to use YOLOv5n as our object detection model. 

YOLO is an object detection model that is pre-trained on the 

COCO dataset, with the capability to detect 80 different types 

of objects, including people. At first, we ran the YOLOv5n 

model on our local computers to get a grasp on the detection 

accuracy. From the footage we collected, we determined that 

the pretrained model was detecting people well enough as 

under most cases with little occlusion, the model was able to 

detect people and draw bounding boxes around them 

accurately. We used pytorch to load the YOLO model in our 

python backend, as it is the library that YOLOv5 was built to 

support. After running each frame through our object detection 

model, we will store the bounding boxes of people detected in 

the frame with confidence level above a threshold. We 

decided to set a 40 % confidence threshold in our model as 

after testing detection with different confidence levels on 

images, we found that 40% gives little false positives while 

still picking up people walking in the hallway even when they 

are partially occluded (which often happens when they are 

entering/exiting doors). The stored bounding box information 

for each frame gets passed into the object tracker in order to 

track the movement of each person being detected in the 

frame. 
After we have found the bounding boxes for people in each 

frame, we pass the frames into a multi-object tracking 

algorithm to track the movement of each person over multiple 

frames. We used a tracking algorithm called DeepSORT, 

which is available as a python library called “deep-sort-

realtime”. In our computer vision module running on Google 

Colab, we initialized two instances of the tracking algorithm 

for each of the cameras, as each tracker needs to keep states 

specific to the video feed of each camera to track the 

movement of people. The algorithm continuously takes in 

bounding box coordinates and the input frame, and outputs a 

list of tracks in the form of bounding boxes corresponding to 

each person tracked in the current frame, as well as a unique 

track id to identify each person that has appeared in the video. 

The figure below shows an example of the bounding box 

produced by our object detection and tracking system. As 

shown in the figure tracking algorithm labels each person with 

a unique ID which allows us to track the movement of people 

in the frame. With this information, we can count people 

entering and exiting doors in Hamerschlag 1300 Wing. 

In order to translate bounding boxes and unique identifiers 

of each tracked person into people entering and exiting 

different classrooms, there is some additional information that 

https://medium.com/@jayhan_81187/squirrel-squirter-2000-running-an-object-detection-model-on-raspberry-pi-at-30-fps-e38625f3f747
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we need to track, namely the boundary of the doors and the 

direction that each person in the frame is moving towards.  
For each of the entrances, we will define a range of x and y 

coordinates that identifies the bottom of the door. For instance, 

if there is a door at the top left corner of an image, and points 

on the image are represented with coordinates x (in range 0 to 

image_width starting on 0 from the left), and y (in range 0 to 

image_height starting on 0 from the top), then we will model 

the bottom of the door as line from (x1, y1) representing one 

end of the line, and (x2, y2) as the other end of the line. In 

order to accurately determine the bounding coordinates that 

define each door, we inspected video footage on python using 

openCV, and used mouse click events to select the 

coordinates. Once we have determined the coordinates for the 

doors, it will remain constant as our cameras are set up at 

fixed locations and have fixed field of view. 
We also maintain a dictionary of unique track_ids and their 

corresponding movements, done by comparing coordinates 

bounding boxes between the past several frames. In a given 

frame, if we detect that the bounding box coordinates of a 

tracked object crosses the line of the entrance, we will check 

the movement of that track_id stored in our dictionary (see 

Fig.4 for example bounding box). If the movement of the track 

is away from the center of the image (assuming that the 

Hamerschlag 1300 hallway is placed in the middle of the 

image, and doors are on the side of the hallway), then we can 

say that the person is entering the room, and we would 

increase the count for the room. Whereas if the movement of 

the person across a given number of tracked frames is towards 

the center of the image, and away from the line that indicates 

the entrance to a door, we will treat that as a person exiting the 

room. For cases where a person appears in the region 

surrounding the line that defines a door, if we do not have 

historical data associated with the person, we will treat that as 

a person leaving the given room as well, since a person 

appearing at the door without previous detection is likely to be 

out of the field of vision of the camera to start with (meaning 

that the person was not in the hallway hence exiting the room). 
In addition, we also kept lists of track_ids that entered and 

left rooms in order to prevent double counting. This is 

necessary as there could be multiple frames where a person’s 

bounding box crosses the boundary defined by the door, we 

need to ensure that each track_id could only be counted for 

going into a room and going out of a room at most once to 

prevent miscounts. In our system, if a track_id has already 

been counted as going into a room or leaving a room, it cannot 

be counted for the respective actions again. This is the correct 

behavior as if a person enters a room, the track with the 

current track_id for the person ends as they leave the field of 

view of the camera, and the next time they reappear into the 

field of view of the camera, they will be assigned a new 

track_id. Therefore, each tracked object can at most enter a 

room once before being identified as a new tracked object, 

which suggests that each tracked object can at most leave any 

room once.  
After translating bounding boxes outputted by the object 

tracker, we periodically store the updated counts to our 

ElephantSQL database as specified by our use case 

requirements of updating information to the users every 

minute. Periodically updating the database also avoids 

excessive network overheads from modifying the web hosted 

database. The stored information could be retrieved by the 

web application to display the most recent data every minute. 

 

Fig. 4. People Counter’s CV output bounding box of a person 

C. Prediction Module 

We trained a decision tree classifier in order to predict the 

future occupancy in 4 different categories: almost empty, not 

busy, busy, and almost full. We decided to use categorical 

prediction because it most likely does not matter to the user 

whether there are 24 or 25 people out of a room with a 

maximum capacity of 50 people, it would be more useful to 

tell the users if the room is almost full or almost empty for 

them to decide if they want to come to the room to study or 

not. To train the decision tree, we collected data manually for 

the occupancy of the rooms in Hamerschlag 1300 wing at 

different times of the day and on different days of the week. 

The collected data will be used as a reference point to build a 

dataset manually. To train the decision tree, we labeled 

existing data based on features on time-based attributes such 

as time of the day, weekend vs. weekday, if there is class 

currently being held in the space, occupancy level in the room 

during previous hour, etc.  

We included occupancy levels in the room during the 

previous hour in order to support inputting current count as an 

attribute to predict future occupancy and avoid the output of 

the decision tree being deterministic based on time. We 

decided to use the ID3 algorithm to build the decision tree and 

split on the attribute that gives the most information gain. We 

created a dataset with 300 data points for training our model 

and tuned the decision tree using cross validation to get the 

optimal depth. The trained tree will be stored in the backend 

and could be used to make predictions of future occupancy 

levels in almost real-time, since the prediction only requires 

labeling the data and traversing down the trained decision tree 

to make a prediction. This would allow us to meet the latency 

requirements for our system, where the user could get updated 

data every 60 seconds. During program execution, occupancy 
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data for each room is labeled with the aforementioned labels. 

Since most of the attributes are time based, we simply 

translated system time during execution to the labels, and for 

the prior occupancy data, we queried the database to get the 

prior count information. The labeled data gets passed into the 

prediction module to output an occupancy category to be 

displayed on the web application. Due to time constraints of 

this project, we were not able to use data collected from our 

backend to train our decision tree, as there was not enough 

information. If we had a longer period of time to collect data 

with our system, we could also optimize the decision tree 

further by training on more data points.  

D. Web Application Module 

The web application provides a secure, usable, and 

interactive platform for users to view and interact with the 

data that is processed by our backend database. The computed 

data output from the backend will be integrated with the 

frontend using Python as well as the Django framework so 

that the data can be deployed on the server. The basic user 

interface and frontend styling for the web application is done 

on HTML/CSS; we will also be using JavaScript frameworks 

to create an asynchronous web application and ensure the 

main page will be able to automatically update without having 

to manually refresh the page for updated information. 
For the login page, the web application makes use of the 

Django authentication package and customized decorators to 

allow new users to register and old users to login. It will 

protect the system against malicious users by ensuring that all 

users will need to register using an Andrew email address 

provided by CMU. After a user logs in, they will be directed 

to a home page which shows real-time information regarding 

occupancy at the Hamerschlag 1300 wing. The database and 

forms are sent from the cloud-based ElephantSQL database to 

Django’s Model-View-Controller (MVC) system architecture 

through a custom Python script, and the relevant data is 

transmitted and constantly updated over 60-second intervals 

through the database. 

VII. TEST, VERIFICATION AND VALIDATION 

The testing and verification of our system was completed in 

three main phases.  

A. Tests on Pre-recorded Footage 

Our testing process began with pre-recorded footage 

captured by the Raspberry Pi vision system, mounted on top of 

the main Hamerschlag hallway doorway. Tests conducted 

during this initial testing phase were much shorter and simpler 

at around 5 minutes each, to allow for easy manual verification 

and retesting of new developments. For each preliminary test, 

the footage was saved on an external storage device, and 

inputted into the computer vision system after the fact to 

generate the estimations. The main aim of the tests was to 

observe if the computer vision algorithms could detect and track 

pedestrians inside the testing environment. After we have 

verified that the estimated occupancy in each room was within 

our 80% threshold for the entirety of the recording, we moved 

on to the next phase of testing.  

B. Tests on Live Footage 

In the second phase of testing, we simulated the 

Hamerschlag environment's typical activity by conducting 

tests for up to 180 minutes straight. After our preliminary 

tests, we switched to using two cameras for our main vision 

system when we found that it provided better estimation 

accuracy, as well as moved our CV processing framework 

online in order to meet our design requirements for CV 

processing speed. Additionally, we began mounting our 

cameras on movable wooden poles, to increase the number of 

positions in which we can conduct our tests without hurting 

overall reproducibility. We also began to use auxiliary 

verification cameras as a secondary measure of our estimation 

accuracy. These cameras were placed at alternate angles to the 

main cameras and had a more limited view of the entire 

hallway environment, but a more advantageous view of 

specific doors. The additional estimates provided by these 

verification cameras running in parallel were another baseline 

in which we could evaluate the estimation accuracy of our 

system during our test runs.  
Our main priority was to ensure that our computer vision 

pipeline could maintain consistent performance that matches 

the speed of the live video feeds. We also evaluate the 

connection between the Raspberry Pi and Google Colab, as well 

as the ability of our pipeline to operate continuously over an 

extended period of time. Another objective during this phase 

was to collect training data for our predictive module. We 

recorded occupancy levels from the auxiliary cameras during 

our testing sessions and stored them in a database for future use  

in building our decision tree model. At this stage, we did not 

yet have the web application fully operational, and so we did 

not test our predictive module at the time. Our goal for this 

testing phase was to ensure that our primary computer vision 

system could estimate occupancy within 80% accuracy of the 

actual occupancy (determined either manually or with the 

verification cameras). 

C. Tests with Prediction Module 

In the final phase of our testing, we fully integrated our 

prediction component. The testing setup remained the same as 

the previous phase, in which we placed our camera mounts 

with the main and verification cameras in the same locations. 

At the beginning of each hour of the testing process, the 

prediction algorithm forecasted which of the four capacity 

categories each room in the Hamerschlag wing would fall into 

one hour in the future. At the start of the following hour, this 

prediction will be compared to a manual measurement of the 

occupancy, or an estimate provided by the verification 

cameras if manual verification was unavailable at the time. 

Our validation target for the predictive model during this 

testing phase was to accurately predict the occupancy 

categories of the three rooms with auxiliary cameras, one hour 

into the future, at an 80% success rate throughout the testing 

process. 
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D. Results 

TABLE II. SUMMARY OF FINAL TESTING RESULTS 

 

 

Fig. 5. Final testing results visualized in double column chart 

Table II and Fig. 5 demonstrate the estimation accuracy 

results of our testing runs, shown as a table and graph. We 

employed two verification methods during our testing: manual 

and automatic. Manual verification involved watching the 

stored recordings of the testing runs to determine the actual 

changes in occupancy. In contrast, the automatic method used 

the occupancy changes tracked by the verification cameras 

during the tests as the ground truth for the changes in 

occupancy. Both methods were performed for the majority of 

the shorter tests that were under 100 minutes, except for one 

run in which the verification cameras were not available. For 

the longer runs, it became infeasible to manually review such 

a lengthy video, and so only automatic verification was 

performed.  

Our testing runs were able to surpass the use case 

requirement of 80% estimation accuracy, with the average 

estimation accuracy of all the runs being 90.33%. The 

accuracy results obtained from automatic verification were 

comparable to those from manual verification for the runs 

where both methods were used, with the average margin of 

error between the two methods being 5.13%. As such, we can 

confidently say that our longer testing runs exceeded our 80% 

estimation accuracy target despite having not manually 

verified them, considering that the automatically verified 

accuracy for both runs were more than twice margin of error 

from the target 80%. 

 

Fig. 6. Final testing results comparing estimation and prediction accuracy 

visualized in double column chart 

 

 

Fig. 6 is a graph of our final estimation and prediction 

results compared to their use case requirements. The 

verification of the prediction system was done on the 

combination of all the test runs, after we had gathered as much 

occupancy data to train our final model as possible. Overall, 

our test runs, our final model accurately predicted the future 

occupancy of the Hamerschlag wing rooms 339 out of 373 

times, for a final accuracy of 83.33%. This satisfied our use-

case requirement of predicting within the correct category at 

least 80% of the time. Since our project had a shorter timeline 

and because our model improved over time with additional 

test data, it is likely that we could have achieved even higher 

predictive accuracy if we had more time for testing. 
Lastly, through the design and optimization of our hardware 

and software components, along with the selection of 

lightweight computer vision algorithms, we were easily able to 

meet our use-case requirement for system latency. Through 

our test runs, our system had an end-to-end latency of under 3 

seconds on average, and a maximum latency of 10 seconds 

during times of high network load, and the data transfer 

latency from hardware to the web application is exactly 60 

seconds, which we have manually set in our ElephantSQL 

database script to have 1 update per 60 seconds.  

A more comprehensive testing log and notes can be found 

in Table IV, the last component of this final report. 

VIII. PROJECT MANAGEMENT 

A. Schedule 

The detailed schedule for the project is presented in the 

second to last page of the document. Since the submission of 

the Design Review report, the team has made some changes to 

the overall schedule of the project development cycle. On April 

14, 2023, we were told that plans with our original setup, which 

included adhering cameras to the walls of the hallway at 

Hamerschlag Hall, cannot be continued. In light of this abrupt 

change near the end of the semester, we had to adapt our testing 

Run length 

(minutes) 

Manual Verification Automatic 

Verification 

25 96.55% N/A 

10 81.82% 88.89% 

20 89.19% 93.94% 

30 87.81% 91.67% 

60 91.07% 96.08% 

90 93.62% 88.64% 

170 N/A 91.40% 

180 N/A 93.33% 
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and development schedule to fit the time needed to revamp parts 

of our system (including building and installing wood poles, 

moving backend testing to cloud, as well as changing the door 

logic since the camera angles have changed). The hardware 

setup and configuration were integrated with the backend logic 

in Week 9 (March 13-19), and the backend logic and database 

were connected to the web application in Week 15 (April 24-

30). 

B. Team Member Responsibilities 

David Feng worked on configuring the camera modules 

with the Raspberry Pi 4’s, calibrating the camera configuration 

to the testing environment of Hamerschlag Hall 1300 wing, 

setting up the Ngrok tunnels, and connecting the video feed to 

the backend software through wireless internet. 
Tianzhuo Li is in charge of developing and running the CV-

based algorithm for object detection. Additionally, he will 

work on translating the CV output to estimation data and 

implementing the prediction algorithm with machine learning 

models in the backend. Tianzhuo also contributed to the 

prediction algorithm and the connection of the backend 

database to the front end. 
Gary Qin is responsible for connecting backend data output 

to the local frontend as well as the server-side web application 

powered by Django. In addition, he will be working on 

developing the entire web application user interface using 

HTML/CSS. Gary’s secondary responsibility includes 

working on parts of the prediction subsystem and testing. 
All members roughly spent the same amount of time being 

physically present in HH1300 to test our backend logic. 

C. Bill of Materials and Budget 

The bill of materials used for this project and the budget 

allocation is displayed in detail in Table II in the last page of 

this document. 

D. Risk Management (used to be Risk Mitigation Plans in 

Design Document) 

The team has identified 4 critical risk factors for this 

project: the speed and efficiency of the backend in processing 

live video feed, the potential of algorithmic bias being present 

in the computer vision algorithm, the privacy concerns of 

people present in the camera frame and the users who interact 

with the web application, and the overall challenges of 

designing a project that exhibits both beneficence and non-

maleficence to the people involved and their surroundings. 
We are committed to improving the performance of our 

system and optimizing the latency of individual subsystems. 

One of the aforementioned trade-offs include moving backend 

testing from local to Google Colaboratory using Ngrok 

tunnels. As a result of this change, we were able to 

significantly reduce the risk of the system lagging behind as 

we were able to increase the average frames per second (FPS) 

measurement to well above 10 because Google Colab, when 

coupled with the GPU-enabled CV processing techniques, 

processes video frames much faster than relying on local CPU. 
During the testing and validation stage of our project, we 

constantly kept a vigilant eye on any potential trace of 

algorithmic bias present in the CV algorithm when performing 

object detection. We were on the lookout of any sort of 

algorithmic bias, including discrimination of race, gender, and 

height, that causes the algorithm to be incapable of detecting a 

person under various confidence levels. After finding no trace 

of algorithmic bias, we also slightly lowered the confidence 

level parameter of the backend detection algorithm as a 

precautionary approach to dealing with bias during testing and 

validation of our integrated system.  
We care about the privacy of students, staff, and faculty 

members whom the system interacts with one way or another. 

Therefore, we have not stored any live camera feed in a 

database during testing – the camera feeds are sent to the 

software backend for processing only. When validating the 

accuracy of our system, we relied on the percentage of 

matched outputs between the main cameras and the set of 

validation cameras rather than putting an emphasis on viewing 

the video output and manually counting the number of people 

who enter or exit doors located within the HH1300 hallway. 

We mounted the camera in a way during testing so that it does 

not intrude into the normal movement of people in the 

Hamerschlag 1300 wing, and we also put away the cameras 

and any peripheral hardware, including wood poles used to 

secure the camera location, whenever testing is not in session. 
Lastly, the purpose of People Counter is to bring accurate 

information to users. In the meantime, we would not want to 

do any harm to the people that may be involved and the 

environment where testing and deployment take place. When 

we were notified by the department and course staff that we 

would not be allowed to directly tape our cameras to the walls 

of the HH1300 hallway, we responded swiftly by taking down 

our original setup and building wood poles which allow us to 

mount the cameras and Raspberry Pi’s. Even though the notice 

occurred abruptly near the end of the semester, we mitigated 

the potential risks by moving quickly to a new setup. In 

hindsight, our project was able to improve through this 

change, as the added wood poles granted more flexibility to 

the location of the system, allowing it to be deployed 

elsewhere, such as for the final demo.  

IX. ETHICAL ISSUES 

Given the nature of our project idea and design being 

centered around the movement of humans, there are a number 

of areas where the project could have been exposed to ethical 

challenges. Notable ethical issues include the use of cameras 

in a public setting, the usage and manipulation of a database 

focused on keeping track of the number of people, as well as 

algorithmic bias. 
Given that People Counter largely depends on the use of 

cameras to track people moving in and out of the rooms in the 

HH1300 hallway, people who enter the tracking camera’s field 

view could have been the most vulnerable to failure or 

misapplication. While the cameras were only installed in the 

Hamerschlag 1300 wing, there still likely be people who are 

unaware of the cameras’ presence and those who are reluctant 

to be captured by a camera. We took a number of precautions 

to ensure that people’s privacy is protected and not encroached 
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on. For example, we printed out signs that explicitly state the 

purpose of the cameras as well as an assurance that the 

cameras will not be turned on outside of testing times. After 

switching the system to include wood poles as a method to fix 

the cameras in place, we only moved the wood poles to the 

hallway when all 3 team members were physically present in 

the HH1300 wing for testing, and we moved the poles back to 

a corner of the ECE capstone room once testing of the day was 

completed. We also purchased the smallest cameras possible 

to ensure they would not cause physical harm to people and do 

not interfere with the normal movement of people in the 

hallway. By taking these necessary steps, we were able to 

minimize the impact that our cameras may have created on 

people who come into the HH1300 hallway. 
In formulating the database tables for estimation and 

prediction, we also considered the ethical concerns related to 

usage and manipulation of data, especially ones that may be 

private. In the end, we decided to not include any information 

other than time and the number of people, namely video feed 

and the identity of individuals. Compared to the one most 

available to us (which includes video feeds), the choice of not 

storing any live video in our dataset helps protect the privacy 

of individuals who enter the field view of our cameras. 

Specifically, while our cameras are unable to automatically 

blur out people’s faces and their physical traits, we did not 

incorporate any private or personal information of people into 

the process of producing a working project.  
Additionally, we took many steps to make sure our Django-

based web application is secure. We added a custom decorator 

to the login and register functions so that the scope of the web 

application is only limited to people who possess an email 

address that ends with “@andrew.cmu.edu”. Furthermore, we 

made sure that the web application will not be susceptible to 

XSS or CSRF attacks by implementing CSRF tokens and 

sanitizing data inputs.  
Finally, we can report that after over 65 hours of cumulative 

testing time, we have not observed any trace of noticeable 

algorithmic bias in the CV algorithms we have used. Potential 

algorithmic bias could have been harmful to the stakeholders 

of the project, as it could potentially discriminate against the 

gender, racial background, height, and body type of people 

being captured by the cameras. In conclusion, we believe that 

we have minimized the ethical impact of People Counter and 

created a project that is both beneficent and non-maleficent to 

the CMU community. 

X. RELATED WORK 

Even though we believe that the estimation and prediction 

of usage and occupancy in enclosed spaces have a high 

demand and a variety of potential use cases, there does not 

seem to be a considerable number of existing applications or 

systems in the market. Specifically, we found no similar 

products currently being used on Carnegie Mellon’s campus 

that help estimate and predict the occupancy of lab spaces and 

lecture rooms. Nevertheless, there exist systems and products 

that are slightly different from People Counter in both use 

cases and implementation methods. 

Zensors, a spin-off company from CMU’s School of 

Computer Science, uses existing surveillance cameras near 

airport security checkpoints to estimate the wait time needed 

for passengers to go through security [9]. It uses computer 

vision algorithms deployed on AWS cloud to process live 

information captured on monitoring cameras, and the 

computed output is displayed on a big TV screen in front of 

the security lines at Pittsburgh International Airport that gives 

travelers a real-time estimation of the expected security wait 

times. To our best knowledge, in contrast to People Counter’s 

prediction feature, Zensors’ airport security product does not 

predict the wait time of security lines in advance and does not 

have an interactive web application that allows users to select 

a future time for wait time prediction. 
In addition, the paper by Saralegui et al. describes a case 

study of using IoT sensors and energy consumption of rooms to 

predict the rooms’ future usage [10]. The researchers utilize a 

variety of parameters and historical data of an IoT smart home 

system, namely thermal behavior, energy usage, and humidity, 

to monitor and predict room occupancy data. The results show 

the prediction accuracy maintaining at around an 79% clip 

across multiple tests. This study shows that there are more ways 

to estimate and predict occupancy in rooms, but the accuracy is 

somewhat limited given that certain people movement can be 

unpredictable. 

XI. SUMMARY 

We have shown People Counter to be a feasible system to 

estimate and predict the number of people in multiple enclosed 

spaces within one single hallway. As mentioned earlier in the 

report, the system has met and, in some circumstances, 

exceeded expectations from both a design point of view and the 

use cases. Originally planned for the incorporation of 2 cameras 

in total, People Counter improved in its scale after the design 

review stage when we added 2 more validation cameras to the 

system to provide it with more stability and a better platform 

for accuracy verification. Given that the unstable nature of 

many open-source CV libraries and algorithms, there were 

some limitations to the accuracy of the system in terms of both 

estimation and prediction. There could also have been certain 

manual human errors that caused a potential decrease in 

estimation accuracy. We manually drawn the “lines” that 

defined a door’s boundary during testing, and even though we 

spent many hours optimizing the lines for each door that 

connected individual rooms to the hallway, the fact that there 

was no automated method to define the entry points of doors 

that would yield the highest detection accuracy with respect to 

our cameras could have slightly harmed the total accuracy of 

the system.  

A. Future work 

We will try to continue working on the project after the 

semester and to further improve the scope of its use cases so 

that it can be deployed elsewhere on campus as long as our 

personal budgets can sustain. The public demo is a great 

opportunity for us to test out the feasibility of having our project 

implemented in a non-enclosed setting, as the Wiegand Gym at 

https://www.zensors.com/company/about-zensors-vision-ai
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359482/
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CMU is a large space without separate rooms.  

As of now, the project has already been upgraded in a sense 

that it has become much more technically complex that we 

had previously envisioned. People Counter’s design leverages 

the combination of live camera feed, a backend that computes 

occupancy data with CV and machine learning algorithms, and 

an interactive web-based application to deliver both real-time 

estimation and 1-hour predictions of the occupancy levels at 

Hamerschlag Hall’s 1300 lab spaces at CMU.  

On a compact college campus like that of Carnegie Mellon, 

it can be difficult for students to find an ideal place to do some 

work or relax. For them, it would be a huge waste of time and 

energy if they come to their favorite spot to study, like the 

Hamerschlag 1300 wing for ECE students, only to find a 

packed room.  

In the future, we believe that a more mature version of 

People Counter can help fully resolve this issue, as students 

will have remote access to real-time occupancy data and will 

even be able to view the 1-hour predicted occupancy of the lab 

spaces. With the help from People Counter, students can make 

a calculated decision with better confidence on whether they 

would like to travel to Hamerschlag 1300 wing to spend their 

time, and thereafter they will be able to find more time doing 

what they truly enjoy, instead of wasting much of their 

valuable time on the road. 

B. Lessons Learned 

Validation was definitely one of the more challenging 

phases of the project, and we may even argue that validating 

People Counter was more difficult than integrating a working 

system. Even though manually verifying the accuracy may 

have been the most accurate method, it was rather unrealistic 

given we would not be able to prove the level of accuracy 

achieved in one single test is sustainable long-term. Therefore, 

we came up with a Python script that allowed for automatic 

matching of outputs from the database of the main cameras 

and that of the validation cameras. This method was a lot 

easier in terms of validating the system, as some of our tests 

that were longer in length did not have to be manually verified 

anymore. We were glad that we made the changes to our 

system after the design review phase, as the alterations have 

definitely paid off – we were able to successfully test all 

components of the system and achieve most, if not all, of the 

goals we set out for ourselves. 

GLOSSARY OF ACRONYMS 

 

ECE – Electrical and Computer Engineering 

HH – Hamerschlag Hall 

FPS – Frames per Second  

RPi – Raspberry Pi  

XSS – Cross-Site Scripting 

GCP – Google Cloud Platform 

CSRF – Cross-Site Request Forgery 

CV – Computer Vision 

VM – Virtual Machine  

MVC - Model-View-Controller 
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TABLE III.  BILL OF MATERIALS 

Description Model # Manufacturer Quantity Cost @ Total 

Arducam 1080P Camera 1 B0829HZ3Q7 Arducam 4 $34.99 $139.96 

Arducam 4K 8MP Camera 2 B09BR1RNSN Arducam 1 $38.99 $38.99 

10ft Extension Cord 1 L6LAC034-DT-R AmazonBasics 3 $8.87 $26.61 

60yd Duck Tape 1 394475 Shurtape Tech. 1 $7.95 $7.95 

Raspberry Pi 2-8GB 1 N/A Raspberry Pi 4 $0 $0 

Grand Total $213.51 

1. Added 2 1080P cameras, 3 extension cords, 1 duck tape, and 2 Raspberry Pi’s after design 

review report in light of increasing the scope of the project to incorporate 4 cameras in total 

2. Not used in final system, as one of the nails of the camera’s rotatable base fell off during 

testing 
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Link to Comprehensive Test Log 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 

 

 

 
 

https://docs.google.com/spreadsheets/d/1GkNQCVbhIB-WdfYOof6etNPhFIYzFgwg3qviahZGNYM
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