
18-500 Final Project Report: Team C0 05/05/2023

1

Abstract—A system capable of estimating and predicting the

occupancy of lab spaces at Carnegie Mellon’s Hamerschlag 1300

wing. People Counter helps users save travel time by presenting a

real-time estimation of room occupancy and an interactive element

that predicts ahead of time whether the spaces will be busy. The

system combines video feed processing, computer vision, as well as

a web application deployed on server; For both estimation and

prediction, People Counter surpassed the 80% accuracy

benchmark, and we have shown that it can deliver up-to-date

occupancy levels and useful prediction data for users.

Index Terms— Arducam, classification, computer vision,

Google Colaboratory, Ngrok, web application, object detection,

prediction, Raspberry Pi, room occupancy, people movement,

video processing

I. INTRODUCTION

Several travel-related applications such as Google Maps and

the New York MTA TrainTime mobile app have evolved in

recent years to introduce real-time capacity tracking and

estimation features. However, these applications currently do

not combine the usage of historical data and real-time video

processing techniques to make accurate predictions. Google

Maps’ prediction algorithm relies on users’ historical location

data [1], while the TrainTime mobile application is only able

to show real-time occupancy data of the train cars [2] and does

not have the capability to let users know whether their train is

going to be packed ahead of time.
Thus, we propose People Counter, a system that uses both

live camera feed to CV processing as well as analysis of

historical data to count, estimate, and – most importantly –

predict the occupancy levels of the Hamerschlag Hall 1300

hallway at Carnegie Mellon University. The system is an

amalgamation of computer software and digital hardware

technologies, as the live video feed will be captured by

Arducam B0205 cameras and fed into the local backend

through wireless connection. Then, a backend program that is

able to recognize a person passing through a door for both

entering and exiting scenarios through computer vision

algorithms, namely Yolo and SORT, will be run on Google

Colab, a cloud platform for interactive computing. The

resulting data is stored on a ElephantSQL database

management system in the cloud, and at last the occupancy

and prediction data will be connected to a frontend web user

interface through Django’s model-view-controller (MVC)

design pattern.

People Counter’s intended users are students enrolled at

Carnegie Mellon University who would like to learn about the

current and predicted occupancy data of the 1300 hallway at

Hamerschlag, which is among the most popular study spots

for students in the Electrical & Computer Engineering

department. Through our observation over the past several

years of students who enter the hallway, many students would

struggle to find a seat when the labs are in session or when the

rooms are busy. They tend to quickly exit when no seats are

available. Over time, the time wasted walking to and from

study spaces like the 1300 hallway has become a major pain

point for students. That is why we believe People Counter has

the capability to solve this user pain point.
By interacting with People Counter’s web application, users

will not only be able to know the accurate current occupancy

data of the Hamerschlag 1300 hallway but also obtain the

predicted occupancy of the two individual lab spaces in the

Hamerschlag 1300 wing at a time of the user’s choosing up to

1 hour in advance. With this information, users will be able to

make a better-informed decision about whether they would

like to go study at the Hamerschlag labs. The project’s

ultimate goal is for our users to save valuable time during their

day that they would otherwise spend on traveling to and from

Hamerschlag without the data from People Counter, only to

find a hallway packed with studious individuals at times.

II. USE-CASE REQUIREMENTS

We formulated the use-case requirements for People

Counter based on the needs of our intended users. One of the

critical use-case requirements for our system is to have a

greater than 80% occupancy estimation accuracy for the two

enclosed lab spaces on the Hamerschlag 1300 wing. The

reason behind the 80% benchmark is due to the fact that the

larger of the two lab rooms has a capacity of 50 people, while

the smaller one only has a maximum occupancy of 25. The

80% benchmark would allow for a maximum of 5-people

margin for error in the smaller lab space which would suffice

the needs for our target users, as a difference in occupancy of

2 or 3 individuals would in general not affect a user’s decision

of whether or not they would want to spend time studying at

the 1300 wing. However, if the estimation accuracy metric is

set at a much lower mark, such as 50%, then it would not be

sufficient for our use case, because the difference between 10

and 20 people in a room with 25 seats in total is significant for

users who hope to find a less busy, relatively quiet place to do

People Counter: Count, Estimate, and Predict

Occupancy of Rooms in Hallway

David Feng, Tianzhuo Li, Gary Qin

Department of Electrical and Computer Engineering, Carnegie Mellon University

https://support.google.com/business/answer/6263531?hl=en#:~:text=To%20determine%20popular%20times%2C%20wait,enough%20visits%20from%20these%20users.
https://new.mta.info/press-release/mta-unveils-new-capacity-tracking-and-real-time-location-features-in-metro-north-traintime-app

18-500 Final Project Report: Team C0 05/05/2023

2

work. Additionally, the 80% benchmark must be reached

consistently for at least 3 hours without dropping below the

threshold, which is the amount of time that we believe

constitute a middle ground between the maximum amount of

time we are allowed to perform continuous testing and the

minimum amount of time needed to show that our system is

adequately consistent and accurate.
Other than real-time estimation, another key feature of the

People Counter system is same-day occupancy prediction for

the two lab rooms on the Hamerschlag 1300 wing. We plan to

implement our prediction feature through categorization,

characterizing occupancy levels of the rooms into 4

categories: “almost empty” (up to 19.9% full), “not busy”

(20%-39.9% full), “busy” (40%-69.9% full), and “almost full”

(70% full or more). The prediction feature is limited to 1 hour

in advance and provided to the users in 15-minute intervals, so

if the current time is 5:00PM, users will be able to view the

predicted category of the rooms when the time is 5:15, 5:30,

5:45, and 6:00 on the web application. The aforementioned

categorization and the percentage of capacity associated with

each category are not set arbitrarily. Both lab rooms on the

1300 wings at Hamerschlag do not have individual, separate

seating areas but rather feature contiguous work benches

intended for better collaboration. If there are more than 70%

of the total seats taken in one of the lab spaces, this would

mean that the room is effectively almost full, because there

will rarely be two consecutive occupied seats (having both

neighboring seats taken is less ideal for individual studying)

[3] when total occupancy is above 70%. On the other hand,

when the occupancy levels of a room are below 40%, then it is

guaranteed that there will be at least 1 seat in the room where

there is at least 1 unoccupied neighboring seat. This would

warrant a “not busy” categorization. Similar to the live

estimation benchmark, we set the prediction accuracy to 80%,

which means that when a user selects any time later during a

particular day, the predicted occupancy categorization must

exactly match the actual percentage of the rooms at the chosen

time more than 80% of the time over a 15-hour period.
Lastly, another use-case requirement that, if not achieved,

would impact the usability of our application is the overall

latency of the system. Ideally, the latency from hardware

video processing to end users shall be less than 1 minute (60

seconds) at any given time when the server of People

Counter’s web application is running. Given the nature of

people movement (moving in and out of a room on foot takes

at least several seconds), we do not expect any non-malicious

user to be checking People Counter’s web application in an

interval less than 60 seconds for the up-to-date information

regarding real-time occupancy estimation. However, given

that occupancy in a room, especially multi-use spaces like the

Hamerschlag 1300 labs, can shift swiftly (such as the start and

end of class sessions), it could potentially be beneficial to

users if the total latency of our system is consistently kept at

under 60 seconds.

TABLE I. SUMMARY OF USE-CASE REQUIREMENTS

Name Specification Requirement

Estimation

Accuracy

Users will receive via the web

application an estimate of how

many people are currently in the

HH1300 rooms that is at least

80% accurate (i.e., a margin of

error that is less than or equal to

20% from the actual number of

people in the rooms. If there are

in fact 50 people in total, People

Counter’s estimate should fall

between 40 and 60.) The 80%

benchmark shall be reached

continuously for at least 3 hours.

80%

Prediction

Accuracy

Users will receive a categorical

prediction out of the 4 possible

values (almost empty, not busy,

busy, almost full) for a time that

is at most 60 minutes in the

future from the current time (the

4 times displayed are 15, 30, 45,

and 60 minutes from current

time). We expect that the

category users receive for all of

these times falls into the

accurate category 80% of the

time.

80%

Latency Users will receive the up-to-date

occupancy estimation on the

web application that has a

maximum lag of 60 seconds (1

minute) whenever a change in

the actual occupancy of the

rooms occurs.

60 seconds

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our product contains 4 main sub-systems: camera module,

computer vision module, prediction module, and web

application. Our camera module consists of two ArduCAM

B0205 cameras, each connected to a Raspberry Pi, which will

send live video feed to our backend through Ngrok web tunnel

running on the Raspberry Pi. The camera set-up is shown in

figure 1 on page 4. Since the design review, we added another

camera into our camera module in order to improve accuracy of

our computer vision module, we also started using Ngrok to

transmit video footage in order to access the video feed on

Google Colaboratory. Our computer vision module is deployed

on Google Colab, which uses object detection and object

tracking to count the number of people entering and exiting the

four monitored rooms in Hamerschlag 1300 Wing. We update

the count data related to each room every minute to a database

hosted by ElephantSQL. Since the design review, we moved

our computer vision module to Google Colab in order to

improve processing speeds to meet our FPS requirements. We

also started using a web hosted database instead of a local

database in order to communicate data from the computer

vision subsystem to our prediction module and web application.

https://www-jstor-org.cmu.idm.oclc.org/stable/26893773

18-500 Final Project Report: Team C0 05/05/2023

3

The prediction module uses a decision tree, which we trained

on prior occupancy data for rooms in Hamerschlag 1300 Wing.

We can predict future occupancy levels for the four monitored

rooms within 1 hour based on the current time and occupancy.

The web application uses the Django framework, and gets

occupancy data from the database, it has access to the trained

decision tree to get the predicted occupancy levels. CMU users

can register for an account on the web app and access real-time

occupancy and future occupancy data on the web application.

Figure 2 on page 4 shows the detailed submodules within each

subsystem. Please note an image of our physical system will be

included in the Design Requirements Section.

18-500 Final Project Report: Team C0 05/05/2023

4

Fig. 1. Overall system block diagram

Fig. 2. Approximate location and setup of main cameras in HH1300 hallway

18-500 Final Project Report: Team C0 05/05/2023

5

IV. DESIGN REQUIREMENTS

The primary goal of our design requirements is to ensure

that the system we develop meets the estimation and

prediction accuracy as well as the overall latency requirements

previously mentioned for our use case of the Hamerschlag

1300 hallway.

A. Number of Cameras

In order to maximize the accuracy of the system as well as

other use-case requirements, we have increased the scale and

capability of our system after the design review stage to

incorporate 4 total cameras. The final system that we build

shall contain 2 main cameras (of which we will be measuring

the estimation accuracy) and 2 validation cameras that will be

used to test whether the output from the main cameras are

consistent. Given that the validation cameras will have a field

of view that is different from the main cameras, their purpose

is to validate the flow of people in and out of the rooms in the

HH1300 wing. During testing, the validation cameras and the

main cameras will run simultaneously. After each test, the

database file from the validation cameras will be matched with

that of the main cameras through a script written in Python to

compare the outputs from each set of cameras.

B. Location of Cameras

To image the Hamerschlag corridor completely, we will

utilize a vision system that comprises a single camera placed

directly above the main entrance way of the hallway. The

camera will face the main hallway, with a slightly angled

downward view. The purpose of positioning the camera at this

location is to capture a single image that encompasses all

room entrances, enabling our computer vision systems to

receive as much information as possible. This approach aims

to maximize the accuracy of our estimation and prediction

systems though this maximized coverage. Fig. 3 shows all four

cameras being installed in the HH1300 Hallway on three wood

poles. From near to far on the right-hand side of the image:

Wood pole with 2 main cameras facing opposite sides of the

hallway as detailed in Fig. 2, validation camera on wood pole

#2, and the other validation camera on wood pole #3.

Fig. 3. Camera on wood poles located in Hamerschlag 1300 hallway

C. Camera Resolution

We have determined that the minimum resolution necessary

for our computer vision algorithms to accurately estimate

occupancy is 1280 by 720p. To arrive at this conclusion, we

captured sample images at various resolutions using the

Arducam camera, from the angle at which we plan to mount

the camera during testing. We then utilized our Yolov5

detection algorithm to evaluate whether people were correctly

detected in the varying resolution images. We observed that

the accuracy of our detection algorithm began to decrease

below a resolution of 720p, which led us to select this

resolution for our computer vision pipeline. We also decided

against using a higher resolution in order to reduce the Wi-Fi

bandwidth requirements between the Raspberry Pi and the

laptop running our CV system, so that we can consistently

meet our latency requirement of 60 seconds.

D. Camera Frame Rate

To minimize the burden on our computer vision pipeline,

we have decided to transmit our live video feed at a frame rate

of 10 frames per second. If the frame rate were too high, it

would be difficult for our local computation of the object

detection and tracking on our laptop to keep up with the

incoming frames. We believe that a frame rate of 10 fps is

sufficient for our use case of the Hamerschlag 1300 hallway,

as this is an indoor environment where pedestrians are

unlikely to run at high speeds in a narrow hallway. We have

determined that 10 frames per second is the minimum required

frame rate for our vision pipeline to accurately estimate

occupancy, as it is a low framerate where our DeepSORT

object tracking algorithm can still follow walking people

between frames, in order to meet our requirement of 80%

estimation accuracy.

V. DESIGN TRADE STUDIES

During the design phase of our project, we took into

account the implementation complexity, the fulfillment of our

use-case and design requirements, and the practicality for our

system when making design decisions. Our aim was to strike a

balance between these factors with our design choices.

A. Number of Cameras

Initially, we designed our imaging system with only a single

camera to cover all the doors in the Hamerschlag 1300 wing.

However, after some rounds of testing, we shifted our design to

use two cameras in conjunction instead, due to multiple reasons.

Firstly, it was found that a singular camera was unable to

sufficiently track all the doorways in the Hamerschlag 1300

wing. The addition of a second camera angle was critical in

reducing the effects of occlusion between pedestrians, and

allowed for much greater flexibility in camera positioning now

that the coverage of doorways can be split between the two

cameras. Secondly, it was discovered that the incorporation of

a second camera was not as difficult to implement and

synchronize as originally estimated. Due to the migration of the

CV processing to the cloud, it became much easier to coordinate

the multiple video streams from a single program, and to post

18-500 Final Project Report: Team C0 05/05/2023

6

our estimation results from the two cameras asynchronously to

a shared cloud database. Overall, the inclusion of a second

camera did not overly delay our development process, nor

significantly spike latency issues. Thus, we have decided to

revise our system to use two cameras, ensuring that we can still

meet our use-case requirements consistently.

B. Camera Model

We selected the Arducam B0205 as the camera model for

our imaging system. The specific camera model used in the

imaging system is not crucial, as long as it fulfills our design

requirements of covering the vertical span of the

Hammerschlag hallway and exporting video at a minimum

resolution of 1280 x 720p and a framerate of 10 FPS. We

ultimately opted for the Arducam B0205 since it met these

design requirements and had a small form factor that made it

easy to mount during testing. Additionally, it could connect

via USB to the Raspberry Pi, simplifying integration of the

camera and microcontroller.

C. Microcontroller

When it came to choosing a microcontroller for our

imaging system, we weighed up the options of the Raspberry

Pi and Jetson Nano. Ultimately, we opted for the Raspberry Pi

due to several reasons. Firstly, we felt that the extra

capabilities provided by the GPU on the Jetson Nano would be

unnecessary for our imaging system. The main function of the

microcontroller in our design is to transmit live video from a

connected camera over Wi-Fi, where the actual computer

vision algorithms are executed. The video processing done on

the microcontroller is minimal, involving only sending our

video feed to the web application, thus negating the need for

the processing capabilities of a GPU. Furthermore, the design

requirements of our video pipeline are relatively low, with

only a 720p resolution and a 10FPS framerate, further

reducing the processing requirements of the microcontroller.

Lastly, our team members were more familiar with the

Raspberry Pi, having used the microcontroller before in other

projects. As such, continuing to use the Raspberry Pi for our

project would significantly reduce implementation time for

our imaging system. For all these reasons, we then decided to

select the Raspberry Pi for our microcontroller.

D. Object Detection Algorithm

We decided to choose DeepSORT tracking algorithm due to

its ability to handle occlusion of objects and prevention of re-

id of tracked objects by running feature extraction of tracked

person [8], as well as the multiple object tracking capabilities,

as we expect to track multiple people walking in the hallway.

Having an accurate tracking algorithm is very important to

achieving our accuracy requirement of 80% prediction

accuracy. This is because if our tracker cannot track each

person appearing in the video with high accuracy, there would

be compounding error when we try to interpret the results of

our CV system and result in compounding error in our

estimations. Therefore, we have chosen to use DeepSORT as

our object tracking algorithm. However, one drawback is that

in order to perform feature matching on tracked objects,

DeepSORT runs a pretrained CNN, which could lead to

increasing computational complexity, potentially leading to

failing our latency requirements. As mentioned in the previous

section on Object Detection model, after switching to a

smaller detection model and deploying our computer vision

module onto Google Colab, we were able to meet our

processing latency requirements of at least 10 frames per

second. During initial testing, we also explored other tracking

algorithms such as the MedianFlow tracking algorithm, which

is a Lucas-Kanade based algorithm built into the OpenCV

library. However, while the processing speed was faster than

DeepSORT, it was less accurate with more frequent ID

switching, causing cascading errors in counting accuracy,

therefore we eventually chose to use DeepSORT as our

tracking algorithm despite higher latency (since we were still

able to meet our latency requirements).

E. Location of Computer Vision Processing

During our design phase for the project, we initially

decided against the possibility of performing object detection

and tracking on the cloud, mainly due to concerns over high

latency and cost. However, after switching to two cameras for

the main vision system, our local laptop was unable to handle

the increased load from double the amount of input frames,

causing the system to miss our original 60 second latency

target. As a result, transferring our computer vision processing

program from a local laptop to the cloud became necessary.

When we first thought about performing our CV tasks on

the cloud, we thought about using the Google Cloud Platform,

but we found that it lacked the necessary video processing

modules and was not supported by our CMU

budget. Eventually, we discovered a workaround that did not

involve using GCP. Instead, we used the Flask API for Python

and ngrok to redirect a web stream of the camera feed from

the Raspberry Pi to a VM running in Google Colab for

processing. During testing, we measured the latency of our

system and found that, contrary to our initial assumptions, we

were able to reliably meet our 60-second latency requirement.

This was due to the drastically improved performance

provided by the GPUs on Google Colab, and the protection

against network variance from the integrated video buffer in

the Flask API. Since the benefits of computing on the cloud

now outweighed the initial costs of moving from local

computation, we decided to continue with our web tunnel

setup throughout the remainder of our project.

F. Prediction Algorithm

While there were many available machine learning

classification algorithms for us to use, we decided that in order

to meet People Counter’s use-case requirements, it was ideal

to apply decision tree classification. In general, for decision

tree algorithms, there was no need to produce real valued

outputs, as prediction only needs categories for occupancy.

Over a short development cycle (14 weeks), we could not

gather enough data to train a vastly more complex

classification system such as neural networks. Additionally,

given our 60-second latency requirement, we need to be able

18-500 Final Project Report: Team C0 05/05/2023

7

to predict in a relatively short amount of time, as other parts of

our system already require a large number of computational

resources. Furthermore, decision tree classification supports

multiple categories during classification, making our use-case

requirement a suitable goal. We believe that occupancy is

highly correlated to time-based attributes such as time of the

day, day in the week, classes currently being held in the

classrooms, and these are usable features for the decision tree

to learn in order to accurately predict and output a category-

based result.

VI. SYSTEM IMPLEMENTATION

A. Camera Module

The architecture of our hardware components mainly

consists of the Arducam camera module and our Raspberry Pi

microcontroller. The configuration of the video stream from

the camera will be done in by the Python program, with

OpenCV setting the video connection to have a resolution of

1280 x 720p. OpenCV will also be responsible for controlling

the framerate of the video pipeline, pulling new frames from

the camera at a rate 10 frames per second. These cameras and

microcontrollers were mounted on wooden poles at angles that

would provide the clearest images possible for later computer

vision processing, with each camera pointing down at a

slightly lowered angle. During our test runs, we calibrated the

position of these wooden frames to ensure that the pedestrians'

images were clear and not overlapping or going out of focus.

After capturing the individual frames using Python,

OpenCV encodes the frames into JPEG format before posting

the frames to a web application. The original raw format of the

images stored by OpenCV is not suitable for transmitting over

a standard Wi-Fi connection due to its storage inefficiency.

Therefore, the images are converted into JPEG format to

reduce the bandwidth requirements for the CMU Wi-Fi. The

recording program passes the video frames to the Flask API in

Python, which allows for the video to be available via HTTP

request. The video stream is provided as a continuous MJPEG

buffer, from which the receiving end can segment to obtain the

individual JPEG frames and perform the necessary processing.

Due to only being able to run Google Colab programs within a

VM, a web tunnel was necessary in order to facilitate

communication between the Flask server on the Raspberry Pi

and the Google Colab instance. To achieve this, Ngrok is used

to direct our web server with the camera feed from localhost

on the Raspberry Pi, over the CMU-DEVICE network, to a

generated URL accessible from any device, including the VM

on Google Colab.

B. Computer Vision Module

There are three main parts to our computer vision module:

Object Detection, Object Tracking, and translating tracks into

occupancy data. We set up our camera in a way such that we

did not need to define the region of interest, and each frame

from the video feed gets resized in our Camera Module to the

correct dimensions. Thus, we could simply fetch the frames

sent through Ngrok web tunnel in our computer vision module

and process it with our object detection model.

 Before we could process the video with object detection and

tracking models, we needed to fetch the video from Ngrok

web tunnel. This was done through starting background

threads in our backend python code in Google Colab. These

threads will continuously fetch byte data of frames from the

Ngrok tunnel URL by using GET requests and reconstruct the

image using OpenCV’s function “imdecode”. This part of our

code was inspired by Han’s project [4]. After fetching the

data, we will process each frame with our object detection

model.
We chose to use YOLOv5n as our object detection model.

YOLO is an object detection model that is pre-trained on the

COCO dataset, with the capability to detect 80 different types

of objects, including people. At first, we ran the YOLOv5n

model on our local computers to get a grasp on the detection

accuracy. From the footage we collected, we determined that

the pretrained model was detecting people well enough as

under most cases with little occlusion, the model was able to

detect people and draw bounding boxes around them

accurately. We used pytorch to load the YOLO model in our

python backend, as it is the library that YOLOv5 was built to

support. After running each frame through our object detection

model, we will store the bounding boxes of people detected in

the frame with confidence level above a threshold. We

decided to set a 40 % confidence threshold in our model as

after testing detection with different confidence levels on

images, we found that 40% gives little false positives while

still picking up people walking in the hallway even when they

are partially occluded (which often happens when they are

entering/exiting doors). The stored bounding box information

for each frame gets passed into the object tracker in order to

track the movement of each person being detected in the

frame.
After we have found the bounding boxes for people in each

frame, we pass the frames into a multi-object tracking

algorithm to track the movement of each person over multiple

frames. We used a tracking algorithm called DeepSORT,

which is available as a python library called “deep-sort-

realtime”. In our computer vision module running on Google

Colab, we initialized two instances of the tracking algorithm

for each of the cameras, as each tracker needs to keep states

specific to the video feed of each camera to track the

movement of people. The algorithm continuously takes in

bounding box coordinates and the input frame, and outputs a

list of tracks in the form of bounding boxes corresponding to

each person tracked in the current frame, as well as a unique

track id to identify each person that has appeared in the video.

The figure below shows an example of the bounding box

produced by our object detection and tracking system. As

shown in the figure tracking algorithm labels each person with

a unique ID which allows us to track the movement of people

in the frame. With this information, we can count people

entering and exiting doors in Hamerschlag 1300 Wing.

In order to translate bounding boxes and unique identifiers

of each tracked person into people entering and exiting

different classrooms, there is some additional information that

https://medium.com/@jayhan_81187/squirrel-squirter-2000-running-an-object-detection-model-on-raspberry-pi-at-30-fps-e38625f3f747

18-500 Final Project Report: Team C0 05/05/2023

8

we need to track, namely the boundary of the doors and the

direction that each person in the frame is moving towards.
For each of the entrances, we will define a range of x and y

coordinates that identifies the bottom of the door. For instance,

if there is a door at the top left corner of an image, and points

on the image are represented with coordinates x (in range 0 to

image_width starting on 0 from the left), and y (in range 0 to

image_height starting on 0 from the top), then we will model

the bottom of the door as line from (x1, y1) representing one

end of the line, and (x2, y2) as the other end of the line. In

order to accurately determine the bounding coordinates that

define each door, we inspected video footage on python using

openCV, and used mouse click events to select the

coordinates. Once we have determined the coordinates for the

doors, it will remain constant as our cameras are set up at

fixed locations and have fixed field of view.
We also maintain a dictionary of unique track_ids and their

corresponding movements, done by comparing coordinates

bounding boxes between the past several frames. In a given

frame, if we detect that the bounding box coordinates of a

tracked object crosses the line of the entrance, we will check

the movement of that track_id stored in our dictionary (see

Fig.4 for example bounding box). If the movement of the track

is away from the center of the image (assuming that the

Hamerschlag 1300 hallway is placed in the middle of the

image, and doors are on the side of the hallway), then we can

say that the person is entering the room, and we would

increase the count for the room. Whereas if the movement of

the person across a given number of tracked frames is towards

the center of the image, and away from the line that indicates

the entrance to a door, we will treat that as a person exiting the

room. For cases where a person appears in the region

surrounding the line that defines a door, if we do not have

historical data associated with the person, we will treat that as

a person leaving the given room as well, since a person

appearing at the door without previous detection is likely to be

out of the field of vision of the camera to start with (meaning

that the person was not in the hallway hence exiting the room).
In addition, we also kept lists of track_ids that entered and

left rooms in order to prevent double counting. This is

necessary as there could be multiple frames where a person’s

bounding box crosses the boundary defined by the door, we

need to ensure that each track_id could only be counted for

going into a room and going out of a room at most once to

prevent miscounts. In our system, if a track_id has already

been counted as going into a room or leaving a room, it cannot

be counted for the respective actions again. This is the correct

behavior as if a person enters a room, the track with the

current track_id for the person ends as they leave the field of

view of the camera, and the next time they reappear into the

field of view of the camera, they will be assigned a new

track_id. Therefore, each tracked object can at most enter a

room once before being identified as a new tracked object,

which suggests that each tracked object can at most leave any

room once.
After translating bounding boxes outputted by the object

tracker, we periodically store the updated counts to our

ElephantSQL database as specified by our use case

requirements of updating information to the users every

minute. Periodically updating the database also avoids

excessive network overheads from modifying the web hosted

database. The stored information could be retrieved by the

web application to display the most recent data every minute.

Fig. 4. People Counter’s CV output bounding box of a person

C. Prediction Module

We trained a decision tree classifier in order to predict the

future occupancy in 4 different categories: almost empty, not

busy, busy, and almost full. We decided to use categorical

prediction because it most likely does not matter to the user

whether there are 24 or 25 people out of a room with a

maximum capacity of 50 people, it would be more useful to

tell the users if the room is almost full or almost empty for

them to decide if they want to come to the room to study or

not. To train the decision tree, we collected data manually for

the occupancy of the rooms in Hamerschlag 1300 wing at

different times of the day and on different days of the week.

The collected data will be used as a reference point to build a

dataset manually. To train the decision tree, we labeled

existing data based on features on time-based attributes such

as time of the day, weekend vs. weekday, if there is class

currently being held in the space, occupancy level in the room

during previous hour, etc.

We included occupancy levels in the room during the

previous hour in order to support inputting current count as an

attribute to predict future occupancy and avoid the output of

the decision tree being deterministic based on time. We

decided to use the ID3 algorithm to build the decision tree and

split on the attribute that gives the most information gain. We

created a dataset with 300 data points for training our model

and tuned the decision tree using cross validation to get the

optimal depth. The trained tree will be stored in the backend

and could be used to make predictions of future occupancy

levels in almost real-time, since the prediction only requires

labeling the data and traversing down the trained decision tree

to make a prediction. This would allow us to meet the latency

requirements for our system, where the user could get updated

data every 60 seconds. During program execution, occupancy

18-500 Final Project Report: Team C0 05/05/2023

9

data for each room is labeled with the aforementioned labels.

Since most of the attributes are time based, we simply

translated system time during execution to the labels, and for

the prior occupancy data, we queried the database to get the

prior count information. The labeled data gets passed into the

prediction module to output an occupancy category to be

displayed on the web application. Due to time constraints of

this project, we were not able to use data collected from our

backend to train our decision tree, as there was not enough

information. If we had a longer period of time to collect data

with our system, we could also optimize the decision tree

further by training on more data points.

D. Web Application Module

The web application provides a secure, usable, and

interactive platform for users to view and interact with the

data that is processed by our backend database. The computed

data output from the backend will be integrated with the

frontend using Python as well as the Django framework so

that the data can be deployed on the server. The basic user

interface and frontend styling for the web application is done

on HTML/CSS; we will also be using JavaScript frameworks

to create an asynchronous web application and ensure the

main page will be able to automatically update without having

to manually refresh the page for updated information.
For the login page, the web application makes use of the

Django authentication package and customized decorators to

allow new users to register and old users to login. It will

protect the system against malicious users by ensuring that all

users will need to register using an Andrew email address

provided by CMU. After a user logs in, they will be directed

to a home page which shows real-time information regarding

occupancy at the Hamerschlag 1300 wing. The database and

forms are sent from the cloud-based ElephantSQL database to

Django’s Model-View-Controller (MVC) system architecture

through a custom Python script, and the relevant data is

transmitted and constantly updated over 60-second intervals

through the database.

VII. TEST, VERIFICATION AND VALIDATION

The testing and verification of our system was completed in

three main phases.

A. Tests on Pre-recorded Footage

Our testing process began with pre-recorded footage

captured by the Raspberry Pi vision system, mounted on top of

the main Hamerschlag hallway doorway. Tests conducted

during this initial testing phase were much shorter and simpler

at around 5 minutes each, to allow for easy manual verification

and retesting of new developments. For each preliminary test,

the footage was saved on an external storage device, and

inputted into the computer vision system after the fact to

generate the estimations. The main aim of the tests was to

observe if the computer vision algorithms could detect and track

pedestrians inside the testing environment. After we have

verified that the estimated occupancy in each room was within

our 80% threshold for the entirety of the recording, we moved

on to the next phase of testing.

B. Tests on Live Footage

In the second phase of testing, we simulated the

Hamerschlag environment's typical activity by conducting

tests for up to 180 minutes straight. After our preliminary

tests, we switched to using two cameras for our main vision

system when we found that it provided better estimation

accuracy, as well as moved our CV processing framework

online in order to meet our design requirements for CV

processing speed. Additionally, we began mounting our

cameras on movable wooden poles, to increase the number of

positions in which we can conduct our tests without hurting

overall reproducibility. We also began to use auxiliary

verification cameras as a secondary measure of our estimation

accuracy. These cameras were placed at alternate angles to the

main cameras and had a more limited view of the entire

hallway environment, but a more advantageous view of

specific doors. The additional estimates provided by these

verification cameras running in parallel were another baseline

in which we could evaluate the estimation accuracy of our

system during our test runs.
Our main priority was to ensure that our computer vision

pipeline could maintain consistent performance that matches

the speed of the live video feeds. We also evaluate the

connection between the Raspberry Pi and Google Colab, as well

as the ability of our pipeline to operate continuously over an

extended period of time. Another objective during this phase

was to collect training data for our predictive module. We

recorded occupancy levels from the auxiliary cameras during

our testing sessions and stored them in a database for future use

in building our decision tree model. At this stage, we did not

yet have the web application fully operational, and so we did

not test our predictive module at the time. Our goal for this

testing phase was to ensure that our primary computer vision

system could estimate occupancy within 80% accuracy of the

actual occupancy (determined either manually or with the

verification cameras).

C. Tests with Prediction Module

In the final phase of our testing, we fully integrated our

prediction component. The testing setup remained the same as

the previous phase, in which we placed our camera mounts

with the main and verification cameras in the same locations.

At the beginning of each hour of the testing process, the

prediction algorithm forecasted which of the four capacity

categories each room in the Hamerschlag wing would fall into

one hour in the future. At the start of the following hour, this

prediction will be compared to a manual measurement of the

occupancy, or an estimate provided by the verification

cameras if manual verification was unavailable at the time.

Our validation target for the predictive model during this

testing phase was to accurately predict the occupancy

categories of the three rooms with auxiliary cameras, one hour

into the future, at an 80% success rate throughout the testing

process.

18-500 Final Project Report: Team C0 05/05/2023

10

D. Results

TABLE II. SUMMARY OF FINAL TESTING RESULTS

Fig. 5. Final testing results visualized in double column chart

Table II and Fig. 5 demonstrate the estimation accuracy

results of our testing runs, shown as a table and graph. We

employed two verification methods during our testing: manual

and automatic. Manual verification involved watching the

stored recordings of the testing runs to determine the actual

changes in occupancy. In contrast, the automatic method used

the occupancy changes tracked by the verification cameras

during the tests as the ground truth for the changes in

occupancy. Both methods were performed for the majority of

the shorter tests that were under 100 minutes, except for one

run in which the verification cameras were not available. For

the longer runs, it became infeasible to manually review such

a lengthy video, and so only automatic verification was

performed.

Our testing runs were able to surpass the use case

requirement of 80% estimation accuracy, with the average

estimation accuracy of all the runs being 90.33%. The

accuracy results obtained from automatic verification were

comparable to those from manual verification for the runs

where both methods were used, with the average margin of

error between the two methods being 5.13%. As such, we can

confidently say that our longer testing runs exceeded our 80%

estimation accuracy target despite having not manually

verified them, considering that the automatically verified

accuracy for both runs were more than twice margin of error

from the target 80%.

Fig. 6. Final testing results comparing estimation and prediction accuracy

visualized in double column chart

Fig. 6 is a graph of our final estimation and prediction

results compared to their use case requirements. The

verification of the prediction system was done on the

combination of all the test runs, after we had gathered as much

occupancy data to train our final model as possible. Overall,

our test runs, our final model accurately predicted the future

occupancy of the Hamerschlag wing rooms 339 out of 373

times, for a final accuracy of 83.33%. This satisfied our use-

case requirement of predicting within the correct category at

least 80% of the time. Since our project had a shorter timeline

and because our model improved over time with additional

test data, it is likely that we could have achieved even higher

predictive accuracy if we had more time for testing.
Lastly, through the design and optimization of our hardware

and software components, along with the selection of

lightweight computer vision algorithms, we were easily able to

meet our use-case requirement for system latency. Through

our test runs, our system had an end-to-end latency of under 3

seconds on average, and a maximum latency of 10 seconds

during times of high network load, and the data transfer

latency from hardware to the web application is exactly 60

seconds, which we have manually set in our ElephantSQL

database script to have 1 update per 60 seconds.

A more comprehensive testing log and notes can be found

in Table IV, the last component of this final report.

VIII. PROJECT MANAGEMENT

A. Schedule

The detailed schedule for the project is presented in the

second to last page of the document. Since the submission of

the Design Review report, the team has made some changes to

the overall schedule of the project development cycle. On April

14, 2023, we were told that plans with our original setup, which

included adhering cameras to the walls of the hallway at

Hamerschlag Hall, cannot be continued. In light of this abrupt

change near the end of the semester, we had to adapt our testing

Run length

(minutes)

Manual Verification Automatic

Verification

25 96.55% N/A

10 81.82% 88.89%

20 89.19% 93.94%

30 87.81% 91.67%

60 91.07% 96.08%

90 93.62% 88.64%

170 N/A 91.40%

180 N/A 93.33%

18-500 Final Project Report: Team C0 05/05/2023

11

and development schedule to fit the time needed to revamp parts

of our system (including building and installing wood poles,

moving backend testing to cloud, as well as changing the door

logic since the camera angles have changed). The hardware

setup and configuration were integrated with the backend logic

in Week 9 (March 13-19), and the backend logic and database

were connected to the web application in Week 15 (April 24-

30).

B. Team Member Responsibilities

David Feng worked on configuring the camera modules

with the Raspberry Pi 4’s, calibrating the camera configuration

to the testing environment of Hamerschlag Hall 1300 wing,

setting up the Ngrok tunnels, and connecting the video feed to

the backend software through wireless internet.
Tianzhuo Li is in charge of developing and running the CV-

based algorithm for object detection. Additionally, he will

work on translating the CV output to estimation data and

implementing the prediction algorithm with machine learning

models in the backend. Tianzhuo also contributed to the

prediction algorithm and the connection of the backend

database to the front end.
Gary Qin is responsible for connecting backend data output

to the local frontend as well as the server-side web application

powered by Django. In addition, he will be working on

developing the entire web application user interface using

HTML/CSS. Gary’s secondary responsibility includes

working on parts of the prediction subsystem and testing.
All members roughly spent the same amount of time being

physically present in HH1300 to test our backend logic.

C. Bill of Materials and Budget

The bill of materials used for this project and the budget

allocation is displayed in detail in Table II in the last page of

this document.

D. Risk Management (used to be Risk Mitigation Plans in

Design Document)

The team has identified 4 critical risk factors for this

project: the speed and efficiency of the backend in processing

live video feed, the potential of algorithmic bias being present

in the computer vision algorithm, the privacy concerns of

people present in the camera frame and the users who interact

with the web application, and the overall challenges of

designing a project that exhibits both beneficence and non-

maleficence to the people involved and their surroundings.
We are committed to improving the performance of our

system and optimizing the latency of individual subsystems.

One of the aforementioned trade-offs include moving backend

testing from local to Google Colaboratory using Ngrok

tunnels. As a result of this change, we were able to

significantly reduce the risk of the system lagging behind as

we were able to increase the average frames per second (FPS)

measurement to well above 10 because Google Colab, when

coupled with the GPU-enabled CV processing techniques,

processes video frames much faster than relying on local CPU.
During the testing and validation stage of our project, we

constantly kept a vigilant eye on any potential trace of

algorithmic bias present in the CV algorithm when performing

object detection. We were on the lookout of any sort of

algorithmic bias, including discrimination of race, gender, and

height, that causes the algorithm to be incapable of detecting a

person under various confidence levels. After finding no trace

of algorithmic bias, we also slightly lowered the confidence

level parameter of the backend detection algorithm as a

precautionary approach to dealing with bias during testing and

validation of our integrated system.
We care about the privacy of students, staff, and faculty

members whom the system interacts with one way or another.

Therefore, we have not stored any live camera feed in a

database during testing – the camera feeds are sent to the

software backend for processing only. When validating the

accuracy of our system, we relied on the percentage of

matched outputs between the main cameras and the set of

validation cameras rather than putting an emphasis on viewing

the video output and manually counting the number of people

who enter or exit doors located within the HH1300 hallway.

We mounted the camera in a way during testing so that it does

not intrude into the normal movement of people in the

Hamerschlag 1300 wing, and we also put away the cameras

and any peripheral hardware, including wood poles used to

secure the camera location, whenever testing is not in session.
Lastly, the purpose of People Counter is to bring accurate

information to users. In the meantime, we would not want to

do any harm to the people that may be involved and the

environment where testing and deployment take place. When

we were notified by the department and course staff that we

would not be allowed to directly tape our cameras to the walls

of the HH1300 hallway, we responded swiftly by taking down

our original setup and building wood poles which allow us to

mount the cameras and Raspberry Pi’s. Even though the notice

occurred abruptly near the end of the semester, we mitigated

the potential risks by moving quickly to a new setup. In

hindsight, our project was able to improve through this

change, as the added wood poles granted more flexibility to

the location of the system, allowing it to be deployed

elsewhere, such as for the final demo.

IX. ETHICAL ISSUES

Given the nature of our project idea and design being

centered around the movement of humans, there are a number

of areas where the project could have been exposed to ethical

challenges. Notable ethical issues include the use of cameras

in a public setting, the usage and manipulation of a database

focused on keeping track of the number of people, as well as

algorithmic bias.
Given that People Counter largely depends on the use of

cameras to track people moving in and out of the rooms in the

HH1300 hallway, people who enter the tracking camera’s field

view could have been the most vulnerable to failure or

misapplication. While the cameras were only installed in the

Hamerschlag 1300 wing, there still likely be people who are

unaware of the cameras’ presence and those who are reluctant

to be captured by a camera. We took a number of precautions

to ensure that people’s privacy is protected and not encroached

18-500 Final Project Report: Team C0 05/05/2023

12

on. For example, we printed out signs that explicitly state the

purpose of the cameras as well as an assurance that the

cameras will not be turned on outside of testing times. After

switching the system to include wood poles as a method to fix

the cameras in place, we only moved the wood poles to the

hallway when all 3 team members were physically present in

the HH1300 wing for testing, and we moved the poles back to

a corner of the ECE capstone room once testing of the day was

completed. We also purchased the smallest cameras possible

to ensure they would not cause physical harm to people and do

not interfere with the normal movement of people in the

hallway. By taking these necessary steps, we were able to

minimize the impact that our cameras may have created on

people who come into the HH1300 hallway.
In formulating the database tables for estimation and

prediction, we also considered the ethical concerns related to

usage and manipulation of data, especially ones that may be

private. In the end, we decided to not include any information

other than time and the number of people, namely video feed

and the identity of individuals. Compared to the one most

available to us (which includes video feeds), the choice of not

storing any live video in our dataset helps protect the privacy

of individuals who enter the field view of our cameras.

Specifically, while our cameras are unable to automatically

blur out people’s faces and their physical traits, we did not

incorporate any private or personal information of people into

the process of producing a working project.
Additionally, we took many steps to make sure our Django-

based web application is secure. We added a custom decorator

to the login and register functions so that the scope of the web

application is only limited to people who possess an email

address that ends with “@andrew.cmu.edu”. Furthermore, we

made sure that the web application will not be susceptible to

XSS or CSRF attacks by implementing CSRF tokens and

sanitizing data inputs.
Finally, we can report that after over 65 hours of cumulative

testing time, we have not observed any trace of noticeable

algorithmic bias in the CV algorithms we have used. Potential

algorithmic bias could have been harmful to the stakeholders

of the project, as it could potentially discriminate against the

gender, racial background, height, and body type of people

being captured by the cameras. In conclusion, we believe that

we have minimized the ethical impact of People Counter and

created a project that is both beneficent and non-maleficent to

the CMU community.

X. RELATED WORK

Even though we believe that the estimation and prediction

of usage and occupancy in enclosed spaces have a high

demand and a variety of potential use cases, there does not

seem to be a considerable number of existing applications or

systems in the market. Specifically, we found no similar

products currently being used on Carnegie Mellon’s campus

that help estimate and predict the occupancy of lab spaces and

lecture rooms. Nevertheless, there exist systems and products

that are slightly different from People Counter in both use

cases and implementation methods.

Zensors, a spin-off company from CMU’s School of

Computer Science, uses existing surveillance cameras near

airport security checkpoints to estimate the wait time needed

for passengers to go through security [9]. It uses computer

vision algorithms deployed on AWS cloud to process live

information captured on monitoring cameras, and the

computed output is displayed on a big TV screen in front of

the security lines at Pittsburgh International Airport that gives

travelers a real-time estimation of the expected security wait

times. To our best knowledge, in contrast to People Counter’s

prediction feature, Zensors’ airport security product does not

predict the wait time of security lines in advance and does not

have an interactive web application that allows users to select

a future time for wait time prediction.
In addition, the paper by Saralegui et al. describes a case

study of using IoT sensors and energy consumption of rooms to

predict the rooms’ future usage [10]. The researchers utilize a

variety of parameters and historical data of an IoT smart home

system, namely thermal behavior, energy usage, and humidity,

to monitor and predict room occupancy data. The results show

the prediction accuracy maintaining at around an 79% clip

across multiple tests. This study shows that there are more ways

to estimate and predict occupancy in rooms, but the accuracy is

somewhat limited given that certain people movement can be

unpredictable.

XI. SUMMARY

We have shown People Counter to be a feasible system to

estimate and predict the number of people in multiple enclosed

spaces within one single hallway. As mentioned earlier in the

report, the system has met and, in some circumstances,

exceeded expectations from both a design point of view and the

use cases. Originally planned for the incorporation of 2 cameras

in total, People Counter improved in its scale after the design

review stage when we added 2 more validation cameras to the

system to provide it with more stability and a better platform

for accuracy verification. Given that the unstable nature of

many open-source CV libraries and algorithms, there were

some limitations to the accuracy of the system in terms of both

estimation and prediction. There could also have been certain

manual human errors that caused a potential decrease in

estimation accuracy. We manually drawn the “lines” that

defined a door’s boundary during testing, and even though we

spent many hours optimizing the lines for each door that

connected individual rooms to the hallway, the fact that there

was no automated method to define the entry points of doors

that would yield the highest detection accuracy with respect to

our cameras could have slightly harmed the total accuracy of

the system.

A. Future work

We will try to continue working on the project after the

semester and to further improve the scope of its use cases so

that it can be deployed elsewhere on campus as long as our

personal budgets can sustain. The public demo is a great

opportunity for us to test out the feasibility of having our project

implemented in a non-enclosed setting, as the Wiegand Gym at

https://www.zensors.com/company/about-zensors-vision-ai
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359482/

18-500 Final Project Report: Team C0 05/05/2023

13

CMU is a large space without separate rooms.

As of now, the project has already been upgraded in a sense

that it has become much more technically complex that we

had previously envisioned. People Counter’s design leverages

the combination of live camera feed, a backend that computes

occupancy data with CV and machine learning algorithms, and

an interactive web-based application to deliver both real-time

estimation and 1-hour predictions of the occupancy levels at

Hamerschlag Hall’s 1300 lab spaces at CMU.

On a compact college campus like that of Carnegie Mellon,

it can be difficult for students to find an ideal place to do some

work or relax. For them, it would be a huge waste of time and

energy if they come to their favorite spot to study, like the

Hamerschlag 1300 wing for ECE students, only to find a

packed room.

In the future, we believe that a more mature version of

People Counter can help fully resolve this issue, as students

will have remote access to real-time occupancy data and will

even be able to view the 1-hour predicted occupancy of the lab

spaces. With the help from People Counter, students can make

a calculated decision with better confidence on whether they

would like to travel to Hamerschlag 1300 wing to spend their

time, and thereafter they will be able to find more time doing

what they truly enjoy, instead of wasting much of their

valuable time on the road.

B. Lessons Learned

Validation was definitely one of the more challenging

phases of the project, and we may even argue that validating

People Counter was more difficult than integrating a working

system. Even though manually verifying the accuracy may

have been the most accurate method, it was rather unrealistic

given we would not be able to prove the level of accuracy

achieved in one single test is sustainable long-term. Therefore,

we came up with a Python script that allowed for automatic

matching of outputs from the database of the main cameras

and that of the validation cameras. This method was a lot

easier in terms of validating the system, as some of our tests

that were longer in length did not have to be manually verified

anymore. We were glad that we made the changes to our

system after the design review phase, as the alterations have

definitely paid off – we were able to successfully test all

components of the system and achieve most, if not all, of the

goals we set out for ourselves.

GLOSSARY OF ACRONYMS

ECE – Electrical and Computer Engineering

HH – Hamerschlag Hall

FPS – Frames per Second

RPi – Raspberry Pi

XSS – Cross-Site Scripting

GCP – Google Cloud Platform

CSRF – Cross-Site Request Forgery

CV – Computer Vision

VM – Virtual Machine

MVC - Model-View-Controller

REFERENCES

[1] “Popular Times, wait times, and visit duration,” Google Business Profile

Help. [Online]. Available:

https://support.google.com/business/answer/6263531?hl=en#:~:text=To

%20determine%20popular%20times%2C%20wait,enough%20visits%20

from%20these%20users. (accessed Mar 03, 2023).
[2] “MTA unveils new capacity tracking and real-time location features in

Metro-North Traintime App,” MTA. [Online]. Available:

https://new.mta.info/press-release/mta-unveils-new-capacity-tracking-

and-real-time-location-features-in-metro-north-traintime-app. (accessed

Mar 03, 2023).
[3] L. Lim, M. Kim, J. Choi, and C. Zimring, “Seat-choosing behaviors and

visibility,” JSTOR. [Online]. Available:

https://www.jstor.org/stable/26893773. (accessed Mar 04, 2023).

[4] J. Han, “‘Squirrel Squirter 2000: Running an Object Detection Model on

Raspberry Pi at 30+ FPS.,’” Medium, Sep. 04, 2019.
https://medium.com/@jayhan_81187/squirrel-squirter-2000-running-an-

object-detection-model-on-raspberry-pi-at-30-fps-e38625f3f747.

(accessed May 03, 2023).

[5] M. G. Naftali, J. S. Sulistyawan, and K. Julian, “Comparison of Object

Detection Algorithms for Street-level Objects,” Aug. 2022. (accessed
Mar 04, 2023).

[6] “YOLOv5 on CPUs: Sparsifying to Achieve GPU-Level Performance

and a Smaller Footprint,” Neural Magic - Software-Delivered AI, 07-

Sep-2022. [Online]. Available:

https://neuralmagic.com/blog/benchmark-yolov5-on-cpus-with-
deepsparse/. (accessed Mar 03, 2023).

[7] Ahmed, Khaled R. Smart Pothole Detection Using Deep Learning Based

on Dilated Convolution.

https://www.researchgate.net/publication/357093620_Smart_Pothole_D

etection_Using_Deep_Learning_Based_on_Dilated_Convolution. (acces
sed Mar 03, 2023).

[8] Wojke, Nicolai, et al. “Simple Online and Realtime Tracking with a

Deep Association Metric.” ArXiv.org, 21 Mar. 2017,

https://arxiv.org/abs/1703.07402. (accessed Mar 03, 2023).
[9] “About Zensors Vision AI,” www.zensors.com.

https://www.zensors.com/company/about-zensors-vision-ai

(accessed May 03, 2023).

[10] U. Saralegui, M. Antón, O. Arbelaitz, and J. Muguerza, “Smart meeting

room usage information and prediction by modelling occupancy
profiles,” Sensors, vol. 19, no. 2, Jan. 2019. (accessed Mar 04, 2023).

https://arxiv.org/abs/1703.07402

18-500 Final Project Report: Team C0 05/05/2023

14

TABLE III. BILL OF MATERIALS

Description Model # Manufacturer Quantity Cost @ Total

Arducam 1080P Camera 1 B0829HZ3Q7 Arducam 4 $34.99 $139.96

Arducam 4K 8MP Camera 2 B09BR1RNSN Arducam 1 $38.99 $38.99

10ft Extension Cord 1 L6LAC034-DT-R AmazonBasics 3 $8.87 $26.61

60yd Duck Tape 1 394475 Shurtape Tech. 1 $7.95 $7.95

Raspberry Pi 2-8GB 1 N/A Raspberry Pi 4 $0 $0

Grand Total $213.51

1. Added 2 1080P cameras, 3 extension cords, 1 duck tape, and 2 Raspberry Pi’s after design

review report in light of increasing the scope of the project to incorporate 4 cameras in total

2. Not used in final system, as one of the nails of the camera’s rotatable base fell off during

testing

18-500 Final Project Report: Team C0 05/05/2023

15

18-500 Final Project Report: Team C0 05/05/2023

16

Link to Comprehensive Test Log

https://docs.google.com/spreadsheets/d/1GkNQCVbhIB-WdfYOof6etNPhFIYzFgwg3qviahZGNYM

	People Counter: Count, Estimate, and Predict Occupancy of Rooms in Hallway
	I. Introduction
	II. Use-Case Requirements
	III. Architecture and/or Principle of Operation
	IV. Design Requirements
	A. Number of Cameras
	B. Location of Cameras
	C. Camera Resolution
	D. Camera Frame Rate

	V. Design Trade Studies
	A. Number of Cameras
	B. Camera Model
	C. Microcontroller
	D. Object Detection Algorithm
	E. Location of Computer Vision Processing
	F. Prediction Algorithm

	VI. System Implementation
	A. Camera Module
	B. Computer Vision Module
	C. Prediction Module
	D. Web Application Module

	VII. Test, Verification and Validation
	A. Tests on Pre-recorded Footage
	B. Tests on Live Footage
	C. Tests with Prediction Module
	D. Results

	VIII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Bill of Materials and Budget
	D. Risk Management (used to be Risk Mitigation Plans in Design Document)

	IX. Ethical Issues
	X. Related Work
	XI. Summary
	A. Future work
	B. Lessons Learned

	Glossary of Acronyms
	References

