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Abstract — A system capable of estimating and predicting the 

occupancy of lab spaces at CMU’s Hamerschlag 1300 wing. People 

Counter helps users save travel time by presenting a real-time 

estimation of room occupancy and an interactive element that 

predicts ahead of time whether the spaces will be busy. The system 

combines video feed processing, computer vision, as well as a web 

application deployed on server; it will be more than 80% accurate 

for both estimation and prediction to deliver up-to-date occupancy 

levels and useful predicted data for users. 

Index Terms — ArduCAM, classification, computer vision, 

interactive web application, object detection, prediction, room 

occupancy, video processing 

I. INTRODUCTION 

Several travel-related applications such as Google Maps and 

the New York MTA TrainTime mobile app have evolved in 

recent years to introduce real-time capacity tracking and 

estimation features. However, these applications currently do 

not combine the usage of historical data and real-time video 

processing techniques to make accurate predictions. Google 

Maps’ prediction algorithm relies on users’ historical location 

data [1], while the TrainTime mobile application is only able 

to show real-time occupancy data of the train cars [2] and does 

not have the capability to let users know whether their train is 

going to be packed ahead of time.  
Thus, we propose People Counter, a system that uses both 

live camera feed to CV processing as well as analysis of 

historical data to count, estimate, and – most importantly – 

predict the occupancy levels of the Hamerschlag Hall 1300 

hallway at Carnegie Mellon University. The system is an 

amalgamation of computer software and digital hardware 

technologies, as the live video feed will be captured by 

ArduCAM B0205 cameras and fed into the local backend 

through wireless connection, then the backend program will 

process the data through SQLite as well as computer vision 

algorithms such as Yolo and SORT for object detection, and 

lastly the occupancy and prediction data will be sent to the 

frontend web user interface. 
People Counter’s intended users will be students enrolled at 

Carnegie Mellon University who would like to know about the 

current and predicted occupancy data of the 1300 hallway at 

Hamerschlag, which is among the most popular study spots 

for students in the Electrical & Computer Engineering 

department. Through our observation over the past several 

years of students who enter the hallway, many students would 

struggle to find a seat when the labs are in session or when the 

rooms are busy. They tend to quickly exit when no seats are 

available. Over time, the time wasted walking to and from 

study spaces like the 1300 hallway has become a major pain 

point for students. That is why we believe People Counter has 

the capability to solve this user pain point. By interacting with 

People Counter’s web application, users will not only be able 

to know the accurate current occupancy data of the 

Hamerschlag 1300 hallway but also obtain the predicted 

occupancy of the two individual lab spaces in the 

Hamerschlag 1300 wing at a time of the user’s choosing 

within the same day. With this information, the users will be 

able to make a better-informed decision about whether they 

would like to go study at the Hamerschlag labs. The project’s 

ultimate goal is for our users to save valuable time during their 

day that they would otherwise spend on traveling to and from 

Hamerschlag without the data from People Counter, only to 

find a hallway packed with studious individuals at times. 
 

II. USE-CASE REQUIREMENTS 

We formulated the use-case requirements for People 

Counter based on the needs of our intended users. One of the 

critical use-case requirements for our system is to have a 

greater than 80% occupancy estimation accuracy for the two 

enclosed lab spaces on the Hamerschlag 1300 wing. The 

reason behind the 80% benchmark is due to the fact that the 

larger of the two lab rooms has a capacity of 50 people, while 

the smaller one only has a maximum occupancy of 25. The 

80% benchmark would allow for a maximum of 5-people 

margin for error in the smaller lab space which would suffice 

the needs for our target users, as a difference in occupancy of 

2 or 3 individuals would in general not affect a user’s decision 

of whether or not they would want to spend time studying at 

the 1300 wing. However, if the estimation accuracy metric is 

set at a much lower mark, such as 50%, then it would not be 

sufficient for our use case, because the difference between 10 

and 20 people in a room with 25 seats in total is significant for 

users who hope to find a less busy, relatively quiet place to do 

work. Additionally, the 80% benchmark must be reached 

consistently for at least 15 hours, which is roughly the amount 
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of time that the 1300 wing at Hamerschlag will see people 

movement during a normal day when the university and 

Hamerschlag Hall is not closed. 
Other than real-time estimation, another key feature of the 

People Counter system is same-day occupancy prediction for 

the two lab rooms on the Hamerschlag 1300 wing. We plan to 

implement our prediction feature through categorization, 

characterizing occupancy levels of the rooms into 4 

categories: “almost empty” (up to 19.9% full), “not busy” 

(20%-39.9% full), “busy” (40%-69.9% full), and “almost full” 

(70% full or more). When a user selects a same-day time on 

the web application, the interface will return one of the four 

categories listed above, the percentage range of each category, 

as well as the total capacity of the room. The aforementioned 

categorization and the percentage of capacity associated with 

each category are not set arbitrarily. Both lab rooms on the 

1300 wings at Hamerschlag do not have individual, separate 

seating areas but rather feature contiguous work benches 

intended for better collaboration. If there are more than 70% 

of the total seats taken in one of the lab spaces, this would 

mean that the room is effectively almost full, because there 

will rarely be two consecutive occupied seats (having both 

neighboring seats taken is less ideal for individual studying) 

[3] when total occupancy is above 70%. On the other hand, 

when the occupancy levels of a room are below 40%, then it is 

guaranteed that there will be at least 1 seat in the room where 

there is at least 1 unoccupied neighboring seat. This would 

warrant a “not busy” categorization. Similar to the live 

estimation benchmark, we set the prediction accuracy to 80%, 

which means that when a user selects any time later during a 

particular day, the predicted occupancy categorization must 

exactly match the actual percentage of the rooms at the chosen 

time more than 80% of the time over a 15-hour period. 
Lastly, another use-case requirement that, if not achieved, 

would impact the usability of our application is latency. 

Ideally, the latency of our system shall be less than 1 minute 

(60 seconds) at any given time when the server of People 

Counter’s web application is running. Given the nature of 

people movement (moving in and out of a room on foot takes 

at least several seconds), we do not expect any non-malicious 

user to be checking People Counter’s web application in an 

interval less than 60 seconds for the up-to-date information 

regarding real-time occupancy estimation. However, given 

that occupancy in a room, especially multi-use spaces like the 

Hamerschlag 1300 labs, can shift swiftly (such as the start and 

end of class sessions), it could potentially be beneficial to 

users if the total latency of our system is consistently kept at 

under 60 seconds. 

 

 

 

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our system consists of three main subsystems: a hardware 

module running on a Raspberry Pi controller, a backend CV 

module running on our personal computer, and a UI module. 

Fig. 1 shows a high-level design of each of our subsystems. Our 

hardware module consists of a Raspberry Pi connected to an 

ArduCAM B0205 camera, which will send live video feed to 

our backend through WIFI. We will place the camera in the 

entrance of the Hamerschlag 1300 wing entrance, looking down 

the hallway in Fig. 2. 

The camera looks down the hallway at a slight angle, 

capturing all the doors in the hallway. The camera feed then 

gets sent to our backend CV pipeline. In our CV module, we 

will first preprocess the frames by identifying the areas 

surrounding each of the doors in the hallway and use those as 

our regions of interest. We will run Yolov5s on each of the 

frames and identify people in the hallway. The people detected 

in the video feed will be tracked with DeepSORT tracking 

algorithm, and we will interpret the tracks of each person to 

create a heatmap for each of the rooms in Hamerschlag 1300 

wing. The interpreted data will be passed through a decision 

tree model to predict the future occupancies of each of the 

rooms (we will use the data we collect during testing as a 

foundation and create a dataset to train the model during the 

development of our project). Eventually, the interpreted data 

and prediction results given the interpreted data gets sent to our 

UI to be displayed on a web application.  
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Fig. 1. Overall system block diagram 

 

 
 

Fig. 2. Camera setup in Hamerschlag Hall 1300 Wing 
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IV. DESIGN REQUIREMENTS 

The primary goal of our design requirements is to ensure 

that the system we develop meets the estimation and 

prediction accuracy as well as the overall latency requirements 

previously mentioned for our use case of the Hamerschlag 

1300 hallway. 

A. Location of Cameras 

To image the Hamerschlag corridor completely, we will 

utilize a vision system that comprises a single camera placed 

directly above the main entrance way of the hallway. The 

camera will face the main hallway, with a slightly angled 

downward view. The purpose of positioning the camera at this 

location is to capture a single image that encompasses all 

room entrances, enabling our computer vision systems to 

receive as much information as possible. This approach aims 

to maximize the accuracy of our estimation and prediction 

systems though this maximized coverage.  

B. Camera Resolution 

We have determined that the minimum resolution necessary 

for our computer vision algorithms to accurately estimate 

occupancy is 1280 by 720p. To arrive at this conclusion, we 

captured sample images at various resolutions using the 

ArduCAM camera, from the angle at which we plan to mount 

the camera during testing. We then utilized our Yolov5 

detection algorithm to evaluate whether people were correctly 

detected in the varying resolution images. We observed that 

the accuracy of our detection algorithm began to decrease 

below a resolution of 720p, which led us to select this 

resolution for our computer vision pipeline. We also decided 

against using a higher resolution in order to reduce the Wi-Fi 

bandwidth requirements between the Raspberry Pi and the 

laptop running our CV system, so that we can consistently 

meet our latency requirement of 60 seconds. 

C. Camera Frame Rate 

To minimize the burden on our computer vision pipeline, 

we have decided to transmit our live video feed at a frame rate 

of 10 frames per second. If the frame rate were too high, it 

would be difficult for our local computation of the object 

detection and tracking on our laptop to keep up with the 

incoming frames. We believe that a frame rate of 10 fps is 

sufficient for our use case of the Hamerschlag 1300 hallway, 

as this is an indoor environment where pedestrians are 

unlikely to run at high speeds in a narrow hallway. We have 

determined that 10 frames per second is the minimum required 

frame rate for our vision pipeline to accurately estimate 

occupancy, as it is a low framerate where our DeepSORT 

object tracking algorithm can still follow walking people 

between frames, in order to meet our requirement of 80% 

estimation accuracy. 

 

V. DESIGN TRADE STUDIES 

During the design phase of our project, we took into 

account the implementation complexity, the fulfillment of our 

use-case and design requirements, and the practicality for our 

system when making design decisions. Our aim was to strike a 

balance between these factors with our design choices. 

A. Number of Cameras 

Our product's imaging system is designed with only a single 

camera, and we believe that adding additional camera angles 

would provide limited imaging benefits due to two primary 

reasons. Firstly, the primary camera is already capable of 

covering all doorways in the Hamerschlag hallways. 

Therefore, additional camera angles would offer minimal 

value in additional information. Secondly, the incorporation of 

more cameras would require the development of another 

subsystem to synchronize the incoming video feeds from 

multiple variable Wi-Fi connections. Besides, there would also 

be a need for additional measures to match detected 

individuals across the various video feeds, to ensure that our 

estimation system does not double count pedestrians. This 

would put significant pressure on not only our development 

process, but also our computer vision system itself, potentially 

leading to latency issues. Thus, we have decided to limit our 

design to just one camera, ensuring that we can still meet our 

use-case requirements without putting undue strain on our 

system.  

B. Another Design Specification or Subsystem 

We selected the ArduCAM B0205 as the camera model for 

our imaging system. The specific camera model used in the 

imaging system is not crucial, as long as it fulfills our design 

requirements of covering the vertical span of the Hamerschlag 

hallway and exporting video at a minimum resolution of 1280 

x 720p and a framerate of 10 fps. We ultimately opted for the 

ArduCAM B0205 since it met these design requirements and 

had a small form factor that made it easy to mount during 

testing. Additionally, it could connect via USB to the Raspberry 

Pi, simplifying integration of the camera and the 

microcontroller. 

C. Microcontroller 

When it came to choosing a microcontroller for our imaging 

system, we weighed up the options of the Raspberry Pi and 

Jetson Nano. Ultimately, we opted for the Raspberry Pi due to 

several reasons. Firstly, we felt that the extra capabilities 

provided by the GPU on the Jetson Nano would be unnecessary 

for our imaging system. The main function of the 

microcontroller in our design is to transmit live video from a 

connected camera to a local laptop over Wi-Fi, where the actual 

computer vision algorithms are executed. The video processing 

done on the microcontroller is minimal, involving only the 

division of the video feed into TCP packets, thus negating the 

need for the processing capabilities of a GPU. Furthermore, the 

design requirements of our video pipeline are relatively low, 
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with only a 720p resolution and a 10fps framerate, further 

reducing the processing requirements of the microcontroller. 

Lastly, our team members were more familiar with the 

Raspberry Pi, having used the microcontroller before in other 

projects. As such, continuing to use the Raspberry Pi for our 

project would significantly reduce implementation time for our 

imaging system. For all these reasons, we then decided to select 

the Raspberry Pi for our microcontroller. 

D. Figure and Table Formatting 

During the selection of object detection algorithms, we 

researched about different methods such as fast RCNN and 

SSNMobileNet as well as the YOLOv5 model we selected. 

Based on our research, we found that YOLOv5s offered a good 

balance between inference speed and accuracy. See references 

[5][8] for detailed comparison. Through initial local testing, 

YOLOv5s looks like a promising model to meet the latency 

requirements of 10 frames per second (FPS), while delivering 

accurate multiple object detection. During our initial testing on 

pictures of people in Hamerschlag 1300 wing hallway, we 

found that the YOLOv5s model was able to detect and 

accurately draw bounding boxes around people in the hallway 

with high accuracy (around 90 percent confidence rate for 

people that is not colluded, and around 60 percent confidence 

rate for people that are partially colluded). 

E. Object Tracking Algorithm 

We decided to choose DeepSORT tracking algorithm due to 

its ability to handle occlusion of objects and prevention of re-

id of tracked objects by running feature extraction of tracked 

person [8], as well as the multiple-object tracking capabilities, 

as we expect to track multiple people walking in the hallway. 

Having an accurate tracking algorithm is very important to 

achieving our accuracy requirement of 80% prediction 

accuracy. This is because if our tracker cannot track each 

person appearing in the video with high accuracy, there would 

be compounding error when we try to interpret the results of 

our CV system and result in compounding error in our 

estimations. Therefore, we have chosen to use DeepSORT as 

our object tracking algorithm. However, one drawback is that 

in order to perform feature matching on tracked objects, 

DeepSORT runs a pretrained CNN, which could lead to 

increasing computational complexity, potentially leading to 

failing our latency requirements. If we run into latency issues 

with DeepSORT, we will experiment with other methods such 

as the MedianFlow tracking algorithm, which is a Lucas-

Kanade based algorithm that would run much faster than 

DeepSORT as it does not involve running a CNN. 

F. Location of Computer Vision Processing 

During our design phase for the project, we explored the 

possibility of performing object detection and tracking on the 

cloud. However, after careful deliberation, we decided against 

this option. Although moving the computer vision algorithms 

to the cloud would have alleviated the computational load 

concerns of the CV pipeline, it would have raised additional 

concerns about the latency and reliability of our cloud 

services. In the event that our cloud provider experiences 

performance issues during testing, it could result in the 

computer vision pipeline exceeding our 60s latency design 

requirement or failing completely. Therefore, we concluded 

that it would be more prudent to keep the computation of our 

computer vision algorithms on local hardware to ensure the 

reliability and latency of our system. 
In particular, the Google Cloud Platform, which is covered 

by the CMU budget, was found to be lacking in modules 

related to video processing on the cloud and proved to be 

difficult to access video feeds during testing. Furthermore, 

funding was not available to deploy the computer vision 

system to alternatives such as AWS. As a result, we decided 

against performing object detection and tracking on the cloud, 

and instead opted for local computation. Despite the more 

computationally intensive requirements of our Yolov5 and 

DeepSORT algorithms, we believe that a local laptop will be 

able to handle the workload within our 60 second latency 

target, especially given our lowered design requirements in 

video resolution and framerate. 

G. Web Interface Design 

One of the emphasis for the design of the web application is 

letting logged-in users have access to the most up-to-date 

information. Therefore, instead of employing a simple 

mechanism in which users manually click refresh to have the 

main page updated, we have decided to use Ajax so that data 

can be sent and retrieved from the server asynchronously. This 

allows data to be delivered to the front-end through JSON, and 

users will not have to manually refresh their page to gain the 

most recent information regarding occupancy levels at the lab 

spaces on the 1300 wing. 

VI. SYSTEM IMPLEMENTATION 

A. Hardware Configuration 

Fig. 3 displays the architecture of our hardware 

components, mainly consisting of the ArduCAM camera 

module and our Raspberry Pi microcontroller. The 

configuration of the video stream from the camera will be 

done in by the Python program, with OpenCV setting the 

video connection to have a resolution of 1280 x 720p. 

OpenCV will also be responsible for controlling the framerate 

of the video pipeline, pulling new frames from the camera at a 

rate 10 frames per second. 
After capturing the individual frames using Python, 

OpenCV encodes them into JPEG format before transmitting 

them to the Wi-Fi socket. The original raw format of the 

images stored by OpenCV is not suitable for transmitting over 

a standard Wi-Fi connection due to its storage inefficiency. 

Therefore, the images are converted into JPEG format to 

reduce the bandwidth requirements between the Raspberry Pi 

and the receiver laptop. The conversion of video into 
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individual images also prepares the data for transfer via 

socket. The images are transmitted sequentially over the Wi-Fi 

socket and are reassembled in the same order on the receiving 

end. 

 
Fig. 3. Hardware (camera) configuration and architecture 

B. Backend Processing & Computer Vision 

The backend processing and CV module could be separated 

into several subsystems: Object Detection and Tracking, 

Interpreting Outputs, and predicting the future occupancy 

levels. 
Object Detection and Tracking: 

Our object detection and tracking subsystem will be 

implemented on a personal computer in python. The video 

feed gets received through WIFI through python’s built-in 

socket interface. We will manually inspect the camera feed 

and expand bounding boxes around each of the entrances in 

the Hamerschlag 1300 wing hallway to define ROIs using 

OpenCV and python. The ROIs will be defined as a 

rectangular box that starts at the bottom of each entrance door 

and expands into the middle of the hallway. 
For object detection, we will run pretrained YOLOv5s 

model to perform object detection. The model is pretrained on 

the “COCO” dataset. The algorithm will return bounding 

boxes for each of the object detected, and we will select only 

the bounding boxes identified as “person” We will match 

bounding boxes with the ROIs, if the bounding boxes are 

within the ROIs, we will pass these bounding boxes into our 

tracker. During initial local testing on a M2 MacBook pro with 

720p input video feed, we were able to get around 9 FPS, 

which is slightly below our 10FPS requirement. We will try to 

improve YOLOv5s performance through pruning as suggested 

in [6] and by using half precision FP16 inference as suggested 

in [7]. 
Object tracking with DeepSORT will be done in 

conjunction with the object detection algorithm. The tracking 

algorithm will take the detection outputs from YOLOv5s and 

create tracks for each of the bounding boxes it identifies as 

unique. If the bounding box sent to the detection algorithm is 

similar to one of the previous tracks, it will be used to update 

that track. Else, the tracking algorithm will predict the future 

position of the track to continue tracking the object. This 

allows for handling occlusion of an object and cases where an 

object does not get detected in a given frame. For each of the 

tracks, we can extract the bounding boxes of the objects in the 

given track and a unique id for the track. 
Interpreting Outputs: 

For each of the entrances, we will define a range of x and y 

coordinates that identifies the bottom of the door. For instance, 

if there is a door at the top left corner of an image, and points 

on the image are represented with coordinates x (in range 0 to 

image_width starting on 0 from the left), and y (in range 0 to 

image_height starting on 0 from the top), then we will model 

the bottom of the door as line from (x1, y1) representing one 

end of the line, and (x2, y2) as the other end of the line.  We 

will also maintain a dictionary of unique track_ids and their 

corresponding movements, done by comparing coordinates 

bounding boxes between the past several frames. In a given 

frame, if we detect that the bounding box coordinates of a 

tracked object crosses the line of the entrance, we will check 

the movement of that track_id stored in our dictionary. If the 

movement of the track is away from the center of the image 

(assuming that the Hamerschlag 1300 wing hallway is placed 

in the middle of the image, and doors are on the side of the 

hallway as shown in Fig.2 on page 2), then we can say that the 

person is entering the room, and we would increase the count 

for the room. Whereas if the movement of the person across a 

given number of tracked frames is towards the center of the 

image, and away from the line that indicates the entrance to a 

door. We will treat that as a person exiting the room. For cases 

where a person appears in the region surrounding the line that 

defines a door, if we do not have historical data associated 

with the person, we will treat that as a person leaving the 

given room as well, since a person appearing at the door 

without previous detection is likely to be out of the field of 

vision of the camera to start with (meaning that the person was 

not in the hallway hence not entering the room). 
Prediction: 

We will be training a decision tree classifier in order to 

predict the future capacity. To train the decision tree, we will 

collect testing data for the capacity of the rooms in 

Hamerschlag 1300 wing at different times of the day and on 

different days of the week. The collected data will be used as a 

reference point to build a dataset manually. To train the 

decision tree, we will label existing data based on features 

such as time of the day, weekend vs. weekday, if there is class 

currently being held in the space, capacity level in the room 

during previous hours, etc. We plan on using the ID3 

algorithm to build the decision tree and split on the attribute 

that gives the most information gain. We plan on creating 100 

data points for training our model and will tune the decision 

tree using cross validation to get the optimal depth. The 

trained tree will be stored in the backend and could be used to 

make predictions of future occupancy levels in almost real-

time, since the prediction only requires labeling the data and 

traversing down the trained decision tree to make a prediction. 

This would allow us to meet the latency requirements for our 
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system, where the user could get updated data every 60 

seconds. 

C. Interactive Web Application 

The web application will provide a secure, usable, and 

interactive platform for users to view and interact with the 

data that is processed by our backend database. The computed 

data output from the backend will be integrated with the 

frontend using Python as well as the Django framework so 

that the data can be deployed on the server. The basic user 

interface and frontend styling for the web application is done 

on HTML/CSS; we will also be using Ajax and JavaScript 

frameworks to create an asynchronous web application and 

ensure the main page will be able to automatically update 

without having to manually refresh the page for updated 

information. 

For the login page, the web application will employ the 

Django authentication package and customized decorators to 

allow new users to register and old users to login. It will 

protect the system against malicious users by ensuring that all 

users will need to register using an Andrew email address 

provided by CMU. After a user logs in, they will be directed 

to a home page which shows real-time information regarding 

occupancy at the Hamerschlag 1300 wing. There will also be a 

form and a submit button on the home page that allows users 

to interact with the web application by selecting a same-day 

time for a predicted category of occupancy levels. The form 

will be done using Django’s Model-View-Controller (MVC) 

system architecture and the relevant data will be transmitted 

and constantly updated over 60-second intervals through 

JSON. Fig. 4 details the web application’s user experience 

from registering to getting the occupancy prediction, while 

Fig. 5 demonstrates the home page user interface upon logging 

in. 

 
Fig. 4. Web application user experience across all pages 

 

 

 

 

Fig. 5. Web application home page wireframes 

VII. TEST, VERIFICATION AND VALIDATION 

The testing and verification of our system will be done in 

three main phases.  

A. Tests on Pre-recorded Footage 

To commence the testing process, we will first use pre-

recorded footage. The Raspberry Pi-based vision system, 

along with ArduCAM, will be installed on top of the 

Hamerschlag 1300 hallway doorway, and the camera will be 

set to record for a maximum of one hour. The recorded 

footage will be saved on an external storage device that is 

plugged into the Raspberry Pi. In order to replicate our future 

testing environment, we will capture the initial footage as a 

sequence of 640p hallway videos at a 10-frame-per-second 

rate. 
Once the recording is complete, we will retrieve the video 

from the storage device and input it into our computer vision 

system. The system will then attempt to estimate the 

occupancy heatmap based on the recorded video. The central 

aim of this test will be to observe if our computer vision 

algorithms can suitably detect and track pedestrians inside our 

testing environment, the Hamerschlag hallways.  
Since our initial testing phase will take place early in the 

development of our computer vision and camera systems, we 

will conduct this stage of testing for a much shorter duration 

than our final requirement. We will limit our pre-recorded 

video to a maximum of one hour to allow for easy manual 

verification of occupancy levels and quick retesting of new 

developments. Therefore, during this phase of testing, we will 

not be evaluating our prediction model, but solely focusing on 

verifying the estimation system. Our initial test's targeted 

accuracy for each room in the estimation system is 80%. After 

we have verified that the estimated occupancy in each room 

remains within our 80% threshold for the entirety of the 

recording, we will move on to the next phase of testing. 
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B. Tests on Live Footage 

Similar to the first stage of testing, the vision system, which 

includes the ArduCAM and the Raspberry Pi microcontroller, 

will be installed in the Hamerschlag narrow hallway. The 

system will transmit a live video feed of the hallway, which 

will be analyzed by the computer vision algorithm on a laptop. 

The video data will be transferred wirelessly between the 

Raspberry Pi source and the laptop through a Wi-Fi socket 

interface. 
In the second testing phase, we plan to simulate the typical 

activity duration of the Hamerschlag environment by 

conducting tests for up to 15 hours at a stretch. However, due 

to the extended duration, it won't be feasible to manually 

verify occupancy levels throughout the entire testing period. 

Instead, we will evaluate the accuracy of our estimation 

algorithms by comparing the occupancy estimates generated 

by them with the readings obtained from other cameras 

installed in the individual rooms branching off from the 

Hamerschlag hallway. The cameras will be placed in the upper 

corners of the rooms to capture a complete view of the space. 

Each camera is connected to a Raspberry Pi that transmits the 

video feed over Wi-Fi to our primary processing laptop. On 

the laptop, a basic detection algorithm will run to determine 

the current number of individuals in the room, providing a 

basis for comparison. 
To simplify matters, we will limit the placement of our 

verification camera systems to a certain number of rooms that 

are connected to the hallway. We anticipate that the 

occupancy patterns in each of these rooms will be relatively 

similar to each other, so if our estimation algorithm can 

accurately count the occupancy in one part of the Hamerschlag 

rooms, it should be able to do so for the others. Additionally, 

we will select camera locations that account for as much 

variation and challenges for our computer vision algorithm as 

possible. As such, we plan to install cameras in the meeting 

room closest to the hallway entrance, the meeting room 

furthest from it, and one of the larger lab spaces. Our goal for 

this testing phase is to ensure that our primary computer vision 

system can estimate occupancy within 80% accuracy of the 

occupancy detected by the 3 auxiliary cameras throughout the 

testing period. 
During this phase of testing, our main priority is to ensure 

that our computer vision pipeline can maintain consistent 

performance that matches the speed of the live video feed. If 

our system is unable to do so, we will need to make any 

necessary adjustments to our system immediately, as each 

round of testing is very time-intensive. In addition, we will 

evaluate the connection between the Raspberry Pi and the 

laptop, as well as the ability of our pipeline to operate 

continuously over an extended period of time. Another 

objective during this phase will be to collect training data for 

our predictive module. We will record occupancy levels from 

the auxiliary cameras during our testing sessions and store 

them in a database for future use in building our decision tree 

model. Therefore, we will not yet test the performance of our 

predictive module during this phase until it has been 

appropriately trained and developed with the data we collect. 
Another objective at this development stage is to have the web 

application operational, which will display the estimated count 

of individuals in each of the branching rooms to users. We 

will observe whether the website maintains its responsiveness 

to the occupancy changes in the surroundings by observing it 

at the start and end of the testing runs. Our validation target is 

to ensure that the system operates within 60 seconds of 

latency. 

C. Tests with predictive module 

During this phase, we will begin testing on our prediction 

component. The testing setup will remain the same as the 

previous phase, where we will install the ArduCAM and 

Raspberry Pi microcontroller to face the Hamerschlag narrow 

hallway. The system will send a live video feed of the hallway 

from the Raspberry Pi over Wi-Fi, which will be analyzed by 

the computer vision algorithm on a laptop. We will also place 

our verification camera in the same three rooms as in the 

previous phase and continue running detection algorithms to 

ensure that we maintain our estimation target of 80% 

throughout the testing period. In addition, we will continue to 

observe the latency of our web application, in order to 

maintain our 60 second latency target. 
At the beginning of each hour of the testing process, the 

algorithm will also predict which of the four capacity 

categories each room will fall into one hour in the future. At 

the start of the following hour, this prediction will be 

compared to the occupancy detected by the auxiliary camera 

setup in the rooms. Our validation target for the predictive 

model during this testing phase is to accurately predict the 

occupancy categories of the three rooms with auxiliary 

cameras, one hour into the future, at an 80% success rate 

throughout the testing process. 

VIII. PROJECT MANAGEMENT 

A. Schedule 

The detailed schedule for the project is presented at the 

second to last page of the document. Up to the submission of 

this report, the team has already completed the purchase of 

required hardware, explored the computer vision libraries, 

tested possible deployment methods, and created the 

wireframes and initial prototype for the web application that 

users will be able to interact with. We plan to integrate the 

backend estimation data with the local web application on 

Week 10 (March 20-26), and we plan to have the full 

integration of video feed, backend software, and web 

application for the estimation feature before the interim demo 

on Week 12. We will use the time after the interim demo to 

conduct extensive testing of our system over an extended 

period of time (15 hours continuously), and the full integration 

of the entire system including our prediction feature will take 
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place on Week 13 (April 10-16). We plan to have our entire 

system tested, validated, and integrated by Friday, April 21, 

2023, at the latest.  

B. Team Member Responsibilities 

David Feng is working on configuring the camera modules 

with the Raspberry Pi 4, calibrating the camera configuration 

to the testing environment of Hamerschlag Hall 1300 wing, 

and connecting the video feed to the backend software through 

wireless internet. 
Tianzhuo Li is in charge of developing and running the CV-

based algorithm for object detection. Additionally, he will 

work on translating the CV output to estimation data and 

implementing the prediction algorithm with machine learning 

models in the backend. 
Gary Qin is responsible for connecting backend data output 

to the local frontend as well as the server-side web application 

powered by Django. In addition, he will be working on 

developing the entire web application user interface using 

HTML/CSS. 

C. Bill of Materials and Budget 

The bill of materials used for this project and the budget 

allocation is displayed in detail in Table 1 at the last page of 

this document.  

D. Risk Mitigation Plans 

The team has identified 3 critical risk factors for this 

project: the speed and efficiency of the backend in processing 

live video feed, the potential of algorithmic bias being present 

in the computer vision algorithm, and the privacy concerns of 

people present in the camera frame and the users who interact 

with the web application. 
We are committed to improving the performance of our 

system and optimizing the latency of individual subsystems. 

If, during early-stage testing of the object detection algorithm, 

the performance stats are way below the 10 frames per second 

(FPS) design requirement, we will switch to Jetson Nano 

controller with a GPU, which will increase the frame rate of 

our system based on previous experience working with GPUs. 
During the testing and validation stage of our project, we 

will be observing the existence of any algorithmic bias present 

in the CV algorithm doing object detection. We will strive to 

eliminate any sort of algorithmic bias, including 

discrimination of race, gender, and height, that causes the 

algorithm to be incapable of detecting a person under various 

confidence levels. We will tweak the parameters of the CV 

algorithm so that we ultimately find no evidence of bias when 

testing and validation our integrated system. 
We care about the privacy of students, staff, and faculty 

members whom the system will be interacting with one way or 

another. Therefore, we will not be storing any live camera 

feed in a database – the video will be sent to the software 

backend for processing only. We will also mount the camera 

in a way so that it does not intrude into the normal movement 

of people in the Hamerschlag 1300 wing. 

IX. RELATED WORK 

Even though we believe that the estimation and prediction 

of usage and occupancy in enclosed spaces have a high 

demand and a variety of potential use cases, there does not 

seem to be a considerable number of existing applications or 

systems in the market. Specifically, we found no similar 

products currently being used on Carnegie Mellon’s campus 

that help estimate and predict the occupancy of lab spaces and 

lecture rooms. Nevertheless, there exist systems and products 

that are slightly different from People Counter in both use 

cases and implementation methods. 
Zensors, a spin-off company from CMU’s School of 

Computer Science, uses existing surveillance cameras near 

airport security checkpoints to estimate the wait time needed 

for passengers to go through security. It uses computer vision 

algorithms deployed on AWS cloud to process live 

information captured on monitoring cameras, and the 

computed output is displayed on a big TV screen in front of 

the security lines at Pittsburgh International Airport that gives 

travelers a real-time estimation of the expected security wait 

times. To our best knowledge, in contrast to People Counter’s 

prediction feature, Zensors’ airport security product does not 

predict the wait time of security lines in advance and does not 

have an interactive web application that allows users to select 

a future time for wait time prediction. 
In addition, the paper by Saralegui et al. describes a case 

study of using IoT sensors and energy consumption of rooms to 

predict the rooms’ future usage [4]. The researchers utilize a 

variety of parameters and historical data of an IoT smart home 

system, namely thermal behavior, energy usage, and humidity, 

to monitor and predict room occupancy data. The results show 

the prediction accuracy maintaining at around an 79% clip 

across multiple tests. This study shows that there are more ways 

to estimate and predict occupancy in rooms, but the accuracy is 

somewhat limited given that certain people movement can be 

unpredictable. 

X. SUMMARY 

In summary, People Counter’s design leverages the 

combination of live camera feed, a backend that computes 

occupancy data with CV and machine learning algorithms, and 

an interactive web-based application to deliver both real-time 

estimation and future predictions of the occupancy levels at 

Hamerschlag Hall’s 1300 lab spaces at CMU. On a compact 

college campus like that of Carnegie Mellon, it can be difficult 

for students to find an ideal place to do some work or relax. 

For them, it would be a huge waste of time and energy if they 

come to their favorite spot to study, like the Hamerschlag 

1300 wing for ECE students, only to find a packed room.  
People Counter can help resolve this issue, as students will 

have remote access to real-time occupancy data and will even 

be able to choose a time (same day) to view the predicted 

occupancy of the lab spaces. With the help from People 

Counter, students can now make a calculated decision with 

https://www.zensors.com/smart-airport
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359482/
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better confidence on whether they would like to travel to 

Hamerschlag 1300 wing to spend their time, and thereafter 

they will be able to find more time doing what they truly 

enjoy, instead of wasting much of their valuable time on the 

road. 
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TABLE I.  BILL OF MATERIALS 

Description Model # Manufacturer Quantity Cost @ Total 

ArduCAM B0205 Arducam 2 $34.99 $69.98 

Raspberry Pi 4 4 Model B Raspberry Pi 1 $0 $0 

Grand Total $69.98 
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