
18-500 Design Project Report: Team C0, 03/03/2023

1

Abstract — A system capable of estimating and predicting the

occupancy of lab spaces at CMU’s Hamerschlag 1300 wing. People

Counter helps users save travel time by presenting a real-time

estimation of room occupancy and an interactive element that

predicts ahead of time whether the spaces will be busy. The system

combines video feed processing, computer vision, as well as a web

application deployed on server; it will be more than 80% accurate

for both estimation and prediction to deliver up-to-date occupancy

levels and useful predicted data for users.

Index Terms — ArduCAM, classification, computer vision,

interactive web application, object detection, prediction, room

occupancy, video processing

I. INTRODUCTION

Several travel-related applications such as Google Maps and

the New York MTA TrainTime mobile app have evolved in

recent years to introduce real-time capacity tracking and

estimation features. However, these applications currently do

not combine the usage of historical data and real-time video

processing techniques to make accurate predictions. Google

Maps’ prediction algorithm relies on users’ historical location

data [1], while the TrainTime mobile application is only able

to show real-time occupancy data of the train cars [2] and does

not have the capability to let users know whether their train is

going to be packed ahead of time.
Thus, we propose People Counter, a system that uses both

live camera feed to CV processing as well as analysis of

historical data to count, estimate, and – most importantly –

predict the occupancy levels of the Hamerschlag Hall 1300

hallway at Carnegie Mellon University. The system is an

amalgamation of computer software and digital hardware

technologies, as the live video feed will be captured by

ArduCAM B0205 cameras and fed into the local backend

through wireless connection, then the backend program will

process the data through SQLite as well as computer vision

algorithms such as Yolo and SORT for object detection, and

lastly the occupancy and prediction data will be sent to the

frontend web user interface.
People Counter’s intended users will be students enrolled at

Carnegie Mellon University who would like to know about the

current and predicted occupancy data of the 1300 hallway at

Hamerschlag, which is among the most popular study spots

for students in the Electrical & Computer Engineering

department. Through our observation over the past several

years of students who enter the hallway, many students would

struggle to find a seat when the labs are in session or when the

rooms are busy. They tend to quickly exit when no seats are

available. Over time, the time wasted walking to and from

study spaces like the 1300 hallway has become a major pain

point for students. That is why we believe People Counter has

the capability to solve this user pain point. By interacting with

People Counter’s web application, users will not only be able

to know the accurate current occupancy data of the

Hamerschlag 1300 hallway but also obtain the predicted

occupancy of the two individual lab spaces in the

Hamerschlag 1300 wing at a time of the user’s choosing

within the same day. With this information, the users will be

able to make a better-informed decision about whether they

would like to go study at the Hamerschlag labs. The project’s

ultimate goal is for our users to save valuable time during their

day that they would otherwise spend on traveling to and from

Hamerschlag without the data from People Counter, only to

find a hallway packed with studious individuals at times.

II. USE-CASE REQUIREMENTS

We formulated the use-case requirements for People

Counter based on the needs of our intended users. One of the

critical use-case requirements for our system is to have a

greater than 80% occupancy estimation accuracy for the two

enclosed lab spaces on the Hamerschlag 1300 wing. The

reason behind the 80% benchmark is due to the fact that the

larger of the two lab rooms has a capacity of 50 people, while

the smaller one only has a maximum occupancy of 25. The

80% benchmark would allow for a maximum of 5-people

margin for error in the smaller lab space which would suffice

the needs for our target users, as a difference in occupancy of

2 or 3 individuals would in general not affect a user’s decision

of whether or not they would want to spend time studying at

the 1300 wing. However, if the estimation accuracy metric is

set at a much lower mark, such as 50%, then it would not be

sufficient for our use case, because the difference between 10

and 20 people in a room with 25 seats in total is significant for

users who hope to find a less busy, relatively quiet place to do

work. Additionally, the 80% benchmark must be reached

consistently for at least 15 hours, which is roughly the amount

People Counter: Count, Estimate, and Predict

Occupancy of Rooms in Hallway

David Feng, Tianzhuo Li, Gary Qin
Department of Electrical and Computer Engineering, Carnegie Mellon University

https://support.google.com/business/answer/6263531?hl=en#:~:text=To%20determine%20popular%20times%2C%20wait,enough%20visits%20from%20these%20users.
https://new.mta.info/press-release/mta-unveils-new-capacity-tracking-and-real-time-location-features-in-metro-north-traintime-app

18-500 Design Project Report: Team C0, 03/03/2023

2

of time that the 1300 wing at Hamerschlag will see people

movement during a normal day when the university and

Hamerschlag Hall is not closed.
Other than real-time estimation, another key feature of the

People Counter system is same-day occupancy prediction for

the two lab rooms on the Hamerschlag 1300 wing. We plan to

implement our prediction feature through categorization,

characterizing occupancy levels of the rooms into 4

categories: “almost empty” (up to 19.9% full), “not busy”

(20%-39.9% full), “busy” (40%-69.9% full), and “almost full”

(70% full or more). When a user selects a same-day time on

the web application, the interface will return one of the four

categories listed above, the percentage range of each category,

as well as the total capacity of the room. The aforementioned

categorization and the percentage of capacity associated with

each category are not set arbitrarily. Both lab rooms on the

1300 wings at Hamerschlag do not have individual, separate

seating areas but rather feature contiguous work benches

intended for better collaboration. If there are more than 70%

of the total seats taken in one of the lab spaces, this would

mean that the room is effectively almost full, because there

will rarely be two consecutive occupied seats (having both

neighboring seats taken is less ideal for individual studying)

[3] when total occupancy is above 70%. On the other hand,

when the occupancy levels of a room are below 40%, then it is

guaranteed that there will be at least 1 seat in the room where

there is at least 1 unoccupied neighboring seat. This would

warrant a “not busy” categorization. Similar to the live

estimation benchmark, we set the prediction accuracy to 80%,

which means that when a user selects any time later during a

particular day, the predicted occupancy categorization must

exactly match the actual percentage of the rooms at the chosen

time more than 80% of the time over a 15-hour period.
Lastly, another use-case requirement that, if not achieved,

would impact the usability of our application is latency.

Ideally, the latency of our system shall be less than 1 minute

(60 seconds) at any given time when the server of People

Counter’s web application is running. Given the nature of

people movement (moving in and out of a room on foot takes

at least several seconds), we do not expect any non-malicious

user to be checking People Counter’s web application in an

interval less than 60 seconds for the up-to-date information

regarding real-time occupancy estimation. However, given

that occupancy in a room, especially multi-use spaces like the

Hamerschlag 1300 labs, can shift swiftly (such as the start and

end of class sessions), it could potentially be beneficial to

users if the total latency of our system is consistently kept at

under 60 seconds.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system consists of three main subsystems: a hardware

module running on a Raspberry Pi controller, a backend CV

module running on our personal computer, and a UI module.

Fig. 1 shows a high-level design of each of our subsystems. Our

hardware module consists of a Raspberry Pi connected to an

ArduCAM B0205 camera, which will send live video feed to

our backend through WIFI. We will place the camera in the

entrance of the Hamerschlag 1300 wing entrance, looking down

the hallway in Fig. 2.

The camera looks down the hallway at a slight angle,

capturing all the doors in the hallway. The camera feed then

gets sent to our backend CV pipeline. In our CV module, we

will first preprocess the frames by identifying the areas

surrounding each of the doors in the hallway and use those as

our regions of interest. We will run Yolov5s on each of the

frames and identify people in the hallway. The people detected

in the video feed will be tracked with DeepSORT tracking

algorithm, and we will interpret the tracks of each person to

create a heatmap for each of the rooms in Hamerschlag 1300

wing. The interpreted data will be passed through a decision

tree model to predict the future occupancies of each of the

rooms (we will use the data we collect during testing as a

foundation and create a dataset to train the model during the

development of our project). Eventually, the interpreted data

and prediction results given the interpreted data gets sent to our

UI to be displayed on a web application.

https://www-jstor-org.cmu.idm.oclc.org/stable/26893773

18-500 Design Project Report: Team C0, 03/03/2023

3

Fig. 1. Overall system block diagram

Fig. 2. Camera setup in Hamerschlag Hall 1300 Wing

18-500 Design Project Report: Team C0, 03/03/2023

4

IV. DESIGN REQUIREMENTS

The primary goal of our design requirements is to ensure

that the system we develop meets the estimation and

prediction accuracy as well as the overall latency requirements

previously mentioned for our use case of the Hamerschlag

1300 hallway.

A. Location of Cameras

To image the Hamerschlag corridor completely, we will

utilize a vision system that comprises a single camera placed

directly above the main entrance way of the hallway. The

camera will face the main hallway, with a slightly angled

downward view. The purpose of positioning the camera at this

location is to capture a single image that encompasses all

room entrances, enabling our computer vision systems to

receive as much information as possible. This approach aims

to maximize the accuracy of our estimation and prediction

systems though this maximized coverage.

B. Camera Resolution

We have determined that the minimum resolution necessary

for our computer vision algorithms to accurately estimate

occupancy is 1280 by 720p. To arrive at this conclusion, we

captured sample images at various resolutions using the

ArduCAM camera, from the angle at which we plan to mount

the camera during testing. We then utilized our Yolov5

detection algorithm to evaluate whether people were correctly

detected in the varying resolution images. We observed that

the accuracy of our detection algorithm began to decrease

below a resolution of 720p, which led us to select this

resolution for our computer vision pipeline. We also decided

against using a higher resolution in order to reduce the Wi-Fi

bandwidth requirements between the Raspberry Pi and the

laptop running our CV system, so that we can consistently

meet our latency requirement of 60 seconds.

C. Camera Frame Rate

To minimize the burden on our computer vision pipeline,

we have decided to transmit our live video feed at a frame rate

of 10 frames per second. If the frame rate were too high, it

would be difficult for our local computation of the object

detection and tracking on our laptop to keep up with the

incoming frames. We believe that a frame rate of 10 fps is

sufficient for our use case of the Hamerschlag 1300 hallway,

as this is an indoor environment where pedestrians are

unlikely to run at high speeds in a narrow hallway. We have

determined that 10 frames per second is the minimum required

frame rate for our vision pipeline to accurately estimate

occupancy, as it is a low framerate where our DeepSORT

object tracking algorithm can still follow walking people

between frames, in order to meet our requirement of 80%

estimation accuracy.

V. DESIGN TRADE STUDIES

During the design phase of our project, we took into

account the implementation complexity, the fulfillment of our

use-case and design requirements, and the practicality for our

system when making design decisions. Our aim was to strike a

balance between these factors with our design choices.

A. Number of Cameras

Our product's imaging system is designed with only a single

camera, and we believe that adding additional camera angles

would provide limited imaging benefits due to two primary

reasons. Firstly, the primary camera is already capable of

covering all doorways in the Hamerschlag hallways.

Therefore, additional camera angles would offer minimal

value in additional information. Secondly, the incorporation of

more cameras would require the development of another

subsystem to synchronize the incoming video feeds from

multiple variable Wi-Fi connections. Besides, there would also

be a need for additional measures to match detected

individuals across the various video feeds, to ensure that our

estimation system does not double count pedestrians. This

would put significant pressure on not only our development

process, but also our computer vision system itself, potentially

leading to latency issues. Thus, we have decided to limit our

design to just one camera, ensuring that we can still meet our

use-case requirements without putting undue strain on our

system.

B. Another Design Specification or Subsystem

We selected the ArduCAM B0205 as the camera model for

our imaging system. The specific camera model used in the

imaging system is not crucial, as long as it fulfills our design

requirements of covering the vertical span of the Hamerschlag

hallway and exporting video at a minimum resolution of 1280

x 720p and a framerate of 10 fps. We ultimately opted for the

ArduCAM B0205 since it met these design requirements and

had a small form factor that made it easy to mount during

testing. Additionally, it could connect via USB to the Raspberry

Pi, simplifying integration of the camera and the

microcontroller.

C. Microcontroller

When it came to choosing a microcontroller for our imaging

system, we weighed up the options of the Raspberry Pi and

Jetson Nano. Ultimately, we opted for the Raspberry Pi due to

several reasons. Firstly, we felt that the extra capabilities

provided by the GPU on the Jetson Nano would be unnecessary

for our imaging system. The main function of the

microcontroller in our design is to transmit live video from a

connected camera to a local laptop over Wi-Fi, where the actual

computer vision algorithms are executed. The video processing

done on the microcontroller is minimal, involving only the

division of the video feed into TCP packets, thus negating the

need for the processing capabilities of a GPU. Furthermore, the

design requirements of our video pipeline are relatively low,

18-500 Design Project Report: Team C0, 03/03/2023

5

with only a 720p resolution and a 10fps framerate, further

reducing the processing requirements of the microcontroller.

Lastly, our team members were more familiar with the

Raspberry Pi, having used the microcontroller before in other

projects. As such, continuing to use the Raspberry Pi for our

project would significantly reduce implementation time for our

imaging system. For all these reasons, we then decided to select

the Raspberry Pi for our microcontroller.

D. Figure and Table Formatting

During the selection of object detection algorithms, we

researched about different methods such as fast RCNN and

SSNMobileNet as well as the YOLOv5 model we selected.

Based on our research, we found that YOLOv5s offered a good

balance between inference speed and accuracy. See references

[5][8] for detailed comparison. Through initial local testing,

YOLOv5s looks like a promising model to meet the latency

requirements of 10 frames per second (FPS), while delivering

accurate multiple object detection. During our initial testing on

pictures of people in Hamerschlag 1300 wing hallway, we

found that the YOLOv5s model was able to detect and

accurately draw bounding boxes around people in the hallway

with high accuracy (around 90 percent confidence rate for

people that is not colluded, and around 60 percent confidence

rate for people that are partially colluded).

E. Object Tracking Algorithm

We decided to choose DeepSORT tracking algorithm due to

its ability to handle occlusion of objects and prevention of re-

id of tracked objects by running feature extraction of tracked

person [8], as well as the multiple-object tracking capabilities,

as we expect to track multiple people walking in the hallway.

Having an accurate tracking algorithm is very important to

achieving our accuracy requirement of 80% prediction

accuracy. This is because if our tracker cannot track each

person appearing in the video with high accuracy, there would

be compounding error when we try to interpret the results of

our CV system and result in compounding error in our

estimations. Therefore, we have chosen to use DeepSORT as

our object tracking algorithm. However, one drawback is that

in order to perform feature matching on tracked objects,

DeepSORT runs a pretrained CNN, which could lead to

increasing computational complexity, potentially leading to

failing our latency requirements. If we run into latency issues

with DeepSORT, we will experiment with other methods such

as the MedianFlow tracking algorithm, which is a Lucas-

Kanade based algorithm that would run much faster than

DeepSORT as it does not involve running a CNN.

F. Location of Computer Vision Processing

During our design phase for the project, we explored the

possibility of performing object detection and tracking on the

cloud. However, after careful deliberation, we decided against

this option. Although moving the computer vision algorithms

to the cloud would have alleviated the computational load

concerns of the CV pipeline, it would have raised additional

concerns about the latency and reliability of our cloud

services. In the event that our cloud provider experiences

performance issues during testing, it could result in the

computer vision pipeline exceeding our 60s latency design

requirement or failing completely. Therefore, we concluded

that it would be more prudent to keep the computation of our

computer vision algorithms on local hardware to ensure the

reliability and latency of our system.
In particular, the Google Cloud Platform, which is covered

by the CMU budget, was found to be lacking in modules

related to video processing on the cloud and proved to be

difficult to access video feeds during testing. Furthermore,

funding was not available to deploy the computer vision

system to alternatives such as AWS. As a result, we decided

against performing object detection and tracking on the cloud,

and instead opted for local computation. Despite the more

computationally intensive requirements of our Yolov5 and

DeepSORT algorithms, we believe that a local laptop will be

able to handle the workload within our 60 second latency

target, especially given our lowered design requirements in

video resolution and framerate.

G. Web Interface Design

One of the emphasis for the design of the web application is

letting logged-in users have access to the most up-to-date

information. Therefore, instead of employing a simple

mechanism in which users manually click refresh to have the

main page updated, we have decided to use Ajax so that data

can be sent and retrieved from the server asynchronously. This

allows data to be delivered to the front-end through JSON, and

users will not have to manually refresh their page to gain the

most recent information regarding occupancy levels at the lab

spaces on the 1300 wing.

VI. SYSTEM IMPLEMENTATION

A. Hardware Configuration

Fig. 3 displays the architecture of our hardware

components, mainly consisting of the ArduCAM camera

module and our Raspberry Pi microcontroller. The

configuration of the video stream from the camera will be

done in by the Python program, with OpenCV setting the

video connection to have a resolution of 1280 x 720p.

OpenCV will also be responsible for controlling the framerate

of the video pipeline, pulling new frames from the camera at a

rate 10 frames per second.
After capturing the individual frames using Python,

OpenCV encodes them into JPEG format before transmitting

them to the Wi-Fi socket. The original raw format of the

images stored by OpenCV is not suitable for transmitting over

a standard Wi-Fi connection due to its storage inefficiency.

Therefore, the images are converted into JPEG format to

reduce the bandwidth requirements between the Raspberry Pi

and the receiver laptop. The conversion of video into

18-500 Design Project Report: Team C0, 03/03/2023

6

individual images also prepares the data for transfer via

socket. The images are transmitted sequentially over the Wi-Fi

socket and are reassembled in the same order on the receiving

end.

Fig. 3. Hardware (camera) configuration and architecture

B. Backend Processing & Computer Vision

The backend processing and CV module could be separated

into several subsystems: Object Detection and Tracking,

Interpreting Outputs, and predicting the future occupancy

levels.
Object Detection and Tracking:

Our object detection and tracking subsystem will be

implemented on a personal computer in python. The video

feed gets received through WIFI through python’s built-in

socket interface. We will manually inspect the camera feed

and expand bounding boxes around each of the entrances in

the Hamerschlag 1300 wing hallway to define ROIs using

OpenCV and python. The ROIs will be defined as a

rectangular box that starts at the bottom of each entrance door

and expands into the middle of the hallway.
For object detection, we will run pretrained YOLOv5s

model to perform object detection. The model is pretrained on

the “COCO” dataset. The algorithm will return bounding

boxes for each of the object detected, and we will select only

the bounding boxes identified as “person” We will match

bounding boxes with the ROIs, if the bounding boxes are

within the ROIs, we will pass these bounding boxes into our

tracker. During initial local testing on a M2 MacBook pro with

720p input video feed, we were able to get around 9 FPS,

which is slightly below our 10FPS requirement. We will try to

improve YOLOv5s performance through pruning as suggested

in [6] and by using half precision FP16 inference as suggested

in [7].
Object tracking with DeepSORT will be done in

conjunction with the object detection algorithm. The tracking

algorithm will take the detection outputs from YOLOv5s and

create tracks for each of the bounding boxes it identifies as

unique. If the bounding box sent to the detection algorithm is

similar to one of the previous tracks, it will be used to update

that track. Else, the tracking algorithm will predict the future

position of the track to continue tracking the object. This

allows for handling occlusion of an object and cases where an

object does not get detected in a given frame. For each of the

tracks, we can extract the bounding boxes of the objects in the

given track and a unique id for the track.
Interpreting Outputs:

For each of the entrances, we will define a range of x and y

coordinates that identifies the bottom of the door. For instance,

if there is a door at the top left corner of an image, and points

on the image are represented with coordinates x (in range 0 to

image_width starting on 0 from the left), and y (in range 0 to

image_height starting on 0 from the top), then we will model

the bottom of the door as line from (x1, y1) representing one

end of the line, and (x2, y2) as the other end of the line. We

will also maintain a dictionary of unique track_ids and their

corresponding movements, done by comparing coordinates

bounding boxes between the past several frames. In a given

frame, if we detect that the bounding box coordinates of a

tracked object crosses the line of the entrance, we will check

the movement of that track_id stored in our dictionary. If the

movement of the track is away from the center of the image

(assuming that the Hamerschlag 1300 wing hallway is placed

in the middle of the image, and doors are on the side of the

hallway as shown in Fig.2 on page 2), then we can say that the

person is entering the room, and we would increase the count

for the room. Whereas if the movement of the person across a

given number of tracked frames is towards the center of the

image, and away from the line that indicates the entrance to a

door. We will treat that as a person exiting the room. For cases

where a person appears in the region surrounding the line that

defines a door, if we do not have historical data associated

with the person, we will treat that as a person leaving the

given room as well, since a person appearing at the door

without previous detection is likely to be out of the field of

vision of the camera to start with (meaning that the person was

not in the hallway hence not entering the room).
Prediction:

We will be training a decision tree classifier in order to

predict the future capacity. To train the decision tree, we will

collect testing data for the capacity of the rooms in

Hamerschlag 1300 wing at different times of the day and on

different days of the week. The collected data will be used as a

reference point to build a dataset manually. To train the

decision tree, we will label existing data based on features

such as time of the day, weekend vs. weekday, if there is class

currently being held in the space, capacity level in the room

during previous hours, etc. We plan on using the ID3

algorithm to build the decision tree and split on the attribute

that gives the most information gain. We plan on creating 100

data points for training our model and will tune the decision

tree using cross validation to get the optimal depth. The

trained tree will be stored in the backend and could be used to

make predictions of future occupancy levels in almost real-

time, since the prediction only requires labeling the data and

traversing down the trained decision tree to make a prediction.

This would allow us to meet the latency requirements for our

18-500 Design Project Report: Team C0, 03/03/2023

7

system, where the user could get updated data every 60

seconds.

C. Interactive Web Application

The web application will provide a secure, usable, and

interactive platform for users to view and interact with the

data that is processed by our backend database. The computed

data output from the backend will be integrated with the

frontend using Python as well as the Django framework so

that the data can be deployed on the server. The basic user

interface and frontend styling for the web application is done

on HTML/CSS; we will also be using Ajax and JavaScript

frameworks to create an asynchronous web application and

ensure the main page will be able to automatically update

without having to manually refresh the page for updated

information.

For the login page, the web application will employ the

Django authentication package and customized decorators to

allow new users to register and old users to login. It will

protect the system against malicious users by ensuring that all

users will need to register using an Andrew email address

provided by CMU. After a user logs in, they will be directed

to a home page which shows real-time information regarding

occupancy at the Hamerschlag 1300 wing. There will also be a

form and a submit button on the home page that allows users

to interact with the web application by selecting a same-day

time for a predicted category of occupancy levels. The form

will be done using Django’s Model-View-Controller (MVC)

system architecture and the relevant data will be transmitted

and constantly updated over 60-second intervals through

JSON. Fig. 4 details the web application’s user experience

from registering to getting the occupancy prediction, while

Fig. 5 demonstrates the home page user interface upon logging

in.

Fig. 4. Web application user experience across all pages

Fig. 5. Web application home page wireframes

VII. TEST, VERIFICATION AND VALIDATION

The testing and verification of our system will be done in

three main phases.

A. Tests on Pre-recorded Footage

To commence the testing process, we will first use pre-

recorded footage. The Raspberry Pi-based vision system,

along with ArduCAM, will be installed on top of the

Hamerschlag 1300 hallway doorway, and the camera will be

set to record for a maximum of one hour. The recorded

footage will be saved on an external storage device that is

plugged into the Raspberry Pi. In order to replicate our future

testing environment, we will capture the initial footage as a

sequence of 640p hallway videos at a 10-frame-per-second

rate.
Once the recording is complete, we will retrieve the video

from the storage device and input it into our computer vision

system. The system will then attempt to estimate the

occupancy heatmap based on the recorded video. The central

aim of this test will be to observe if our computer vision

algorithms can suitably detect and track pedestrians inside our

testing environment, the Hamerschlag hallways.
Since our initial testing phase will take place early in the

development of our computer vision and camera systems, we

will conduct this stage of testing for a much shorter duration

than our final requirement. We will limit our pre-recorded

video to a maximum of one hour to allow for easy manual

verification of occupancy levels and quick retesting of new

developments. Therefore, during this phase of testing, we will

not be evaluating our prediction model, but solely focusing on

verifying the estimation system. Our initial test's targeted

accuracy for each room in the estimation system is 80%. After

we have verified that the estimated occupancy in each room

remains within our 80% threshold for the entirety of the

recording, we will move on to the next phase of testing.

18-500 Design Project Report: Team C0, 03/03/2023

8

B. Tests on Live Footage

Similar to the first stage of testing, the vision system, which

includes the ArduCAM and the Raspberry Pi microcontroller,

will be installed in the Hamerschlag narrow hallway. The

system will transmit a live video feed of the hallway, which

will be analyzed by the computer vision algorithm on a laptop.

The video data will be transferred wirelessly between the

Raspberry Pi source and the laptop through a Wi-Fi socket

interface.
In the second testing phase, we plan to simulate the typical

activity duration of the Hamerschlag environment by

conducting tests for up to 15 hours at a stretch. However, due

to the extended duration, it won't be feasible to manually

verify occupancy levels throughout the entire testing period.

Instead, we will evaluate the accuracy of our estimation

algorithms by comparing the occupancy estimates generated

by them with the readings obtained from other cameras

installed in the individual rooms branching off from the

Hamerschlag hallway. The cameras will be placed in the upper

corners of the rooms to capture a complete view of the space.

Each camera is connected to a Raspberry Pi that transmits the

video feed over Wi-Fi to our primary processing laptop. On

the laptop, a basic detection algorithm will run to determine

the current number of individuals in the room, providing a

basis for comparison.
To simplify matters, we will limit the placement of our

verification camera systems to a certain number of rooms that

are connected to the hallway. We anticipate that the

occupancy patterns in each of these rooms will be relatively

similar to each other, so if our estimation algorithm can

accurately count the occupancy in one part of the Hamerschlag

rooms, it should be able to do so for the others. Additionally,

we will select camera locations that account for as much

variation and challenges for our computer vision algorithm as

possible. As such, we plan to install cameras in the meeting

room closest to the hallway entrance, the meeting room

furthest from it, and one of the larger lab spaces. Our goal for

this testing phase is to ensure that our primary computer vision

system can estimate occupancy within 80% accuracy of the

occupancy detected by the 3 auxiliary cameras throughout the

testing period.
During this phase of testing, our main priority is to ensure

that our computer vision pipeline can maintain consistent

performance that matches the speed of the live video feed. If

our system is unable to do so, we will need to make any

necessary adjustments to our system immediately, as each

round of testing is very time-intensive. In addition, we will

evaluate the connection between the Raspberry Pi and the

laptop, as well as the ability of our pipeline to operate

continuously over an extended period of time. Another

objective during this phase will be to collect training data for

our predictive module. We will record occupancy levels from

the auxiliary cameras during our testing sessions and store

them in a database for future use in building our decision tree

model. Therefore, we will not yet test the performance of our

predictive module during this phase until it has been

appropriately trained and developed with the data we collect.
Another objective at this development stage is to have the web

application operational, which will display the estimated count

of individuals in each of the branching rooms to users. We

will observe whether the website maintains its responsiveness

to the occupancy changes in the surroundings by observing it

at the start and end of the testing runs. Our validation target is

to ensure that the system operates within 60 seconds of

latency.

C. Tests with predictive module

During this phase, we will begin testing on our prediction

component. The testing setup will remain the same as the

previous phase, where we will install the ArduCAM and

Raspberry Pi microcontroller to face the Hamerschlag narrow

hallway. The system will send a live video feed of the hallway

from the Raspberry Pi over Wi-Fi, which will be analyzed by

the computer vision algorithm on a laptop. We will also place

our verification camera in the same three rooms as in the

previous phase and continue running detection algorithms to

ensure that we maintain our estimation target of 80%

throughout the testing period. In addition, we will continue to

observe the latency of our web application, in order to

maintain our 60 second latency target.
At the beginning of each hour of the testing process, the

algorithm will also predict which of the four capacity

categories each room will fall into one hour in the future. At

the start of the following hour, this prediction will be

compared to the occupancy detected by the auxiliary camera

setup in the rooms. Our validation target for the predictive

model during this testing phase is to accurately predict the

occupancy categories of the three rooms with auxiliary

cameras, one hour into the future, at an 80% success rate

throughout the testing process.

VIII. PROJECT MANAGEMENT

A. Schedule

The detailed schedule for the project is presented at the

second to last page of the document. Up to the submission of

this report, the team has already completed the purchase of

required hardware, explored the computer vision libraries,

tested possible deployment methods, and created the

wireframes and initial prototype for the web application that

users will be able to interact with. We plan to integrate the

backend estimation data with the local web application on

Week 10 (March 20-26), and we plan to have the full

integration of video feed, backend software, and web

application for the estimation feature before the interim demo

on Week 12. We will use the time after the interim demo to

conduct extensive testing of our system over an extended

period of time (15 hours continuously), and the full integration

of the entire system including our prediction feature will take

18-500 Design Project Report: Team C0, 03/03/2023

9

place on Week 13 (April 10-16). We plan to have our entire

system tested, validated, and integrated by Friday, April 21,

2023, at the latest.

B. Team Member Responsibilities

David Feng is working on configuring the camera modules

with the Raspberry Pi 4, calibrating the camera configuration

to the testing environment of Hamerschlag Hall 1300 wing,

and connecting the video feed to the backend software through

wireless internet.
Tianzhuo Li is in charge of developing and running the CV-

based algorithm for object detection. Additionally, he will

work on translating the CV output to estimation data and

implementing the prediction algorithm with machine learning

models in the backend.
Gary Qin is responsible for connecting backend data output

to the local frontend as well as the server-side web application

powered by Django. In addition, he will be working on

developing the entire web application user interface using

HTML/CSS.

C. Bill of Materials and Budget

The bill of materials used for this project and the budget

allocation is displayed in detail in Table 1 at the last page of

this document.

D. Risk Mitigation Plans

The team has identified 3 critical risk factors for this

project: the speed and efficiency of the backend in processing

live video feed, the potential of algorithmic bias being present

in the computer vision algorithm, and the privacy concerns of

people present in the camera frame and the users who interact

with the web application.
We are committed to improving the performance of our

system and optimizing the latency of individual subsystems.

If, during early-stage testing of the object detection algorithm,

the performance stats are way below the 10 frames per second

(FPS) design requirement, we will switch to Jetson Nano

controller with a GPU, which will increase the frame rate of

our system based on previous experience working with GPUs.
During the testing and validation stage of our project, we

will be observing the existence of any algorithmic bias present

in the CV algorithm doing object detection. We will strive to

eliminate any sort of algorithmic bias, including

discrimination of race, gender, and height, that causes the

algorithm to be incapable of detecting a person under various

confidence levels. We will tweak the parameters of the CV

algorithm so that we ultimately find no evidence of bias when

testing and validation our integrated system.
We care about the privacy of students, staff, and faculty

members whom the system will be interacting with one way or

another. Therefore, we will not be storing any live camera

feed in a database – the video will be sent to the software

backend for processing only. We will also mount the camera

in a way so that it does not intrude into the normal movement

of people in the Hamerschlag 1300 wing.

IX. RELATED WORK

Even though we believe that the estimation and prediction

of usage and occupancy in enclosed spaces have a high

demand and a variety of potential use cases, there does not

seem to be a considerable number of existing applications or

systems in the market. Specifically, we found no similar

products currently being used on Carnegie Mellon’s campus

that help estimate and predict the occupancy of lab spaces and

lecture rooms. Nevertheless, there exist systems and products

that are slightly different from People Counter in both use

cases and implementation methods.
Zensors, a spin-off company from CMU’s School of

Computer Science, uses existing surveillance cameras near

airport security checkpoints to estimate the wait time needed

for passengers to go through security. It uses computer vision

algorithms deployed on AWS cloud to process live

information captured on monitoring cameras, and the

computed output is displayed on a big TV screen in front of

the security lines at Pittsburgh International Airport that gives

travelers a real-time estimation of the expected security wait

times. To our best knowledge, in contrast to People Counter’s

prediction feature, Zensors’ airport security product does not

predict the wait time of security lines in advance and does not

have an interactive web application that allows users to select

a future time for wait time prediction.
In addition, the paper by Saralegui et al. describes a case

study of using IoT sensors and energy consumption of rooms to

predict the rooms’ future usage [4]. The researchers utilize a

variety of parameters and historical data of an IoT smart home

system, namely thermal behavior, energy usage, and humidity,

to monitor and predict room occupancy data. The results show

the prediction accuracy maintaining at around an 79% clip

across multiple tests. This study shows that there are more ways

to estimate and predict occupancy in rooms, but the accuracy is

somewhat limited given that certain people movement can be

unpredictable.

X. SUMMARY

In summary, People Counter’s design leverages the

combination of live camera feed, a backend that computes

occupancy data with CV and machine learning algorithms, and

an interactive web-based application to deliver both real-time

estimation and future predictions of the occupancy levels at

Hamerschlag Hall’s 1300 lab spaces at CMU. On a compact

college campus like that of Carnegie Mellon, it can be difficult

for students to find an ideal place to do some work or relax.

For them, it would be a huge waste of time and energy if they

come to their favorite spot to study, like the Hamerschlag

1300 wing for ECE students, only to find a packed room.
People Counter can help resolve this issue, as students will

have remote access to real-time occupancy data and will even

be able to choose a time (same day) to view the predicted

occupancy of the lab spaces. With the help from People

Counter, students can now make a calculated decision with

https://www.zensors.com/smart-airport
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359482/

18-500 Design Project Report: Team C0, 03/03/2023

10

better confidence on whether they would like to travel to

Hamerschlag 1300 wing to spend their time, and thereafter

they will be able to find more time doing what they truly

enjoy, instead of wasting much of their valuable time on the

road.

REFERENCES

[1] “Popular Times, wait times, and visit duration,” Google Business Profile

Help. [Online]. Available:

https://support.google.com/business/answer/6263531?hl=en#:~:text=To

%20determine%20popular%20times%2C%20wait,enough%20visits%20

from%20these%20users. [Accessed: 03-Mar-2023].
[2] “MTA unveils new capacity tracking and real-time location features in

Metro-North Traintime App,” MTA. [Online]. Available:

https://new.mta.info/press-release/mta-unveils-new-capacity-tracking-

and-real-time-location-features-in-metro-north-traintime-app.

[Accessed: 03-Mar-2023].
[3] L. Lim, M. Kim, J. Choi, and C. Zimring, “Seat-choosing behaviors and

visibility,” JSTOR. [Online]. Available:

https://www.jstor.org/stable/26893773. [Accessed: 04-Mar-2023].

[4] U. Saralegui, M. Antón, O. Arbelaitz, and J. Muguerza, “Smart meeting

room usage information and prediction by modelling occupancy
profiles,” Sensors, vol. 19, no. 2, Jan. 2019.

[5] M. G. Naftali, J. S. Sulistyawan, and K. Julian, “Comparison of Object

Detection Algorithms for Street-level Objects,” Aug. 2022.

[6] “YOLOv5 on CPUs: Sparsifying to Achieve GPU-Level Performance

and a Smaller Footprint,” Neural Magic - Software-Delivered AI, 07-
Sep-2022. [Online]. Available:

https://neuralmagic.com/blog/benchmark-yolov5-on-cpus-with-

deepsparse/. [Accessed: 03-Mar-2023].

[7] Ahmed, Khaled R. Smart Pothole Detection Using Deep Learning Based
on Dilated Convolution.

https://www.researchgate.net/publication/357093620_Smart_Pothole_D

etection_Using_Deep_Learning_Based_on_Dilated_Convolution.

[8] Wojke, Nicolai, et al. “Simple Online and Realtime Tracking with a

Deep Association Metric.” ArXiv.org, 21 Mar. 2017,
https://arxiv.org/abs/1703.07402.

18-500 Design Project Report: Team C0, 03/03/2023

11

18-500 Design Project Report: Team C0, 03/03/2023

12

TABLE I. BILL OF MATERIALS

Description Model # Manufacturer Quantity Cost @ Total

ArduCAM B0205 Arducam 2 $34.99 $69.98

Raspberry Pi 4 4 Model B Raspberry Pi 1 $0 $0

Grand Total $69.98

	People Counter: Count, Estimate, and Predict Occupancy of Rooms in Hallway
	I. Introduction
	II. Use-Case Requirements
	III. Architecture and/or Principle of Operation
	IV. Design Requirements
	A. Location of Cameras
	B. Camera Resolution
	C. Camera Frame Rate

	V. Design Trade Studies
	A. Number of Cameras
	B. Another Design Specification or Subsystem
	C. Microcontroller
	D. Figure and Table Formatting
	E. Object Tracking Algorithm
	F. Location of Computer Vision Processing
	G. Web Interface Design

	VI. System Implementation
	A. Hardware Configuration
	B. Backend Processing & Computer Vision
	C. Interactive Web Application

	VII. Test, Verification and Validation
	A. Tests on Pre-recorded Footage
	B. Tests on Live Footage
	C. Tests with predictive module

	VIII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Bill of Materials and Budget
	D. Risk Mitigation Plans

	IX. Related Work
	X. Summary
	References

