
18-500 Design Review Report - 2 March 2023 Page 1 of 10

FireEscape
Authors: Aidan Wagner, Jason Ledon, Neha Tarakad

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A distributed system of fire detecting
nodes that are capable of guiding occupants to safest
path out of a burning building.This eliminates the risk
of leading occupants towards hazards when trying to
escape the buildings and prioritizes the safety of users.
The nodes are able to dynamically plan the most opti-
mal paths depending on distance as well as temperature
and smoke data, reacting in real-time to threats of fire
throughout a building.

Index Terms—Design, Distributed, Fire, Optimal,
Planning, Safety, Sensors

1 INTRODUCTION

In a typical building fire occupants have a limited time
to escape a building safely. In order to maximize the proba-
bility of a successful escape, it is essential that the escapee is
provided with information detailing a safe and quick route
from their current location to the outside of the building.
Currently, this information is provided through fire drills
based on floor plans posted on the backs of doors in crucial,
high-traffic areas. However, this strategy presents a prob-
lem: The same fire that the occupants are hoping to escape
from could potentially be blocking their pre-determined
exit plan. This exit plan could lead them down a path
toward a fire, wasting time that should be spent moving
toward a valid escape. In the time it takes to traverse back
toward an unblocked exit, it may be too late to escape un-
harmed.

As a remedy to the aforementioned problem, we propose
a distributed system of nodes, capable of not only detecting
fires but communicating with one another and dynamically
providing the occupants with directions toward a safe exit
route. These nodes would be positioned at key locations on
multiple floors of a building, from long hallways, intersec-
tions, corners, and stairwells. These nodes work together
to form a path that leads an occupant outside a building.
The optimal path is determined through the floor plan of
the building in conjunction with the readings of the smoke
and temperature sensors that are attached to each node.
The shorter the distance traveled combined with the lower
the temperature and smoke levels, the better the path for
the occupant to take. If a node goes inactive, the pathfind-
ing algorithm will generate the most optimal path for the
nodes remaining as each node will generate an optimal path
from itself to the exit. In addition to the temperature and
smoke sensors, the nodes will either contain LEDs to dis-
play arrows in the direction that the occupant should follow
to find the next node or an LCD display that will contain
more in-depth instructions on how to get to the next node

as well as display the optimal path to take to efficiently
and safely exit the building in the event of a fire. This
solution will not only provide an innovative fire detection
system but also inform occupants of real-time exit strate-
gies which will give users the chance to avoid fires while
they exit the building.

In our report, we will introduce our design and pro-
vide an in-depth analysis of our system implementation
and trade studies that provide the reasoning for our de-
sign choices and how we intend on testing our system to
ensure we meet our design and use case requirements.

2 USE-CASE REQUIREMENTS

See table

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our system relies on temperature and smoke sensors
to accurately detect the presence of a fire and use these
readings as well as the floor plan of a specific building to
generate the most optimal path for an occupant to take
to safely exit the building. When we were designing this
architecture, we wanted to prioritize the user’s safety in
getting accurate data measurements that would affect the
path taken to leave the scene. In this way, we wanted to be
able to create a solution that would address other difficul-
ties that a building fire could cause such as power and wifi
outages. Furthermore, we wanted to create a solution that
would be scalable in the number of nodes and floor plan
of different buildings as well as maintained on a regular
schedule as to ensure up-to-date and working components.

Thus, we have divided our FireEscape architecture into
three main components: fire detection, pathfinding and
communication, and output instruction with hardware in-
tegration. Each of our modules has a critical responsibility
and relies on the proper functionality of each other.

18-500 Design Review Report - 2 March 2023 Page 2 of 10

3.1 Fire Detection Module

Figure 1: A snapshot of the section of our block diagram
that handles sensor detection.

The Fire Detection Module is essentially the system
that is within each one of our nodes that is capable of
detecting a fire. Every individual fire detection node is
comprised of temperature and smoke sensors that will work
in conjunction to detect increases in heat and smoke lev-
els consistent with a building fire. These nodes will be as
discreet as current smoke detectors in buildings but placed
in locations such as long hallways, intersections, corners,
stairwells, and other critical points of buildings based on
their floor plan.

As stated above, the purpose of the Fire Detection Mod-
ule is for the nodes to individually mimic the functionality
of current smoke detectors that are located in buildings.
They have the purpose of determining whether or not that
node is located at or within close proximity to a fire. The
temperature and smoke sensors are driven by a microcon-
troller to obtain the real-time data readings for each node
and compared against a threshold that would indicate a
fire. The microcontroller that is driving each individual
node must also be lower-power, such that it has the capa-
bility of being powered by a battery for 24 hours in idle
mode and 5 minutes or longer in active mode in the event
of a power outage; for our use-case, idle mode is defined
as passively reading the sensor readings and reporting an
”ok” signal; active mode is defined as the state in which
a node has sensed a fire, the node is actively pathfinding
to find the optimal path out, and the frequency of status
checks with other nodes has increased. While our plan is
for the nodes to be hardwired to power, if we face power
outages and we are dependent on an external backup bat-
tery source, we will be saving power by pulsing in and out
of active mode. This microcontroller must also be able to

communicate with the other nodes as well as pass informa-
tion on each individual node to the pathfinding software.

3.2 Pathfinding/Communication Module

Figure 2: A snapshot of the section of our block diagram
that receives sensor data from the current node, and sensor
data from other distributed nodes, and with this informa-
tion, plans the optimal path out.

The Pathfinding and Communication Module is essen-
tially a single unit that has information on all of the indi-
vidual nodes so as to generate the optimal path given the
sensor readings and measurements from the inputted floor
plans of the building of interest. This module is responsible
for listening and gathering all of the fire detection sensor
readings and comparing the data against each other; this
data will then be used as one factor that will help generate
the most optimal path. In addition, the pathfinding mod-
ule is also responsible for using the inputted floor plan to
generate a graph with weighted edges that depends on both
the length of each path accessible from each node and the
data readings coming from all node sensors. For example,
the shortest path with the lowest temperature and smoke
levels constitutes an optimal path. When generating the
optimal path, we will consider the shortest path from each
individual node to the exit in the event that a single node
becomes offline so that we are always able to generate a
path for the user.

Use-Case Requirement Reasoning
100 second delay between node detection and occupant notification NFPA requirement based on sprinkler system

Battery is recharged when power is on The Pennsylvania Code General Fire Alarm Requirements
Must run for 24 hours during power outage The Pennsylvania Code General Fire Alarm Requirements

Operate in fire mode for 5 minutes after 24 hours of no hardwired power and completely recharge battery once the power returns The Pennsylvania Code General Fire Alarm Requirements
Fire must be detected 95% of the time Current spec of smoke detectors, from National Fire Prevention Association

Planned paths are optimal and correct 100% of the time Sending users toward a fire would mean project failure
Path planning will run and display on nodes in under 10 second for a system of 10 or less nodes Time it takes to leave a room and therefore find a node

Distributed computation to allow scaling System can be adapted to larger buildings
Recharge battery once power comes back on Batteries must be recharged so that they will be ready for another fire

Table 1: Use case requirements paired with the reasoning behind them.

18-500 Design Review Report - 2 March 2023 Page 3 of 10

This module’s primary work exists as a software algo-
rithm running locally on the microcontroller; however, the
only way the software is able to retrieve the data neces-
sary is by receiving wireless and UART data from other
sources. The range of communication will be dependent on
each node utilizing the local WiFi network. However, to
account for the possibility of a WiFi outage in the event of
a building fire, we will show how we can utilize the ZigBee
networking protocol which will be explained at a deeper
level in the system implementation description.

Figure 3: A snapshot of the pathfinding section that is
made to use ZigBee.

The software will have to maintain a method of deter-
mining which nodes are online and store real-time updates
of their sensor readings to update the optimal path accord-
ingly. With all of the data collected from the nodes, an
optimal path will be generated and outputted for use by
the occupant within 100s in accordance with our use case
requirements which will take into consideration the alert
upload time, download time, and the time to display in-
structions. The pathfinding software will be tested and
analyzed to prevent all bugs and memory leaks.

3.3 Direction Instruction Module

Figure 4: A snapshot of the section of our block diagram
that handles directions out of the building using an LCD.

The Direction Instruction Module is also essentially the
system of our distributed nodes as each node will individ-
ually have the functionality to provide directional instruc-
tions for the user to follow. This module will take the out-
put from the Pathfinding/Communication Module in the
form of the optimal path. Depending on the type of node,
either directional arrows for relative direction will be pro-
vided or an in-depth set of instructions with the highlighted
path to follow will be provided.

Our system of nodes is divided equally into two kinds:
LCD nodes and display nodes: both kinds of nodes have
the same fire-detecting functionality, but differ in the out-
put instruction method. The LED nodes have five LEDs
organized such that an arrow is lit up pointing to the next
node in the path to follow.

Figure 5: A snapshot of the section that shows the LED
variation of Direction instructions.

The display nodes have a screen attached that will pro-
vide more details as to how to find the next node along the
presented optimal path. In this way, we want to limit the
confusion of the user in attempting to follow the nodes to
the exit as it is a critical, quick-thinking setting.

As the Pathfinding/Communication Module updates
regularly and returns an optimal path, it will be fed to
the Direction Instruction Module for each node to keep the
user up to date on the best path toward the building exit.
This module heavily depends on hardware-software inter-
action in that the software module must be able to provide
instruction that can be presented on the LEDs and display
programmed through the microcontroller. The user will be
interacting and heavily relying on the visual components
of the nodes in this module meaning that there is a high
priority on readability and accurate directional output.

4 DESIGN REQUIREMENTS

Drawing from our use case requirements, we have cre-
ated a list of design requirements. These requirements
specify aspects of our implementation that need to be met
in order to ensure our product is beneficial to the user.
The list is as follows:

• Alert upload time + Pathfinding time + download
time + time to display directions less than 100s

18-500 Design Review Report - 2 March 2023 Page 4 of 10

• Battery capacity must be around 1600mAh

• Once power is restored, diode biases flip resulting in
current charging the battery at 6.6mA (For our NiMH
2000mAh battery)

• Smoke and Temperature sensor threshold values are
exceeded 95% of the time when exposed to flames

• Pathfinding software is tested and analyzed to pre-
vent all bugs and memory leaks

5 DESIGN TRADE STUDIES

Please see the Word template and the guidelines on
Canvas for more details about trade studies.

Trade studies of sub-systems can also be included in
this section. You should use sections with the
subsection command to split up this section as dictated
by content.

5.1 Batteries

When we were selecting which batteries we wanted
to use for our final product, the biggest concerns that
we needed to take into consideration were the operating
voltage of our system and the power consumption of our
system. For nodes that used LEDs as displays, we knew
that the largest operating voltage would be the ESP32 at
3.3V. For the nodes with LCD displays, we knew that the
LCD screens would have the largest operating voltage, at
5V. To solve this, we felt that we could use AA batteries
with a 1.2V potential, and use 3 of these to power the LED
nodes, and 6 of them to power the LCD nodes. We felt
that this would be the cheapest and most efficient option,
as we would not need to order separate batteries for our
two different nodes.

For the capacity, we needed to some some research
on the power consumption of our components. We found
that the ESP32 draws a maximum of 260mA while in ac-
tive mode, and a maximum of 20mA in its modem sleep
mode(Last Minute Engineers). We also found that the
LCD display draws 500mA(NX4832T035). Additionally,
we found that the Zigbee s2c pro draws 31 mA when fully
active(Power Requirements). We will perform our calcula-
tions for an LCD node, as these be have the limiting factor
for capacity. When a fire has not yet been detected, each
node will periodically sleep for 25 seconds and then turn
on for 5. One of our requirements is that we can operate in
this state for 24 hours. To find out the capacity we needed,
we used the following equation.

24 ∗ ((50/60)(20) + (10/60)(260 + 31) = 1564 (1)

We also need to ensure that we can power each node for
5 minutes after a fire is detected. In this case, the ESP32
will be in active mode, the LCD will be on, and the Zigbee

card will be active.

5

60
∗ (260 + 500 + 31) = 65 (2)

We can see that the first capacity is our limiting capac-
ity, so we have found that our battery will need a capacity
of at least 1564mA.

Additionally, we need to design a circuit that will al-
low us to continuously charge our battery. We found that
NiMH batteries can be continuously charged at 1

300 of its
capacity per hour, and we believe that this is an aspect
that will be beneficial for our system. The batteries we
have chosen have a capacity of 2000mA, so we will design
our circuit to charge the batteries at 6.6mA.

5.2 Pathfinding

There are a lot of pathfinding algorithms available, so
there was a significant amount of work that went into de-
ciding which one we should end up using. While there is
still some metrics testing that needs to be done before a
final decision can be reached, there were some algorithms
that we were able to quickly rule out.

5.2.1 DFS

DFS is a very popular pathfinding algorithm but wasn’t
particularly well suited for our application. DFS, by defi-
nition, traverses deep into the graph first, exploring further
nodes earlier. This isn’t ideal in our scenario, as we want to
expand out first, trying to find the closest node that might
lead us to an exit. While it has a runtime of

O(V + E) (3)

It isn’t compatible with the short-circuit exiting once the
shortest path has been found.

5.2.2 BFS

BFS is the next logical alternative to DFS. BFS is ac-
tually much more suited for our application, as it expands
outward first, checking the nodes nearest to it, and only
then progressing deeper into the graph. This behaviour
suits what we are looking for. The major downside is that
BFS has no option for different weights of the edges. It has
the same time complexity as DFS, but because of the lack
of edge weights, we decided not to go with it.

5.2.3 Dijkstras

Dijkstras is the next logical alternative; BFS was very
close to working but didn’t support edge weights, and that
is exactly what Dijkstras algorithm provides: it finds the
shortest path out, prioritizing searching shorter paths first.
It has a time complexity of

O(V + lg V) (4)

18-500 Design Review Report - 2 March 2023 Page 5 of 10

which is comparable to DFS and BFS, especially when you
take into account that we will be allowing the algorithm to
end early once a valid exit has been found. Additionally,
these optimal exits should be found faster because of the
fact that we are able to take into account edge weights.

5.2.4 Distributed Dijkstras

This is very similar to Dijkstras, except each node only
has information about its immediate neighbors. This is
to help with scalability and to allow nodes to be inserted
into the graph later with minimal overhead. We think this
might be a very viable option, but because of the increased
amount of data that will be sent over the network, we will
need to perform real-world tests to see if this performs bet-
ter than base Dijkstra’s.

5.3 Microcontroller

There are quite a few Microcontrollers available that
would have been suitable for this task, but the one that we
went with was the ESP32-C3. We specifically chose this
microcontroller for a variety of reasons. 2) The ESP32 se-
ries has purposely been made to be compatible with the
Arduino ecosystem; this is important to us because a sig-
nificant amount of the hardware we were researching was
listed as ”Arduino compatible”, therefore making it ESP32
compatible as well. 2) It was much more affordable com-
pared to an Arduino Uno, which was important because
we needed to make a system of nodes. 3) It has Bluetooth
and WiFi built-in, which means we wouldn’t need to buy
adapter cards to support this.

One of the primary reasons that we decided to use the
C3 variant of the ESP32 was that it is using a RISC-V based
processor, allowing it to be more power efficient than some
of the other variants. This was a key consideration as we
have tight power constraints due to Fire Code.

5.4 Networking

There are a variety of different wireless communication
protocols that we could use. The main 3 are WiFi, Blue-
tooth and ZigBee.

5.4.1 WiFi

This method is easy to use, however, it has the risk of
going out during a fire. A local Zigbee network may be a
better solution in the event of a WiFi outage. Using the
local WiFi is a choice based on cost and resource availabil-
ity but we want to be able to show that we are capable of
scaling up and addressing possible risks.

5.4.2 ZigBee

This is what we deemed to be the ideal networking for
our use-case. ZigBee is primarily used for IoT devices where
there isn’t 1 central hub that every device talks to. That is
ideal in our case, because we don’t want one central hub;

if the fire were to take down that hub, the entire network
would go down. ZigBee is ideal because it allows us to set
up our own fully distributed network. We are choosing to
rely on WiFi for the sole reason that it is already built into
the boards, and the cost of buying XBee boards would push
us over budget. Therefore we have come to the decision to
use a few XBee boards for a proof of concept but rely on
WiFi for the general functioning of the project.

6 SYSTEM IMPLEMENTATION

Our system implementation can be broken into descrip-
tions for the 4 following subsystems: Circuit design, sensor
interfaces, communication software, and pathfinding soft-
ware. section 3 rather than redundant. You can refer back
to earlier figures in section 3 using Fig. 1, Fig. 2 and Fig. 4.

There should be a subsection for each of the subsystems
as shown below.

6.1 Circuit design

To connect all of the components of an individual node
in our system, we will be designing a Printed Circuit Board
(PCB). This board will contain traces allowing us to con-
nect our temperature and smoke sensors to our ESP32
microcontroller. Once we have acquired these PCBs we
will solder our components to the board, creating a clean
final product that is more durable than a breadboard.

Additionally, our PCB will contain the circuitry needed
for our backup battery. The circuit that we are planning
on implementing is shown in the above diagram. The D1
Zeener diode is used to prevent any power leaking from
the backup battery toward the main power supply. The
resistor allows for our backup battery to be consistently
charged at a slow enough rate to prevent overcharging. If
the main power is to go out, which is very possible in a
fire, the backup battery will be able to utilize the low re-
sistance path through the D2 zeener diode, which will then
provide power to our microcontroller and any other com-
ponents that need power to function. We found that NiMH
batteries can be continuously charged at 1

300 of its capacity
per hour, and we believe that this is an aspect that will
be beneficial for our system. The batteries we have chosen
have a capacity of 2000mA, so we will design our circuit
to charge the batteries at 6.6mA(Smith). By adhering to
this guideline we will be able to keep our backup battery
charged in the case of a power outage.

18-500 Design Review Report - 2 March 2023 Page 6 of 10

6.2 Sensor interface

To detect fires, each node will have a temperature sensor
and a smoke sensor. We are using the Ds18B20 tempera-
ture sensor and the MQ2 smoke detector. Until the detec-
tion of a fire, our nodes will spend the majority of their
time in sleep mode to preserve battery power. Once every
30 seconds, our system will switch into an active mode. In
this active mode, measurements will be taken of the envi-
ronment, and if the sensor readings exceed the threshold
value that we set, a fire alert is sent out to all of the other
nodes. We have decided to use a threshold of 135 degrees
Fahrenheit as our temperature threshold, as this is a typi-
cal temperature for fire, but not a temperature that would
be encountered on a daily basis. For the smoke detector,
we do not have a smoke threshold yet, as we have not yet
tested with the smoke sensors. Once we begin testing with
the smoke sensors we will determine a valid smoke mea-
surement threshold.

6.3 Communication

In order to provide occupants with real-time dynam-
ically changing directions, our nodes will need to have a
fast and reliable method of communication between them.
While idle, nodes will periodically wake up (once every 30
seconds), and during this awake period, they will send a
heartbeat message to the other nodes. Additionally, the
node will also check for messages from other nodes in the
system. Here, there are three scenarios: 1) Node A receives
a heartbeat message from Node B, 2) Node A receives a fire
alert from Node B, 3) Node A does not receive a message
from node B. In case 1, Node A continues on and does not
take any new actions. In cases 2 and 3, Node B is assumed
to be in contact with fire, and Node A switches to active
mode until the threat is resolved. In this active mode, the
path-planning software will begin running.

We present two possible methods of communication be-
tween the nodes in our system. The first method is allowing
each node to access the WiFi of the building in which the
FireEscape system is installed. After this, the nodes are
able to communicate with one another. This method al-
lows for simple installation and does not require the setup of
an external network. Additionally, many microcontrollers
come with onboard WiFi compatibility. However, using
WiFi introduces the risk of WiFi outages due to a fire.

To solve this issue, a local ZigBee network can be es-
tablished between the nodes. This will allow the nodes
to communicate even in the event of a WiFi outage. For
our demonstration, we will be using WiFi communication
across all of our nodes, but we will also provide a zigbee
demonstration between two of our nodes to prove the va-
lidity of this alternate solution. Ideally, a system would
operate entirely on Zigbee communication, however, due
to supply and budget issues, this is not feasible for us.

6.4 Pathfinding Software

Once a fire has been detected in our system, all of the
nodes will continuously be running their pathfinding soft-
ware in order to determine the safest route to the exit. We
are currently developing two different methods of pathfind-
ing, which we will test on our finished hardware to deter-
mine the optimal method. The first method we are de-
veloping is a standard Dijkstra’s search. In this strategy,
each node contains information about all of the other nodes
as well as information about the graph that represents the
building floor plan. The benefit here is that pathplanning
is able to be done without the need for other nodes to gen-
erate their own shortest paths out, which would hopefully
reduce the time it takes to get an initial display of the path
out. That being said, while the node is no longer relying
on the data for the shortest path out from other nodes, it
is still waiting for the sensor readings from other nodes.

Our other method is the Dijkstra-Scholten(Mani) algo-
rithm redinclude citations. In this algorithm, each node is
only required to receive information from each of its neigh-
bors. The nodes which have exits as neighbors set the edge
to the exit as their shortest path. Then this shortest path
is passed to the other neighbors, who use this information
to develop their own shortest paths. One advantage that
this has over the previously mentioned Dijkstra’s algorithm
is that we expect it to scale better with larger systems. As
each node only performs computation involving its neigh-
bors, we believe that scaling up the system will not exces-
sively increase the computation cost if we implement this
version of pathfinding. That being said, we would still need
to conduct Metrics studies to see at what point the added
latency of sending each node’s shortest path outweighs the
cost of every node doing pathfinding out of the entire build-
ing: what magnitude of the number of nodes would one
option surpass the other.

The directions from this pathfinding software will then
be sent to our LED and LCD displays to guide the
occupants toward the exits. For LCD’s we are using
NX4832T035’s; these displays should allow us to put a de-
tailed description out of the building: with a resolution of
480x320, we will be able to display the floorplan of the
building, highlighting the best path out, or at the very
least, the layout of the next few nodes along the short-
est path. The LED variation of the node will be used in
less critical areas, such as 3-way intersections which have
limited paths; each node will simply point in the relative
direction of the next node that falls along the shortest path
out of the building.

7 TEST & VALIDATION

Since the nature of FireEscape relies on multiple moving
parts, we have planned to create an extensive testing plan
for each individual component as well as the integration of
parts that they rely on. The motivation behind this testing
plan is to ensure that the subsystems work well individually

18-500 Design Review Report - 2 March 2023 Page 7 of 10

before attempting to integrate them together such that we
are confident in our ability to scale up the system. Below,
we have five important functionalities to test: the ability to
detect a fire, the path finding algorithm, the communica-
tion between nodes, displaying directions on the LEDs, and
generating the path and instructions on the display nodes.

While we will go into depth the testing plan for each cat-
egories, we also want to ensure that we are testing for per-
formance and power usage that we are offering the user the
best case scenario as well as preparing for outages. While
our system would be connected to power, we do want to en-
sure that in the event we lost power, we need to rely on our
batteries and use them wisely before and ensure they can
last long enough before they can be fully recharged once
we regain power. In order to do so, we plan to test the cur-
rent draw and voltage levels for each node when in active
and idle mode to order to ensure that there isn’t too much
current being drawn at each instance. We should also be
keeping track of how much power is consumed by each node
over a couple of days when utilizing the backup batteries
in order to figure out the time it will take for the charge
to be depleted before it needs to be charged again. This
would determine if we meet our requirements and allow us
to develop a maintenance plan.

7.1 Ability to Detect Fire

Evaluating the correctness of an individual node’s abil-
ity to detect a fire will be based on fire thresholds obtained
from researching the fire code. The threshold we will set
for the temperature sensor will be 135º Fahrenheit. The
smoke sensor doesn’t have the same threshold-like bound-
ary that needs to be passed, though: the smoke sensor will
need to be calibrated to the base state of the air quality
in the room it has been placed in. After this setup cal-
ibration has been done, the sensor will be able to detect
changes in air quality; when smoke enters the chamber,
the flow of ions between two places will be disrupted, ac-
tivating the output of the sensor. While it would be hard
to simulate these thresholds, for the sake of our smaller-
scale demo we will be utilizing a candle as our test fire and
bringing it close to these sensors. Based on the temperature
and smoke readings of the two sensors when the candle is
near, we can determine our smaller-scale threshold for fire
detection. One risk here is our ability to test the high tem-
perature consistent with a building fire and how the flame
would have to be very close to detect a high temperature
for our test input. In an actual building fire, we would ex-
pect the surrounding air to be at a very high temperature,
but when we are testing with a candle it is harder to mimic
that scenario. So for our testing plan, we will be utilizing
the thresholds based on the candle being placed near the
sensor or not and ensure the sensors detect its presence.

7.2 Path Finding Algorithm

Evaluating the correctness of the path-finding algorithm
relies primarily on test cases for the algorithm itself. We

can create example graphs with different edge weights in
order to determine if our algorithm outputs the best possi-
ble path from each individual node. Once this is confirmed,
we need to ensure that after each node provides both tem-
perature and smoke data, that we are able to create a graph
with an example floor plan and be able to generate an op-
timal path towards an exit. We plan to experiment with
mimicking a node going offline and ensuring our algorithm
is able to generate a new optimal path in the event that
this occurs.

With these nodes, edges, and exit locations that help
create our graph, we want to ensure that we are outputting
correct and optimal paths to exit from each of these nodes.
One risk that we could encounter is the latency between
nodes. In the event that we use the base implementation
of Dijkstra’s or A*, it is possible that on larger buildings -
and therefore larger graphs - we could run into long compu-
tation times, as every node is doing the pathfinding for the
entire building. That being said, if we do the distributed
version of Dijkstra’s - Dijkstra-Scholten - we will be sending
significantly more data over the network, and pathfinding
would not be able to commence until nodes have received
the shortest paths from their neighbors. Therefore, while
computation would decrease from each node, the time spent
waiting would be proportional to (the time it takes for com-
munication between two nodes · the number of nodes in the
shortest path).

7.3 Communication Between Nodes

In order to test the communication between nodes, we
are planning on sending arbitrary messages to the trans-
mitting nodes. In order to test that they are being sent
properly, we will just ensure that the information that was
transmitted is being displayed correctly on the receiving
node. Initially, we can test this functionality through arbi-
trary messages. Later on, we will be testing this function-
ality with the temperature and smoke sensor readings and
ensure they are received properly as well as tracking the
changes as they are updated.

Furthermore, we would want to be able to test the of-
fline node scenario too to ensure that we are able to prop-
erly determine which node has gone offline and which nodes
continue to transmit data. One risk that we might en-
counter would be if we encounter dropped messages. We
would want to analyze why this could be occurring and deal
with potential causes like range. While in our implemen-
tation we are relying on the local WiFi network, we would
also want to test for our Zigbee protocol between the two
nodes that we will use to demonstrate this capability. As
a result, we would want to perform communication testing
relying on the local WiFi network for all of our nodes as
well as relying on Zigbee between the two nodes that will
utilize this feature.

18-500 Design Review Report - 2 March 2023 Page 8 of 10

7.4 Display directions on LEDs

To evaluate if we are able to correctly display directions
on LEDs, we will start by having a program downloaded
onto the microcontroller that specifies a direction. We ex-
pect the LEDs to match that directional command in the
form of an arrow (north, east, south, or west). Once we
can confirm this functionality, we will generate a test path
made up of different directional arrows corresponding to
indices of all of our nodes and ensure that once the path
is outputted, we match the correct direction with the cor-
responding node. Finally, we will use the generated path
from our pathfinding algorithm as our test input and en-
sure that the correct node matches up with the correct
directional arrow. One risk that we might run into is that
due to the spacing between nodes, there might not be suf-
ficient information for the user to have in order to follow
the path to find the next node. However, this is why we
decided to include the display nodes as well to provide sup-
plemental, in-depth instruction to ensure the user is aware
of the path they must follow to efficiently and safely reach
the exit.

7.5 Generate Path and Instructions on
Display

To evaluate if we are able to correctly display direc-
tions on the display, we will start by having a program
downloaded onto the microcontroller that specifies a set of
instructions. We expect the display to present those in-
structions. Once we can confirm this functionality, we will
generate a test path that will resemble a floor plan. We will
ensure that we are able to depict it clearly on the display
and that it is readable by the user. As the user will be
depending on these instructions to determine where to go
next, we are taking the testing very seriously because we
don’t want to confuse the user and lead them the wrong
way. If we are not comfortable with the level of precision
of the path, we will keep working until it is up to stan-
dard. We could even have third party members try the
path that is displayed and ensure that they are able to fol-
low the path to the exit without a lot of difficulty. One
risk that we may encounter is the balance between written
instructions and actually displaying a floor plan map with
the nodes highlighted and the path to follow in bold. We
believe the written instructions to find the next node will
be very helpful but it is also extremely useful to have a map
visual as well. We are going to test both methods and see
which is clearer and has a higher success rate in terms of
readability to get to an exit.

8 PROJECT MANAGEMENT

8.1 Schedule

Refer to the Gantt chart of our schedule attached at
the end of the document. Currently, we are on schedule
to meet our MVP requirement which involves the optimal

path generation based on an inputted floor plan and dis-
play of easy-to-follow instructions to direct occupants out
of the building based on the fire detection from our dis-
tributed node system by the due date. As we continue to
make progress on our project, we continuously check and
update our schedule to keep it as up to date as possible if
certain tasks take longer or shorter than anticipated. We
also take into consideration the turnaround time for the
hardware we order based on their estimated delivery date
wherein we work on other tasks while we wait to integrate
new pieces. The schedule is shown in Fig. 9.

8.2 Team Member Responsibilities

Our team member responsibilities are divided into ar-
eas of interest and expertise. We have assigned a primary
owner as wel as a secondary owner to each task so that we
can keep each other accountable as well as bounce ideas
off of one another to progress quickly. With that being
said, Aidan Wagner is the primary lead on the software
with regards to the pathfinding software and communica-
tion between the distributed nodes with Jason Ledon as the
secondary lead. Neha Tarakad is the primary lead on the
circuitry with regards to planning out the node structures
and PCB for fabrication and collecting data from the sen-
sors and passing them to the software for path calculation
with Aidan Wagner as the secondary lead. Jason Ledon
is the primary lead for the hardware-software integration
and outputting the results from the pathfinding algorithm
to the displays and LEDs with Neha Tarakad as the sec-
ondary lead. At the moment, our teams deadlines have
not been extremely reliant on each other. This means that
when one of our teammates has missed a deadline, the other
members have not been strongly influenced. As a team, we
all have experience with circuits, hardware, and software
so we intend on helping each other out in the event that
one of us gets stuck and are not making progress.

8.3 Bill of Materials and Budget

Refer to Bill Of Materials Table 2. Unfortunately, the
hardware we needed was not in inventory from previous
years so we had to purchase from scratch. However, we
ensured that we would be finding our materials at reliable
sources at the best possible prices to stay within budget.
We have yet to order PCBs for fabrication but based on our
attached budget we are allocating the remaining money for
this purpose.

8.4 Risk Mitigation Plans

Throughout our design process, we have encountered
design, resource, and shipping setbacks that would result
in us pushing back some of our tasks more than we would’ve
anticipated. We have already ordered the majority of our
hardware that would allow us to make our nodes with the
exception of the remaining temperature and smoke sensors
as we wanted to test out a couple to ensure they work to our

18-500 Design Review Report - 2 March 2023 Page 9 of 10

Table 2: Bill of materials

Description Model # Manufacturer Quantity Ind. Cost Tax/Shipping Total
RISC V Developer Board ESP32-C3 Adafruit 10 $9.95 $21.16 $120.66
Lithium Polymer Batteries LP603449 Amazon 10 $5.30 $0.00 $53.00
Temperature Sensors DS18B20 Adafruit 10 $3.95 $14.36 $22.26
Smoke Sensors NAP-07 NIS-07 HIS-07 Ebay 10 $2.99 $4.40 $34.36
HMI Touch Display NX4832T035 Itead 4 $39.90 $30.00 $189.60
LEDs L513SRD-C 18-220 Lab 30 $0.00 $0.00 $0.00
Embedded RF modules Digi XBee S2C DigiMesh 2.4 DigiKey 2 $33.10 $11.39 $77.59

$497.47

liking and serve the purpose we intended. We have learned
the importance of ordering from reliable distributors as to
ensure datasheets as well as a timely delivery date. For
example, our smoke sensors were purchased from ebay and
they took almost a month to arrive and the datasheet cor-
responding to the sensor might require an additional chip
which we didn’t anticipate. While we tried to plan for
these delays, we ran into resource issues such as limited
stock or simply the hardware needed different function-
ality than advertised. We are also actively planning for
setbacks due to complications in implementation. At the
beginning stages of our project, we haven’t run into major
issues with regards to staying on schedule. However, we do
want to anticipate difficulties that could arise when getting
into the depths of the pathfinding algorithm based on life
sensor data from each node, integration between hardware
and software, and final displays based on the output of our
pathfinding algorithm.

One of our main risks at the moment is the fact that we
have two types of node structures (LEDs vs displays) which
essentially where we run the risk of having conflicting specs
for our varying hardware. To account for this, we have set
up extensive testing time for specifically how we will get
an optimal path to present arrows on the LED nodes and
the in depth instruction and optimal path to populate the
display. While this feature depends on the output from the
pathfinding algorithm, we have set up time to simply learn
to interface with both the displays and LEDs to minimize
potential difficulties down the road.

We also wanted to ensure that we planned out major
deliverables such as the proposal and design presentation,
design report, ethics assignment, and the final presenta-
tion and report. In this way, we are not only accounting
for tasks related to our project implementation but also
planning to spend ample time preparing our supplemen-
tary materials.

9 RELATED WORK

We have been using some of the work done by team
A3 - FreeSeats of ECE500 Fall 2021 as a reference, as they
had a somewhat similar structure as us: they had a system
of individual nodes that were communicating over ZigBee.
There are some key differences: they had a central hub that

they were talking to, whereas we are completely decentral-
ized; they had a cloud-based solution, whereas we are doing
all computation locally and aren’t making a website. that
being said, there are enough similarities that we have been
able to draw inspiration from some of the design decisions
and diagrams that they made.

Another team that we have been able to use for design
inspiration is team our TA’s, Kaashvi Sehgal. Her team
worked with a lot of the same hardware that we are using:
they used an ESP32 for the general brains of each node and
temperature sensors. There are also some overall similari-
ties as well; their team also had a distributed node system
with power constraints, which used a wireless form of com-
munication. The form of wireless communication that they
used differs, but overall, there is a lot of similarity between
our two projects. Because of that, we have been able to
refer to their design documents to get some sense of what
ours might resemble.

10 SUMMARY

With FireEscape we are working to create an efficient
and safe way to help occupants evacuate a building in the
event of a fire. With our distributed node system, we can
provide real-time data of our fire detecting nodes and al-
low the system to communicate with one another and work
together to output the safest, shortest path for the user to
follow to guide them towards an exit.

10.1 Public Safety Considerations

Our project aims to prioritize the health and well being
of occupants in a building. While currently there are fire
drills and evacuation plans, we want to be able to provide
effective instruction and ensure the safety of our users. We
don’t want to run the risk of occupants trying to leave a
building and instead, putting themselves at a greater risk
by walking towards greater hazards. While sometimes fire
drills are not taken seriously, we want to ensure that if users
have not seen and are kept up to date with their building’s
evacuation plan, that they are able to be provided with
descriptive guidance on where to go to safely depart.

18-500 Design Review Report - 2 March 2023 Page 10 of 10

10.2 Lessons Learned

Our team has learned a lot of important lessons up un-
til this point and we anticipate to keep learning throughout
this process. We learned the importance of extensive plan-
ning when it comes to design choices and how it can take
longer than we expect due to resource availability, ship-
ping, and cost. We learned what goes into deciding what
hardware to use for the functionality of our project and
how to make those design choices as a team with regards
to how we prioritize our needs. We also learned how im-
portant it is to get hardware from reliable sources so that
the parts can arrive in a timely manner and provide good
documentation.

Glossary of Acronyms

• LED – Light Emitting Diode

• LCD – Liquid-Crystal Display

• ESP32 – Microcontroller developed by Espressif Sys-
tems

• DFS – Depth First Search

• BFS – Breadth First Search

• PCB – Printed Circuit Board

• UART – Universal Asynchronous Receiver / Trans-
mitter

References

Smith, Jason Poel. “Create Your Own Battery Backup
Power Supplies - Projects.” All About Circuits, 22 Feb.
2016, https://www.allaboutcircuits.com/projects/battery-
backup-power-supplies/.

K. Mani Chandy and J. Misra. 1982. Dis-
tributed computation on graphs: shortest path algo-
rithms. Commun. ACM 25, 11 (Nov 1982), 833–837.
https://doi.org/10.1145/358690.358717

Power Requirements, 2018, https://www.digi.com
/resources/documentation/Digidocs/90002002/Content
/Reference/r specs power reqs.htm?TocPath=
Technical+specifications%7C 2.

Last Minute Engineers. “Insight into ESP32 Sleep
Modes amp; Their Power Consumption.”
Last Minute Engineers, Last Minute Engineers, 1 Feb.
2023, https://lastminuteengineers.com/esp32-sleep-modes-
power-
consumption# ˜ text=ESP32%20Active%20Mode,-
Normal%20mode%20isamp text=Since%20everything
%20is%20always%20active,and%20Bluetooth%20are%20used%20simultaneously.

Mahoney, Shawn. “Fire Alarm Notifica-
tion Delay from Sprinkler Waterflow: NFPA:
NFPA.” National Fire Prevention Association,
https://www.nfpa.org/News-and-Research/Publications-
and-media/Blogs-Landing-Page/NFPA-Today/Blog-
Posts/2022/06/03/Fire-Alarm-Notification-Delay-from-
Sprinkler-Waterflow: :text=1%2C%20NFPA%2072%20permits%20up,notification
%20appliances%20within%20the%20building.

“NX4832T035 – Nextion 3.5’ Basic Series Hmi Touch
Display.” ITEAD STUDIO OFFICIAL, 6 Sept. 2022,
https://itead.cc/product/nx4832t035-nextion-3-5-basic-
series-hmi-touch-display/.

“034.” Pennsylvania Code, http://www.pacodeandbulletin.gov/Display/pacode?file
=%2Fsecure%2Fpacode%2Fdata%2F034%2Fchapter50%2Fs50.53.htmlamp;d=reduce.

18-500 Design Review Report - 2 March 2023 Page 11 of 10

Figure 6: A full-page version of the same system block diagram as depicted earlier.

Figure 7: A full-page version LED variant of the block diagram.

18-500 Design Review Report - 2 March 2023 Page 12 of 10

Figure 8: A full-page version WiFi variant of the block diagram.

18-500 Design Review Report - 2 March 2023 Page 13 of 10

F
ig
u
re

9
:
G
a
n
tt

C
h
a
rt

