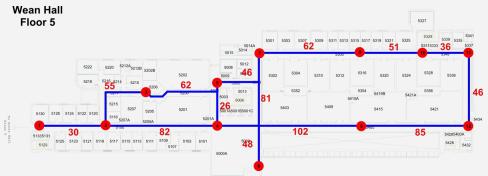


Neha Tarakad

Aidan Wagner

Jason Ledon

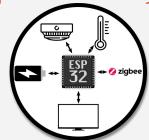

Problem: Fire and smoke alarms may tell occupants that they need to leave the building, but will not direct them away from the fires toward an exit.

Fire Escape

Use Case

- Existing solutions
 - Evacuation maps in key areas
 - Typically based on finding closest exit, despite potential hazards
- ECE Areas
 - Software, Hardware/Circuits

- Our take
 - Distributed node system will output an optimal path based on smoke and temperature readings at different locations
 - Occupants **guided** step by step out of building

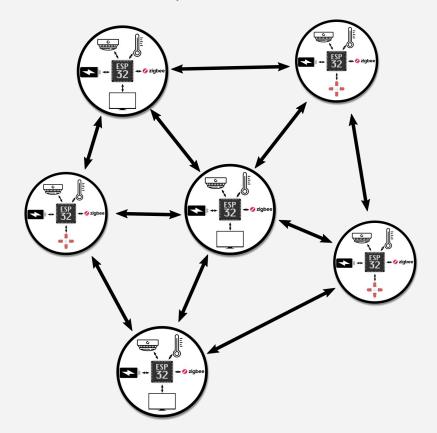

Requirements

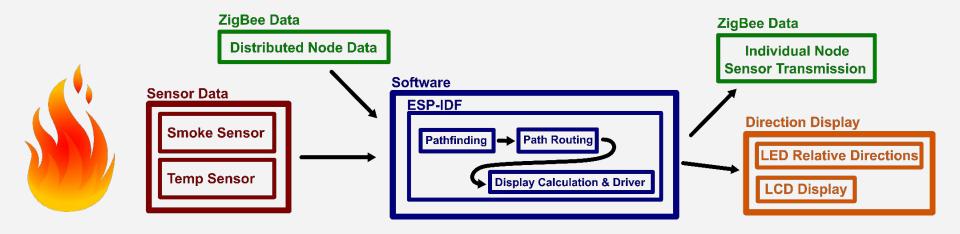
Use-Case Requirements	Technical Requirements	
Directions shown in <100s after fire detection	Alert upload time + Pathfinding time + download time + time to display directions < 100s	
Idle mode for >24hrs and Active mode for >5min on battery power	Idle mode requirement is the dominating factor, needing a capacity of ~1750mAh	
Battery is recharged when power is on	Once power is restored, diode biases flip resulting in current charging the battery at 5.8mA (Assuming NiMH 1750mAh battery)	
95% of fires are detected	Smoke and Temperature sensor threshold values are exceeded 95% of the time when exposed to flames	
Planned paths are optimal and correct	Pathfinding software is tested and analyzed to prevent all bugs and memory leaks	

Solution Approach (Single node structure)

- Each node will periodically be monitoring temperature and smoke status
- When readings reach a specific threshold, a signal indicating fire is send out to other nodes
- Pulse in and out of Active Mode to preserve battery

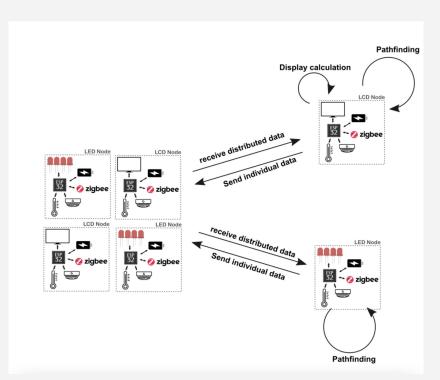
- Communication is performed through ZigBee custom network to avoid WiFi outage issues, but can use WiFi as alternative
- Nodes are connected to main power, but have a backup battery in case of outages



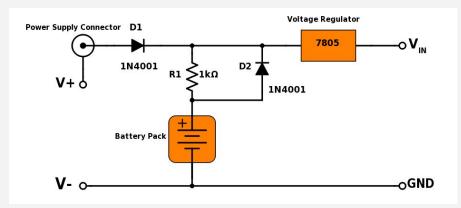


Solution Approach (System of Nodes)

- Nodes will cycle between modem sleep and active mode for communication
- When one node detects a fire, all other nodes plan the **shortest**, **safest route** out of the building
- Directions are displayed on nodes to guide users to the exit



System Specification / Block Diagram


Implementation Plan (Hardware)

- ESP32
 - Nodes will communicate over ZigBee / WiFi
- Sensors
 - Temperature and smoke sensors
- LED/LCD
 - LEDs provide relative direction
 - LCDs provide in-depth
 information on optimal path
 out of building

Implementation Plan (Circuit Level)

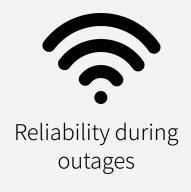
- PCB designed to connect sensors, batteries, and displays to ESP32
- Backup battery circuit
 - Blocking diode prevents battery from leaking into power supply
 - Battery supplies power if power supply is unavailable
 - Resistor to prevent overcharging

https://www.allaboutcircuits.com/projects/battery-backup-power-supplies/

Implementation Plan (Software)

Pathfinding

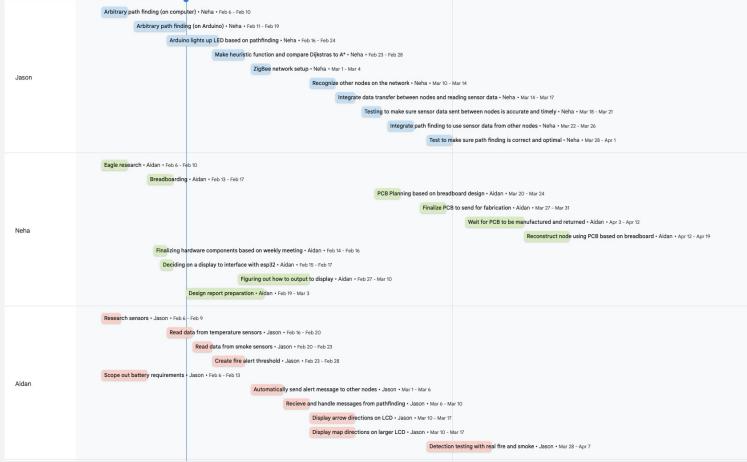
Scalability


Communication Protocol

Nodes Neighbors

Cost & Supply

VS



Low Latency

Testing, Verification, and Validation

Measuring Functionality	Test Inputs	Passing Test Output	Risk Factors/Unknowns
Ability to detect fire	Read smoke and temperature data from a candle	Fire detected when temperature is above 135 degrees F	Range/distance of fire for scalability
Path Finding	Nodes, edges, exit nodes	Correct and optimal paths to exits from each node	Latency between nodes
Communication between nodes	Arbitrary messages sent from transmitting nodes	Information transmitted is displayed correctly on receiving node	Dropped messages
Display directions on LED	Program sends command specifying a direction	LEDs on node match command given (ie correct NSEW arrow)	Sufficient information to find next node
Generate path on LCD	Program output describing path to next node	Description/Graphic displayed matches program	Written instructions vs displaying floor plan highlighting nodes

Project Management/Gantt Chart

Conclusion

- Public Safety
 - We believe that our design provides a solution to a problem unsolved by current fire alarm systems
 - By informing occupants of real-time exit strategies, we are giving users the chance to avoid fires while they exit the building
- MVP
 - Optimal path generation based on inputted floor plan and fire detection from distributed node system
 - Display easy to follow path to direct occupant out of building