
18-500 Final Review Report: Team B7 - 5 May 2023 Page 1 of 12

PetSTAR
Authors: Rebecca Manley, Brandon Wei

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of detecting and track-
ing animal movement using a Raspberry Pi and camera
and displaying this information through a web appli-
cation. The system also allows a user to specify areas
where their pet is not allowed and notifies them when
the animal enters the area. Our project is a com-
petitively priced hardware solution with functionality
beyond traditional pet monitors.

Index Terms—Axios, Computer Vision, Django,
Forbidden Zones, OpenCV, Raspberry Pi, React, Web
Application

1 INTRODUCTION

Pet cameras are becoming increasingly popular as the
technology becomes more accessible and people find them-
selves spending more time away from their home and pets.
These systems provide pet owners additional peace of mind
and offer insight about their pet’s behavior even when no
one is around. At their core, traditional approaches to pet
monitoring are all quite similar - a camera which watches
whenever the owner is away and transmits this feed to their
personal device. However, this means that the pet owner
would need to be actively watching (or spend time review-
ing footage later) in order to get any idea of what their pet
has been up to.

In this project, we set out to make the task of pet moni-
toring more convenient in two main ways: providing live no-
tifications when an animal goes somewhere it shouldn’t and
reporting summarized pet activity via a heat map. This is
accomplished by incorporating computer vision algorithms
to detect and track animal movement and a web applica-
tion to allow user input and convey important information.
We also aimed to keep our final product competitive with
the current market by maintaining a low cost of compo-
nents. It is our belief that this system could prove valuable
in any home with pets.

2 USE-CASE REQUIREMENTS

The use case for our project is, broadly, any home that
has one or more free-range pets. The first general category
of our use case requirements relates to the overall function-
ality that we want to achieve with our system. Since we
will alert the user when a pet goes somewhere it shouldn’t,
we want to minimize unnecessary disruptions to the user
by having a low false positive rate of < 10%. We also want
to make sure that these reports reach the user quickly so
that they are aware of any potentially dangerous situations

with their pet(s). Counting from the time that the ani-
mal enters the forbidden area, we aim to be able to detect
and notify the user within 10 seconds. Another core aspect
of our functionality is the summarizing activity logs that
we will provide for each animal. Since these logs are only
useful to the user if they are accurate, our goal is to have
logs which accurately reflect the movement of the animal(s)
> 90% of the time.

The other broad category of our use case requirements
relates to accessibility. Since there is an enormous diver-
sity in homes that have pets, it is important to us that
we keep our project as inclusive as possible. For our fin-
ished project, it is our goal that the average user would be
able to set up with system in ≤ 5 minutes, with instruc-
tions. We also want the web application to be intuitive
and user friendly, with > 90% of users able to complete
the core tasks (select forbidden zone, upload pet images,
request activity logs, etc.) with little or no additional in-
struction. Lastly, we want to keep our system as affordable
as possible. We aim to keep the overall cost to ≤ $100 as
our research has indicated that $100 is roughly the start-
ing price for other pet monitoring systems with features
beyond just an app-connected camera.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our physical system is depicted in Figure 1. It consists
of a Raspberry Pi and camera module. It also requires
the power adapter and a micro SD card to load the RPi
operating system.

Figure 1: The physical hardware for our project

The RPi runs the computer vision algorithms which an-
alyze the incoming video to identify and track the pets. It

18-500 Final Review Report: Team B7 - 5 May 2023 Page 2 of 12

Figure 2: Block diagram for the overall system

then communicates with our web application by connecting
to the user’s in-home wireless internet.

Our architecture has changed fairly significantly from
what we discussed in the design report. Most notably, all
elements of machine learning have had to remain separate
due to personal setbacks. The re-scoped project relies only
on the CV motion detection and tracking to monitor any
animals in the room, and still communicates with the web
application as planned. As such, our project no longer aims
to differentiate between multiple animals in the home. The
user may only specify one forbidden zone which applies for
all pets, and activity logs will reflect the movements of all
animals. It also no longer requires users to upload images
of their pets in the web application. Note that this feature
is still present in the web application, for demonstration
purposes, but does not do anything. Another, more minor
change to the project is that the speaker feature has been
removed entirely. Lastly, all communications with the web
app go through the back end, i.e. nothing goes directly to
or from the front end. This is to ensure that all necessary
data that we need to store in the back end has a chance
to get logged, and generally simplify communication pro-
tocols. See Figure 2 for the updated high level view of the
system.

The web app is where the user will be able do all the rel-
evant tasks and receive notifications for monitoring his/her
pet(s). First time users will be prompted to pair with their
camera, then be able to view live video feed to position
their camera. When they’re happy with the positioning
they need to press a button to save a template image of
the room. After this (or immediately, for returning users)
the user will end up on the PetSTAR dashboard. The ’for-
bidden zone’ task will allow users to select areas where they
do not want their pet to go in the room picture taken pre-
viously by clicking on grid squares overlayed on the image.
After finishing this process, the user will receive notifica-

tions on the web app whenever a pet has entered a for-
bidden zone. The ’activity logs’ task lets users view pet
activity logs through a heat map that shows the movement
of the pet in the room over a long period of time. The user
can clear these logs at any time, and it is recommended they
do so before each extended use of the camera. The ’new
pet’ tasks allows a user to enter the name and picture(s) of
each pet. The ’live video’ task lets users view a live video
feed of the room, which is similar to what traditional cam-
eras offer. They can also use this to reposition the camera
and re-select a room photo whenever they would like. See
Figure 3 illustrates the flow of how the user will interact
with the front end app, and Figure 4 shows the dashboard
appearance.

Figure 3: Web app user flow diagram

18-500 Final Review Report: Team B7 - 5 May 2023 Page 3 of 12

Figure 4: Final appearance of web application dashboard

The computer vision aspect of the project will be based
mostly in the OpenCV library. It aims to detect motion
to see when an animal enters the frame. Once motion is
noticed it will assign a tracker to that animal in order to
follow it as it moves through the environment. This allows
us to not lose sight if an animal goes still. Using the for-
bidden zone data communicated from the web app, it will
check for significant overlap between the position of the an-
imals and any forbidden squares, raising a notification flag
if needed.

Communications between the RPi and web app will be
done via an internet connection. The web app will com-
municate user-input data, i.e. the user defined forbidden
zones. The RPi communicates back with activity data and
a live camera feed that can be displayed to the user as
well as pushing a notification whenever an animal enters a
forbidden area.

4 DESIGN REQUIREMENTS

The first use case requirement we laid out pertained
to the speed of the overall system: Users must be notified
quickly (in < 10 seconds) when an animal has entered a
forbidden zone. In order to achieve this, we want our com-
puter vision to be able to flag when an animal has entered
a forbidden zone within 1 second of it having entered. The
remaining overhead time (9 seconds) is mostly a remnant
from anticipating the time it would take to use machine
learning to identify the animal. It also provides space for

the small amount of time required for the notification to
travel from the RPi to the frontend of the web app.

The next use case requirements relate to the accuracy
of our system. In order to avoid false positive notifica-
tions to the user, we want our computer vision to track the
animals within 1 foot of their actual position. Note that
we are considering the animal’s position to be its center of
mass. We are using a grid based system to specify forbid-
den zones, with the expectation that the user will place the
camera far enough back to capture most of the room. This
means that a grid box should be around 1 foot or more
in our intended use case, so we should always be within
one grid box in any direction of an animal’s true position.
For our average use case, we expect the forbidden zone to
be off of the ground, such as a shelf or a table. In these
cases, it would be very unlikely that the animal could be
just outside of the zone for any prolonged period of time
(as this would imply hovering), which could result in a false
positive. In edge cases where the forbidden zone is closer
to somewhere the pet could legally occupy, false positives
could be more likely depending on how the pet behaves.
It may be the case that the animal has no reason to ap-
proach this area other than to enter the forbidden zone, in
which case false positives should remain low. If the animal
commonly moves near the forbidden zone in the course of
normal activities, though, then false positives may be high.
This is something that the user will be informed of.

Our ability to maintain > 90% accurate pet activity
logs also depends on this tracking accuracy. When the an-
imal is further from the camera, 1 foot is smaller and less

18-500 Final Review Report: Team B7 - 5 May 2023 Page 4 of 12

likely to span multiple boxes. When it is closer, the animal
itself will appear bigger and thus occupy more boxes. The
logs consider a broader portion of the space occupied by
the animal (than just its single point center of mass), so
up to 1ft of inaccuracy would still count most of the mass
as being in appropriate squares. As such, the activity logs
would still express activity in the correct area. Another
important factor in our log accuracy is how quickly we can
identify when an animal has entered the frame. Delays in
noticing a new animal will lead to data being omitted from
the activity log. We expect that this time will vary based
on the speed that the animal is moving, but want an upper
bound of 5 seconds for all cases. So long as the animal
spends at least 50 seconds in front of the camera before
leaving frame again (on average), this up to 5 seconds of
omitted data will constitute less than 10% of the overall
data.

Lastly, in order to maintain a low user cost, we want to
use low cost hardware options. We want an overall system
cost of $100 or less to make our option competitive with the
current pet monitor market. We are achieving this using a
Raspberry Pi (with a baseline price of $35 pre-pandemic,
$45 post-pandemic) as our primary hardware in order to
maintain a low hardware cost.

5 DESIGN TRADE STUDIES

5.1 Web App Architecture

Frontend

There are a few choices for the frontend including us-
ing plain JavaScript/TypeScript, Bootstrap, Angular, and
React. Looking at these choices, React and Angular are
the best at improving user experience and user interface.
We chose React as the frontend of the product as the team
member working on the Web App has prior experience with
in other classes and React includes a library called Material
UI that can be used to create components such as a sidebar
and drop-downs on the Web App that help users navigate
the website easier. As well, React is one of the most pop-
ular libraries used as a frontend to the web application, so
documentation would be easy to find and understand for
any problems that occur while developing the frontend.

Backend

For the backend, a few popular options include Node.js
and Django. Both frameworks would have supported what
the Web App needs to do in terms of functionality, but
Django seemed to be the better option as the team mem-
ber working on the Web App has prior experience with this
framework in other classes and testing/integration with the
CV would be easier as both Django and CV are in Python.
One consideration was how to deploy the backend as it
would be needed to integrate the Web App and CV, and the
team member working on the Web App had prior experi-
ence with deploying using Django while having no relevant
experience with Node.js.

Requests

Looking at communication between the frontend and
backend, the overwhelming consensus was to use Axios
and the Django REST framework for a React frontend and
Django backend. Axios was used for passing data between
frontend and backend while the Django REST framework
parsed data from the Axios calls to the database stored at
the backend. Other options for request calls include fetch
and XMLHTTPRequest, but Axios was the better option
as data passed was the actual object versus the string ver-
sion of the object. As well, Axios has built-in CSRF pro-
tection, which can be useful when dealing with the ethical
issues specified later in the report. It is possible not to use
a REST framework when passing data from the request
call to the database, but using the Django REST frame-
work supported the validation of request data before being
stored in the database.

Authentication
One design idea for authentication was to use Google

OAuth 2.0. The team member working on the Web App
had prior experience using this authentication process for
project using Django only, and Google OAuth 2.0 allowed
users to not have to create another login and ensured that
users create accounts with not weak passwords. As well,
this authentication process is a standard way of authenti-
cation that can be seen on many websites as it is usually
incorporated in one of the single sign-on options on a web-
site. As well, there has been an updated way to imple-
ment Google OAuth 2.0 authentication using Google Iden-
tity Services SDK, which means that the authentication
process is up to date but also creates a lack of documenta-
tion for implementing this authentication process. Another
design option for authentication is JWT authentication[2].
Unlike Google OAuth 2.0, this authentication process does
not have a lack of documentation for authentication for
a full stack web application such as this product. Hence,
it would be easier to implement for this product. Similar
to Google OAuth 2.0, JWT authentication uses access to-
kens to authenticating users, which means malicious users
cannot easily access pages that are guarded by the access
token. But, there are not many restrictions in terms of
what users can enter for username and password, which
means that they may be easily guessable by malicious users.
This would lead to bad outcomes for those victims due to
the ethical issues specified later in the report. Overall, we
beleve JWT authentication is the authentication process to
use for the Web App due to having documentation for full
stack web applications and using access tokens, similar to
Google OAuth 2.0, for authentication.

5.2 User choosing forbidden zones

We had to think about how to implement a user choos-
ing forbidden zones for an image of a room that the pet
will be in. Specifically, we looked at the type of image dis-
played (2D or 3D image) and how we wanted to partition
the forbidden zones (free forming zones or grid system).

Option 1: User choosing forbidden zones on a
3D Image

18-500 Final Review Report: Team B7 - 5 May 2023 Page 5 of 12

A benefit to allowing users choose forbidden zones on
a 3D image is that users are able to be very specific in
how they define these zones. For example, they are able
to choose a forbidden zones in front of a box or behind a
box, which is not possible with a 2D image. But, we be-
lieve they are many issues with implementing this option.
Specifically, it is significantly harder to get a 3D model of
a room just from the camera feed rather than retrieving a
2D image of the room. There would be more data needed
to be stored in the database for a 3D image compared to
a 2D image. In terms of user experience, it may be harder
for users to navigate a 3D model of the room and choose
forbidden zones compared to clicking and/or dragging on a
2D image to create forbidden zones.

Option 2: User choosing forbidden zones on a
2D Image using free forming zones

The advantage to free forming zones compared to a grid
system is that the user is able to create finer forbidden
zones as they can click and drag to create multiple zones
which can fully encapsulate everything in the room that is
forbidden without including parts of the room that is not
forbidden for the pet to be in. As well, we believe a user will
be less confused when trying to create these free foaming
forbidden zones on a 2D image compared to navigating a
3D image to create forbidden zones. The main issues with
this option is that storing this data into the database and
giving this data for the computer vision on the Raspberry
Pi to use is complex compared to the more simplistic data
structure offered by using a grid system. As well, there is
no sense of depth in the 2D image, so choosing in front of
a box versus behind a box is not possible.

Option 3: User choosing forbidden zones on a
2D Image using a grid system

We believe this is the best option to implement as there
is a simple data structure, specifically an array like struc-
ture, that can be used to store data into the database and
also passed along to the Raspberry Pi. As well, this method
should be not confusing for users as users will click on the
grid squares to choose forbidden zones on the 2D image.
But, they are still consequences such as this is the worst
option out of the three in terms of choosing specific forbid-
den zones on an image. For example, the grid square may
mostly include the forbidden zone that the user intended
to create, but it will more than likely includes a few parts
that the user did not want to include into the forbidden
zone. To address this, we will make sure to get user feed-
back on grid square sizes so that users are satisfied with the
forbidden zones they are creating on the image. Overall,
we believe this option makes the back end of the project
much more simpler while not having significant impact on
the front end of the project. See Figure 5 for an example
of our forbidden zone grid system.

5.3 Displaying of Pet Activity Logs

We thought about how we wanted to display pet activ-
ity to logs for users when they request them, specifically if
we wanted to display a short vs long time frame and specific

vs generalized pet positions.
Option 1: Time-sensitive graph
A time-sensitive graph displays a short time period of

the pet’s movement, but a user will be able to scroll back
and forth in time to see the exact position of the pet in
the room at a specific time. The benefits to this option
is that if a user has in mind what time they want to see
what his/her pet is doing or the user will only be gone for
a short amount of time, then they can check this graph to
get precise locations of where the pet has been in a specific
time frame compared to a heat map. A consequence is that
the user cannot get the overall picture of where the pet has
been due to the short time frame that is offered by the
graph, and the user will have to be more interactive with
the graph compared to a heat map to understand what the
pet has been doing.

Option 2: Heat map
A heat map will display locations of where the pet has

been over a long time period using different colors that rep-
resent the spectrum between low amount of activity in a
place of the room to a high amount of activity. The ben-
efits to a heat map is that a user will receive information
quickly about the pet’s activity as the heat map is not in-
teractive, and the user can get overall statistics on a pet’s
activity over a longer time frame such as a whole day. The
consequences is that the user will not know where a pet is
located at a specific time, which may be more of an interest
to the user. Though both options seems to benefit the user
in different ways, we believe this is the best option as it has
a simpler implementation, and it is faster and easier for the
user to understand the pet activity information. See Fig-
ure 6 for an example of what our heat map implementation
looks like.

5.4 Motion Detection

Two methods of motion detection that we observed were
to:

1. Look for pixel differences versus a canonical empty
frame (usually the first frame)[10]

2. Look for pixel differences between each consecutive
pair of frames[6]

The benefit to the first approach is that it very clearly
and solidly identifies anything which is not in the canonical
frame. It is also not vulnerable to losing the animal if it
stops moving (so long as said animal was not in that exact
position in the canonical frame). However, the trade off
is that it would be incredibly sensitive to changes in light-
ing or position of the camera. Anything which makes the
current view look non-negligibly different from the canon-
ical frame will cause the whole frame to be flagged, and
generally is not recoverable without resetting the canonical
frame.

The benefit to the second approach is pretty much the
opposite of the first approach. Option 2 offers protection
against non negligible changes in the camera scene, as this

18-500 Final Review Report: Team B7 - 5 May 2023 Page 6 of 12

Figure 5: Final appearance of web application forbidden zone interface

Figure 6: Final appearance of web application activity logs

difference will only register for however long it takes the
camera to adjust to its new position/lighting. However,
the downsides are that we will lose sight of the animal if
it stops moving, and also the detected motion tends to fo-
cus on the outer edges of the animal and not necessarily
encapsulate it entirely.

For our project we have gone mostly with the second
approach, with some slight modifications. Specifically, to
balance with some of the benefits in approach 1, we reset
our comparison frame every 10 frames rather than every
frame. This makes the perceived motion a bit larger and
easier to encapsulate with a single bounding box. It also
grants us the benefit of fairly high insensitivity to posi-
tion/lighting, which is important given the risk of the an-
imal bumping the camera, or the camera being used over
a prolonged period with varying lighting. Note that this
system is still vulnerable to when the animal stops moving,
which is why we compensate by associating a tracker with
each detected motion.

5.5 Hardware

One primary trade study that we focused on in the de-
sign report is which hardware platform we want to base our
project around. The two options we’d been considering are
a Raspberry Pi 4 (RPi) or and NVIDIA Jetson Nano. In
short, we feel it is a tradeoff between performance (with the

Jetson) and cost plus ease of use (with the RPi). Jetsons
are specialized to deal with graphical processing, which we
will be incorporating a lot of between the vision and ML
aspects of our project, whereas an RPi is not. Implement-
ing our system using a Jetson would certainly give better
performance in terms of the frame rate that we’re able to
process. However, a Jetson is more expensive than an RPi,
especially in the current market, as summarized in Table
1 (note that this assumes the cost for a model with 2GB
memory).

When planning to include the machine learning, we
were intending to use the more expensive and more compu-
tationally friendly Jetson once testing showed that it would
be infeasible to use the RPi. However once the ML seemed
likely to be separated from the project, we changed back to
using the RPi as we had originally hoped to do - without
the ML, the RPi was computationally sufficient for the CV
code alone. This allowed us to keep our costs lower.

6 SYSTEM IMPLEMENTATION

6.1 Hardware

Our project is built using a Raspberry Pi 4 Model B
with 4GB of RAM. The camera is a Raspberry Pi Camera
Module 3, connected to the built-in camera interface on the
board.

18-500 Final Review Report: Team B7 - 5 May 2023 Page 7 of 12

Table 1: Hardware Cost Comparison

Device Pre-Pandemic Current
Raspberry Pi 4 $35 $45
Jetson Nano $59 $150

6.2 Web System

Figure 7: Data structure used in the back end server

The front end will be developed using React, which will
allow us to create interactive tasks that should enhance
user experience. Before interacting with these tasks, the
user will login using JWT authentication. The back end
will be developed using Django, which will store important
data from user input on the front end. See Figure 7 for a
visualization of how data is stored in the back end. From
the design report to the final report, the method for stor-
ing pet related data has changed. From authentication, a
User object is created for each pet owner that contains the
username and password that the user inputs. Further, a
PetOwner object, that stores data such as live video feed,
if the forbidden zone has changed, and notification alerts,
is created that is attached to that User object. While a
user creates a room picture, a RoomPicture object is con-
structed that contains the room picture image, and this
object has one to one relationship with a PetOwner object.
If a new pet is input into the Web App, then a Pet object
is created. As a pet owner can have multiple pets, then
the Pet object has a many to one relationship with the
PetOwner object. As multiple pet pictures can be given
for each pet, then multiple PetPicture objects can be cre-
ate for each Pet object. When a user does the forbidden
zone task, each zone is stored as a Zone object where the
fields are the position in the x direction, position in the
y direction, and if it was marked forbidden or not by the
user. Lastly for the activity log task, the data stored for
each zone in the PetLog object is similar to the forbidden
zone task except the amount of movement, which is deter-

mined by the amount of frames in the camera, is tracked
instead of if the zone is forbidden or not. Both the Zone
object and PetLog object have many to one relationships
with the PetOwner object.

To connect the front end and the back end, a library
called Axios will be used to call GET and POST requests
to send data between the front end and the back end. As
well, a toolkit called Django REST Framework will be used
in between the Axios calls and the back end that will make
storing data into the MySQL database and sending data
from the MySQL database much easier. This web appli-
cation will be deployed using Netlify for the frontend and
Apache and Amazon EC2 for the backend.

While creating the Web App, multiple changes had to
be made. To start, we moved from using Google OAuth
2.0 to JWT authentication due to lack of documentation for
full stack web development using React and Django such as
this product. Given that Google OAuth 2.0 was updated
to use Google Identity Services SDK recently, there was
lack of documentation on how to us the new update. So,
we moved to using JWT authentication, which is similar
to Google OAuth 2.0 as it uses access tokens for user au-
thentication. Next, we switched the library we used from
heatmap.js to jsheatmap. The former library seemed to
be only compatible with JavaScript, which led to problems
when implementing a heat map in TypeScript. Hence, we
moved to jsheatmap, which was TypeScript compatible and
had better documentation on how to implement a heat
map. The drawback was that it seemed the heatmap.js
displayed more visually appealing heat maps, but both li-
braries showed what is by definition a heat map, which
means the user should not lose any information related to
activity logs.

We changed how the room picture was taken and how
the live video feed was displayed. For the room picture,
we originally had the CV capture a frame of the video
feed, which was then sent and displayed on the Web App.
Though this was for testing to make sure we can create a
room picture, we figured out this would be an inconvenience
for users to do. Hence, we moved this operation onto the
Web App. Specifically, the user is now able to add a room
picture by clicking on a button on the live video feed page.
For the live video tasks, we originally created a functional
but very slow live video feed but sending a picture of the
room and displaying the room every one second. As the
page need to reload the image, this would create flicker-
ing on the page, which would ruin user experience. Hence,
we found a StreamingHTTPResponse[5] object in Django,
which is used in cases where the data being displayed is
constantly changing. As this fits the live video feed de-
scription perfectly, we used this Response object type, and

18-500 Final Review Report: Team B7 - 5 May 2023 Page 8 of 12

this lead to an increase in frame rate of the live video feed
on the frontend.

The most important lesson while creating the Web App
was to constantly test each task I implemented. To do
this, I used the Python requests package, which simulated
calls between the CV and Web App and the Camera ob-
ject from the OpenCV package, which simulated the CV.
Hence, I was able to test every task on the Web App such
as forbidden zones, pet activity logs, live video feed, and
notifications, without the full implementation from the CV.
Without this testing, it would have been extremely difficult
to finish all the tasks in the development time given for the
product.

6.3 Computer Vision Algorithm

The overall flow of the computer vision algorithm is vi-
sualized in Figure 8.

Each movement (which we assume to be a pet) is rep-
resented by a few pieces of information: a bounding box, a
unique identifier, and an OpenCV tracker object.

Taking in the raw camera feed, obtained via Raspberry
Pi’s builtin picamera2 module, we convert each frame to a
numpy array. For any pre-existing ’pets’ that we are aware
of from the previous frame, we feed the current frame to the
OpenCV tracker so it may update itself. We process the
frame for analysis by casting it to grayscale and blurring it
a bit to smooth out noise. To detect new motion we then
subtract it with a previous frame. Note that in our case we
update the prev frame every 10th frame. We threshold the
absolute value of this difference so that areas of significant
difference (>25) become white and everything else becomes
black. These white shapes mark our motion. We locate
where these shapes are in the frame using OpenCV’s builtin
contour detection and get a bounding box for each motion.
This list of new bounding boxes is compared against any
bounding boxes we were already aware of, and if any signifi-
cantly overlap with pre-existing ’pets’ then they are merged
into one bounding box - we assume that all movement in
a nearby area comes from the same animal. If a motion
bounding box doesn’t correspond to any previous pets, we
assume it is a new animal and assign it a unique ID and
tracker.

Once this process is done, we go through all of the ’pets’
that we have newly identified or have left over from previ-
ous frames. Since moving closer together may have brought
them into collision, we check for any overlap and merge
bboxes which conflict. Note that the original intention was
that bboxes which had been verified by the ML would be
assumed final, and so would not be merged or otherwise
edited. Without the ML support, we simply let nearby
pets merge if they are very close. They generally separate
when they move apart again.

The result of these operations gives us our finalized list
of pets for that frame. Forbidden zone collision is deter-
mined by seeing whether the center of any bounding boxes
falls within a forbidden grid square. When measuring for
the activity logs, we consider a rectangle with half the width

and height of the overall bounding box, centered in the
same spot as the bounding box. Any grid squares that
this inner, smaller rectangle intersect with are marked as
having activity. This lessens the over-representation in ac-
tivity should the animal come close to the camera (such as
using the whole bounding box). However it does so with-
out overly reducing the space the animal is shown to have
occupied (such as using only the center).

6.4 Overall System

Figure 9 at the end of this document shows our overall
system block diagram, as well as where each part is com-
ing from. To integrate all the components of the system,
we will be using Python requests to send and receive data
between the CV and Web App as CV uses Python, which
means that we can use Python requests to create GET and
POST requests to send data between the Web App and
RPi. The Django REST framework is used to take data
from these requests, validate the data, and store the data
into the database. While integrating, we had to consider
what data we needed to send between the major systems
for each user task.

For forbidden zone tasks, the Web App sends an ar-
ray containing a tuples of coordinates of each zone that
was marked as forbidden by the user on the forbidden zone
task to the RPi. The RPi looks if the zone change field
stored in the PetOwner object is set to true, which is when
the RPi takes forbidden zone data.

For activity logs task, the RPi tracks the amount of
frames the pet has spent in each zone of the room picture.
Periodically, this data is sent in an array that contains zone
data from each zone in the order from top left to bottom
right of the room picture. The Web App will parse this
data, and update the heat map given this data. The Web
App will keep count of the video frames spent in a certain
zone of the room, so the RPi will reset the count of each
zone after sending data to the Web App.

For the live video feed, the RPi will parse each frame
from the camera into byte arrays, which is then encoded
into base64. This is done so that none of the data sent
through the Python request is lost. The Web App de-
coded the data from base64, creates an image using Pil-
low, a Python imaging library, and stores the image into
the database. Then for the live video feed, the Stream-
ingHTTPResponse object specified earlier is used to dis-
play the live video feed to the user.

For any notification triggered by the pet moving into
the forbidden zone, the RPi calls a Python requests that
sets the notification field in the PetOwner object to true.
The frontend checks for this field and will display a popup
displaying that a pet has entered a forbidden zone if that
field is set to true.

While sending data related to forbidden zones and ac-
tivity logs, one thing we had to debug was the coordinates
sent between the Web App and RPI. We standardized the
grid as the x coordinate changes in the horizontal direction
while the y coordinate changes in the vertical direction.

18-500 Final Review Report: Team B7 - 5 May 2023 Page 9 of 12

Figure 8: Layout of the Computer vision algorithms

This may create confusion as another common convention
when using grids is to use row, col coordinates. The row
coordinate changes in the vertical direction and the col co-
ordinate in the horizontal direction, which means the x co-
ordinate should associate with a column on the zone grid
and the y coordinate is associated with a row on the zone
grid, but this sometimes feels counter-intuitive. Hence, we
needed to double check that we communicated the coordi-
nates the correct way between the Web App and RPi.

For the forbidden zone task, we originally thought about
sending a dictionary of coordinates as the keys and if the
coordinate is forbidden or not as the values. But, we re-
alized there was extra data being sent, and that only the
forbidden zone coordinates need to be sent from the Web
App to the RPi. Similarly for the activity logs tasks, we
originally had in mind to send a dictionary of coordinates
as the keys and the amount of frames spent on each co-
ordinate as the values. But, this led to extra data being
sent from the RPi to the Web App as we only need to
send the amount frames spent on each coordinate of the
room picture since it was already predetermined that the
order of the data would be from the top left to the bottom
right of the room picture. To create a successful overall
system, testing done on the Web App using a test double
as the CV was important as if the Web App could pass
these tests, then integrating with the real CV and RPi was
much simpler. As well, in person integration of the Web
App and CV was important in creating the overall system
of the product.

7 TEST & VALIDATION

Note: all results listed are from tests conducted using
laptops as the primary processing device, and not the RPi.
Full RPi tests are still in progress, although preliminary
observation shows that it is a bit slower/has lower frame
rate, as expected.

Test results are listed as: Test, Method, Metric, Goal,
Result.

7.1 Results for Zone Detection Speed De-
sign Specification

We wanted to ensure users are able to receive notifica-
tions quickly if pets enter a forbidden zone as users do not
wants pets inside those designated forbidden zones. The
first step to this is testing the pet actually entering the
forbidden zone in real life to the CV detecting this ac-
tion occurring. The method used for this is a slow mo-
tion camera as it can precisely time from the instant the
pet enters the forbidden zone in real life to the instant
the CV detects this occurring. Our design requirement as
specified above was for this to occur in less than one sec-
ond. The results showed that this occurred on average in
0.625 seconds, which meant we reached our goal. We deter-
mined that the limiting factor is frame rate of the CV. Even
though this design specification does not include requests
to the Web App, the CV will always being sending requests
while detecting video frame changes. As these requests are
not instantaneous, this slows the frame rate at which pixel
changes are detected, which leads to a slow down of zone
detection speed.

7.2 Results for Notification Speed Use-
Case Specification

The next logical step in testing notification speed is
how fast data could be sent from the CV to the Web App.
Hence, our test is from the pet entering the forbidden zone
in real life to the user receiving the notification on the Web

18-500 Final Review Report: Team B7 - 5 May 2023 Page 10 of 12

App. This result will include the time taken from the pet
entering the forbidden zone in real life to the CV detecting
this action as specified above. The method is similar to
the design requirement for notification speed as specified
above, which is using a slow motion camera to track the
time from pet entering the forbidden zone in real life to the
user receiving the notification on the Web App. Though
this use-case requirement included the ML component into
the product, we wanted a less than 10 second notification
speed for this test. The results gave us a 1.125 second no-
tification speed on average. The biggest limiting factor for
this test was the polling rate, or the rate at which requests
from the frontend to the backend occur. In this test, we
had a 1 request per second polling rate. If we had a 1 re-
quest per 3 second polling rate, then the notification speed
would be around 3 seconds. Hence, the notification speed
is highly dependent on the polling rate. But, even if a
faster polling rate means faster notifications for the user,
this would waste many server resources on requests when
in general each request would ending up resulting in no
notification popup.

7.3 Results for Tracking Accuracy Design
Specification

An important component of tracking pet movement is
the accuracy with which the CV algorithm can accomplish
this. The method to testing this is comparing the CV gen-
erated bounding box to a human-chosen bbox. A sampling
of frames (and the bboxes that the CV code had generated
at that point) are saved, and then presented to the tester
once the live video terminates. The tester selects where
they think the region of interest is, then the difference in
bbox centers is displayed the distance is estimated (based
on known distances in the photo). On average, we wanted
the distance to be within one foot. After testing, we found
the distance to be 3-6 inches on average.

As with any CV task, the limiting factor on accuracy
is largely the frame rate. Slower frame rate leads to larger
jumps in position between frames, which is harder for the
OpenCV trackers to follow and thus is more likely to cause
them to fail. It also leads to bigger perceived motion, and
thus less precise overall bboxes. One major factor which
slows down the frame rate is how frequently we make re-
quests to the web server. Particularly with live video, which
must be sent every frame, this slows down how quickly we
can process a frame. Parallelism may be one solution to
this problem.

7.4 Results for New Animal Detection
Speed Design Specification

For forbidden zones on the edges of the room, detection
speed on pets entering the frame is important so forbidden
zone notifications can be sent quickly to the user. Hence,
we tested the detection speed of new animals entering the
camera frame. Similar to the method for notification speed,
we used a slow motion camera that tracked the time from
the pet entering the frame in real life to the bbox appearing
on the CV. As specified in the design requirements earlier,
we wanted this detection speed to occur under 5 seconds.
On average, we found from tests that the detection speed
was around 0.75 seconds, which beat our goal significantly.
Like the CV detection speed from the notification speed de-
sign test, the limiting factor once again is the frame rate of
the CV. The CV will always being sending requests while
detecting camera frame changes. These requests are not
instantaneous, which means the frame rate at which pixel
changes are detected will be slower, which leads to a slower
detection speed.

7.5 Results for User Accessibility Use
Case Specification

In terms of user costs, we wanted users to be able to
purchase the product in under $100 as this would make
our product competitive with other similar products. In
the end, the total user cost ended up being $88 as the user
would need a Raspberry Pi 4, RPi Camera, and SD Card.
Another test we wanted to run is user testing, specifically
for user experience on the Web App and system setup.
Though we were not able to get the full 10 participants,
we had preliminary results for user experience and system
setup. Overall, it seemed that people were able to setup
the camera and the product, and that people were able
to navigate the Web App and do the main tasks on the
Web App. But, there were some suggestions on improving
the user experience in terms of navigating the Web App
and more explaining on what to do for each task on the
dashboard. Hence, we tentatively reached our goal for user
testing, but there needs to be more work done in terms of
testing on more participants and fixing the user experience
of the Web App.

8 PROJECT MANAGEMENT

8.1 Schedule

The updated schedule from the design report to the fi-
nal report is shown in Fig. 10. The major change is the
removal of the ML component due to one member’s per-
sonal setbacks. We did all the tasks that were mentioned

18-500 Final Review Report: Team B7 - 5 May 2023 Page 11 of 12

in the schedule, but we finished the tasks. especially Web
App and integration, later than intended on the schedule.

8.2 Team Member Responsibilities

From the design report, the responsibilities of the mem-
bers did not change significantly except for the removal of
the ML component due to a member’s personal setbacks
and Brandon did not need to setup a server on the RPi as
we decided not to run a server on the RPi. To reiterate, Re-
becca was responsible for setting up the Raspberry Pi and
working on the Computer Vision component, such as being
able to detect movement from each pet in a room. Brandon
was in charge of setting up the front end and back end of
the web application. All members helped with integrating
and testing the components.

8.3 Bill of Materials and Budget

Shown in Table 2 is our bill of materials and budget. We
have labelled each cost as a project cost (which would come
out of our $600 budget) and/or a user cost, which would
contribute towards our hypothetical retail price. The RPi
will be from the ECE500 inventory, and so has a project
cost of $0. As shown, we anticipate that our overall use of
budget will be $25, and the overall user-facing cost of our
system will be roughly $88. From the design report, we did
not end up buying a speaker as we believed this was not a
major component of the product, so we would only work
on implementing this after finishing the other components
of the product. But, we ended up not having enough time,
so we did not buy a speaker. We did not need to buy a do-
main name as the front end deployment was supplied with
a given domain name. We added a SD Card to the bills
of materials and budget as it is necessary for a user that
uses a RPi. There was no added project cost due to a team
member already owning a SD Card.

8.4 Risk Management

Earlier in the semester, the biggest risk was between us-
ing a RPi and Jetson. The Jetson would allow us to speed
up the ML algorithm training needed for the product, but
the RPi is significantly cheaper than the Jetson and would
allow us to fulfill the user requirement of the product being
under $100 for the user. But, the biggest risk shifted to how
we would re-scope the product due to one member’s per-
sonal setbacks. We considered all of the possible situations
we could do to finish the product, such as trying to fully in-
tegrate all three major systems or integrating the Web App
and CV on a RPi and having a stand alone ML component
on the Jetson. The worst case scenario was to rescope the
project by generalizing the tasks that could be done by a
user to all the pets in the room. For example, a user was
able to create forbidden zones for each pet in a room given
our original design concept. In the worst case scenario, a
user would only be able to create one forbidden zone for

all the pets in a room. The team was in constant commu-
nication throughout the one member’s personal setback so
that we could re-assess what path we wanted to take for
the product. In the end, we were forced to going through
with the worst case scenario due to the member’s personal
setbacks. We removed from the project all the tasks with
the Web App and CV that pertained to the ML, and we
were able to create a product using the Web App and CV
only that allowed a user to monitor all the pets in a room.

9 ETHICAL ISSUES

The main ethical issue is security issues related to pri-
vate user data being stored and displayed on a public web-
site. To start, a user can enter pet data such as a pet name
and pet pictures into the Web App. More private data
that needs to be given is a live video camera feed of the
room and creating a room picture that will be stored and
displayed for the other tasks on the Web App. Malicious
users can watch these live video feeds if the correct security
measures are not taken. This would be an ethical issue as
private data should not be accessible by the general public.
To mitigate this issue, we have an authentication system
using JWT Authentication that requires users to have an
access token to make requests to the frontend and/or back-
end of the Web App. As well, users need to know the serial
number of the RPi as this number is used for storing and
retrieving information from the database on the Web App.

10 RELATED WORK

There are currently many pet monitors on the mar-
ket. One most similar to ours is this Nest Cam[4] made
by Google. It has a cost of $99.99 and advertises a sim-
ilar alert system, object identification, and data security.
Specifically, it’s identification can differentiate between a
human, animal, or vehicle.

A cheaper existing option is the Wyze Cam v3 Pet
Camera[1] which simply sends users notifications whenever
motion or sound is detected and allows users to talk to
animals through a microphone or play a sound through a
speaker. The detection options on this one are much less
than those of the Google option, but it is also only $35.98,
which is almost a third of the price of the Google option.

11 SUMMARY

The intention of PetSTAR is to benefit pet owners with
tasks that make taking care of their pets easier, while still
including the current features that a traditional camera of-
fers. The system contains two major components, specifi-
cally a Web App and CV algorithms, that interact together
to support the purpose of helping pet owners keep tabs on
their pets. We were able to meet the design specifications,
omitting specifications that were based on the product with
the ML component. Some limiting factors of the product

18-500 Final Review Report: Team B7 - 5 May 2023 Page 12 of 12

Table 2: Bill of Materials and Budget

Description Model Manufacturer Project Cost User Cost
Raspberry Pi 4 4GB Raspberry Pi Foundantion $0 $55
RPi Camera 3 Raspberry Pi Foundantion $25 $25
SD Card 32GB SanDisk $0 $8

$25.00 $88.00

include the rate at which we can request to and from the
deployment server. This goes for communications between
the RPi and the backend, as well as between the back-
end and frontend. The deployment server for the backend
can only handle so many requests, which is why for exam-
ple the live video feed looks smooth locally but is slower
when using the deployment server. In addition, increasing
the number of requests made by the CV code leads to a
slower frame rate. To increase performance, one possibility
for future work would be to include asynchronous requests
and/or threading in the CV code so that the CV can parse
the data from the camera while simultaneously making or
getting requests from the database. Another suggestion is
using an API that can display live video feed, which may
increase the frame rate of the video feed on the Web App.

11.1 Lessons Learned

One major lesson our team learned was dealing with
major setbacks and re-scoping the product such that it
would fit our strengths but also capture the original design
idea that we had at the beginning. It is important to have
good and constant team communication so everyone know
what everyone else is capable of and what readjustments we
need to make based on the current situation. Other lessons
include learning how to design and implement multiple sub-
systems of a product where each person is working on their
own system. Each individual knows their sub-system well,
but explaining the thought process behind each system to
another team member that does not know the system well
can be hard to do, which is why integration can be difficult
and why there needs to be a large amount time dedicated
to integration.

Glossary of Acronyms

• bbox - Bounding box

• CV - Computer Vision

• ML – Machine Learning

• RPi – Raspberry Pi

• Web App - Web Application

References

[1] Chewy. “WYZE Cam V3 Pet Camera - Chewy.com.”
Chewy.com, 15 Apr. 2023, tinyurl.com/49syhur9.

[2] Chitlangya, Ronak. “JWT Authentication with
React JS and Django.” Medium, Medium, 24 Apr.
2023, https://medium.com/@ronakchitlangya1997/jwt-
authentication-with-react-js-and-django-c034aae1e60d.

[3] “Getting Started.” Getting Started, Axios Docs,
https://axios-http.com/docs/intro.

[4] Google Store. “Nest Cam (Indoor, Wired).” Google
Store, tinyurl.com/5f9msp2u.

[5] Grinberg, Miguel. “Video Streaming with Flask.”
Miguelgrinberg.com, https://blog.miguelgrinberg.com/post/video-
streaming-with-flask.

[6] Huls, Mike. “Detecting Motion With OpenCV —
Image Analysis for Beginners.” Medium, 16 Aug. 2022,
towardsdatascience.com/image-analysis-for-beginners-
creating-a-motion-detector-with-opencv-4ca6faba4b42.

[7] Irabor, Jordan. “How to Build A
to-Do Application Using Django and React.”
DigitalOcean, DigitalOcean, 17 Feb. 2021,
https://www.digitalocean.com/community/tutorials/build-
a-to-do-application-using-django-and-react.

[8] Mallick, Satya. “Object Tracking Using
Opencv (c++/Python).” LearnOpenCV, 11 Nov. 2022,
https://learnopencv.com/object-tracking-using-opencv-
cpp-python/.

[9] “OpenCV Modules.” OpenCV,
https://docs.opencv.org/4.x/index.html.
[10] Rosebrock, Adrian. “Basic Motion Detec-

tion and Tracking With Python and OpenCV -
PyImageSearch.” PyImageSearch, 11 Apr. 2023,
pyimagesearch.com/2015/05/25/basic-motion-detection-
and-tracking-with-python-and-opencv.

18-500 Final Review Report: Team B7 - 5 May 2023 Page 13 of 12

Figure 9: Full block diagram demonstrating where parts came from

18-500 Final Review Report: Team B7 - 5 May 2023 Page 14 of 12

F
ig
u
re

1
0
:
G
a
n
tt

C
h
a
rt

	INTRODUCTION
	USE-CASE REQUIREMENTS
	ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
	DESIGN REQUIREMENTS
	DESIGN TRADE STUDIES
	Web App Architecture
	User choosing forbidden zones
	Displaying of Pet Activity Logs
	Motion Detection
	Hardware

	SYSTEM IMPLEMENTATION
	Hardware
	Web System
	Computer Vision Algorithm
	Overall System

	TEST & VALIDATION
	Results for Zone Detection Speed Design Specification
	Results for Notification Speed Use-Case Specification
	Results for Tracking Accuracy Design Specification
	Results for New Animal Detection Speed Design Specification
	Results for User Accessibility Use Case Specification

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Management

	ETHICAL ISSUES
	RELATED WORK
	SUMMARY
	Lessons Learned

