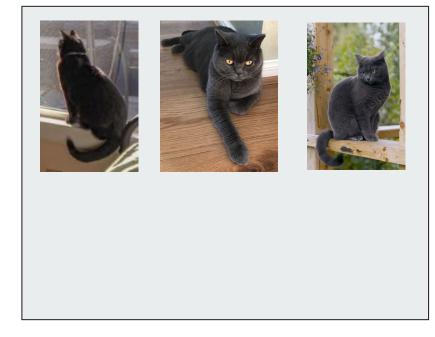
Introducing PetSTAR (System to Track And Report)

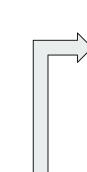
A more convenient approach to pet monitoring


The overall goal	Our use case requirement(s)				
Detect and report when a pet	False positives <10% of the time				
goes somewhere it shouldn't	zone report speed <10 seconds				
Provide a log of pet activity, differentiating between animals if multiple	For each pet, logs are >90% accurate				
	system setup in <5 min				
Maintain system accessibility	system cost <\$100				
	>95% of users can accomplish tasks easily				

Design Requirements

The use case	The design requirement(s)				
Report Speed <10 seconds	zone detection speed <1 second				
Report Speed < To seconds	classification speed <5 seconds				
Forbidden Zone false positives	tracking accuracy within 1 foot				
<10%	classification accuracy >90%				
Activity logs with >90% accuracy for each pet	tracking accuracy within 1 foot				
	classification accuracy >90%				
	new animal detection in <5 seconds				
System cost $< $ ^{£100}	Use a Raspberry Pi for primary computation				
System cost <\$100	Use a simple camera				

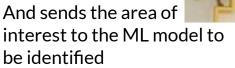
Solution Approach: Step 1, user inputs data

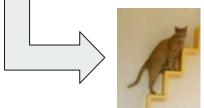


User selects grid squares where the animal should not go, to be communicated to the tracking

User inputs images of their pet(s), to be communicated to the ML

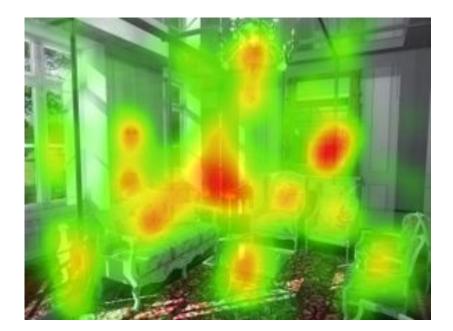
Solution Approach: Step 2, identifying and monitoring




OpenCV is used to continue tracking the identified animal in the environment

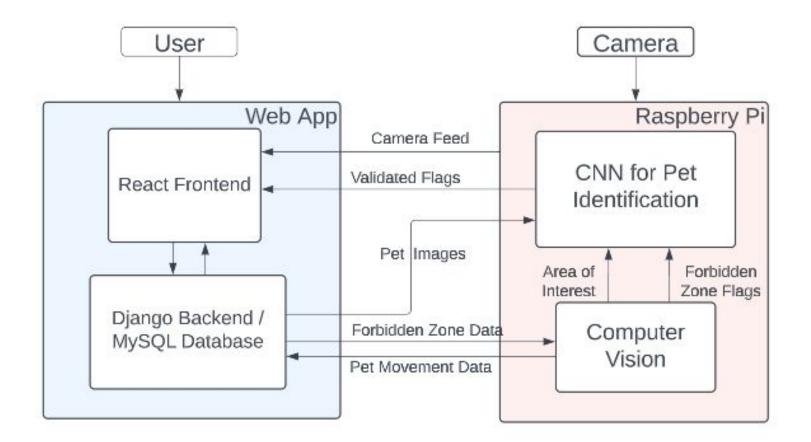
OpenCV detects animal movement via pixel differences

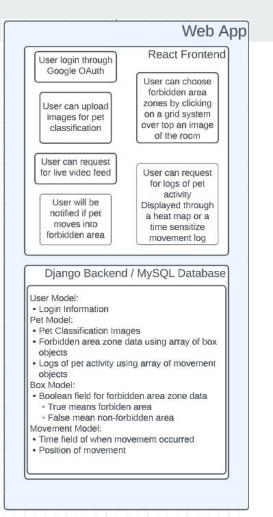
If it overlaps with a forbidden square



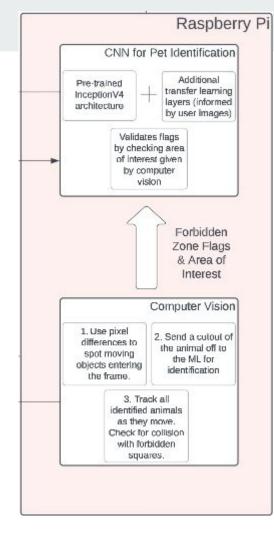
ML validates the identity and sends a notification

Solution Approach: Step 3, reporting back to user




User receives a notification if pet enters a forbidden zone

User may request for logs of pet activity through a heat map or time sensitize graph


Top Level System Specification

The More Detailed Break Down: Web Application

- React on the frontend
 - Choose forbidden area zones
 - Request for pet activity logs
 - Notify if pet moved into forbidden zone
 - Request to see live video feed of pets
- Django on the backend
 - Using Django models to store data related to user options
- Safety concern is privacy issues related to displaying live video feeds of user's rooms on the website
 - Will use security tools given by Django

The More Detailed Break Down: Raspberry Pi

- OpenCV
 - Notice the animal when it enters
 - Send a cutout to the ML model for identification
 - Track the identified animal as it moves
 - Alert if it overlaps a forbidden area
- CNN
 - Pre-trained animal identification with InceptionV4
 - Incorporate user images for greater accuracy
 - Identify animals as they're noticed
 - Validate identity if forbidden zone flag is raised

Implementation plan

Hardware

Software

Off the shelf	Adapted from previous projects	From scratch				
Raspberry Pi 4	OpenCV image tracking	Forbidden zone detection and flagging				
RPi compatible camera	Implementing a CNN	Additional CNN layers for transfer learning				
InceptionV4	User upload images	Frontend overall composition				
React + Django	Login with Google OAuth	Backend Django models				

Testing: Computer Vision and Machine Learning

- Phases: images, stuffed animals, and live animal(s)
- Goal: meet our use case requirements specifically accuracy and latency
- Success: goals are met across repeated trials and various species
- Mitigation: redefine scope or investigate other frameworks, if refining parameters is insufficient

Testing: Web Application and Overall System

- Phases: user testing and user surveys
- Goal: create an intuitive and user friendly web application and overall system
- Success:
 - Web App: enough users are satisfied with tasks or able to complete tasks on the web application
 - System: setup is easy and inexpensive, speed between components of system is satisfactory
- Mitigation: reduce time taken at slowest parts of system, revise tasks in web application to improve user experience

Schedule

Task	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24
Major Deliverables/Deadlines	1												
Proposal Presentation						S							
Design Presentation				-0-	1.1	0							
Design Document							- 19						
Ethics Assignment						- P							
Interim Demo						10.00							
Final Presentation						R							
Poster PDF													
Video Demo													
Web App (Brandon)	1												
Set up React/Django environment						_							
User can upload image for pet classification							2						
User can click parts of image that are forbidden						- N							
area zones													
Web app stores in database what parts of image are forbidden						G							
Design frontend for logs of pet activity						-							
 Heat map of pet activity (longer time period) 						B							
- Time-sensitive pet activity (shorter time period)						D							
Design website using Figma			-										
Design frontend for notifying users that pet entered forbidden area zone						R							
Display live video feed for user on request	1												
User can login through Google OAuth						F							
Machine Learning (Max)													
Set up dog/cat breed classifier	-					-							
Research transfer learning additional layers						A	1						
Implement additional CNN layers													
Testing and tweaking of additional CNN layers						17							
Testing with live animals/printouts			2			- K							
Debugging with integration													
Additional testing and fine tuning			1 1										
Computer Vision & rPI (Rebecca)													
Order rPi & camera													
rPi 'Hello Warld'					8		8						
Explore openCV video tracking on laptop													
Get internet tutorial code to run on rPi													
Rough draft of CV code on laptop - spot & track							1						
Get our CV code onto rPi													
Debugging/CV algorithm refinement									1				
Potentially - design & 3D print a housing										38			
Integration (All)													
CV and ML code run on rPi							1			2 2	2 2	2 2	2 2
rPi communication with web app (simple)													
Flesh out communication between web app & rPi													
Full system testing with animal images											13		
Test user interaction with frontend													
Full system testing with stuffed animals						-							
Live animal testing						-							