
Introducing PetSTAR (System to Track And Report)

The overall goal Our use case requirement(s)
Detect and report when a pet
goes somewhere it shouldn't

False positives <10% of the time
zone report speed <10 seconds

Provide a log of pet activity,
differentiating between animals

if multiple
For each pet, logs are >90% accurate

Maintain system accessibility
system setup in <5 min
system cost <$100
>95% of users can accomplish tasks easily

A more convenient approach to pet monitoring

Design Requirements
The use case The design requirement(s)

Report Speed <10 seconds
zone detection speed <1 second
classification speed <5 seconds

Forbidden Zone false positives
<10%

tracking accuracy within 1 foot
classification accuracy >90%

Activity logs with >90% accuracy
for each pet

tracking accuracy within 1 foot
classification accuracy >90%
new animal detection in <5 seconds

System cost <$100
Use a Raspberry Pi for primary computation

Use a simple camera

Solution Approach: Step 1, user inputs data

User selects grid squares where the
animal should not go, to be
communicated to the tracking

User inputs images of their pet(s), to
be communicated to the ML

Solution Approach: Step 2, identifying and monitoring

OpenCV detects
animal movement
via pixel
differences And sends the area of

interest to the ML model to
be identified

OpenCV is
used to
continue
tracking the
identified
animal in the
environment

If it overlaps with a
forbidden square

ML validates
the identity and
sends a
notification

Solution Approach: Step 3, reporting back to user

User receives a notification if pet enters a
forbidden zone

User may request for logs of pet activity
through a heat map or time sensitize graph

Top Level System Specification

The More Detailed Break Down:
Web Application

● React on the frontend
○ Choose forbidden area zones
○ Request for pet activity logs
○ Notify if pet moved into forbidden zone
○ Request to see live video feed of pets

● Django on the backend
○ Using Django models to store data related to

user options
● Safety concern is privacy issues related to displaying

live video feeds of user’s rooms on the website
○ Will use security tools given by Django

The More Detailed Break Down:
Raspberry Pi

● OpenCV

○ Notice the animal when it enters

○ Send a cutout to the ML model for identification

○ Track the identified animal as it moves

○ Alert if it overlaps a forbidden area

● CNN

○ Pre-trained animal identification with InceptionV4

○ Incorporate user images for greater accuracy

○ Identify animals as they’re noticed

○ Validate identity if forbidden zone flag is raised

Implementation plan

Off the shelf Adapted from previous
projects

From scratch

Raspberry Pi 4 OpenCV image tracking Forbidden zone
detection and flagging

RPi compatible camera Implementing a CNN Additional CNN layers
for transfer learning

InceptionV4 User upload images Frontend overall
composition

React + Django Login with Google OAuth Backend Django models

Hardware

Software

Testing: Computer Vision and Machine Learning

● Phases: images, stuffed animals, and live animal(s)
● Goal: meet our use case requirements - specifically accuracy and latency
● Success: goals are met across repeated trials and various species
● Mitigation: redefine scope or investigate other frameworks, if refining

parameters is insufficient

Testing: Web Application and Overall System

● Phases: user testing and user surveys
● Goal: create an intuitive and user friendly web application and overall system
● Success:

○ Web App: enough users are satisfied with tasks or able to complete tasks
on the web application

○ System: setup is easy and inexpensive, speed between components of
system is satisfactory

● Mitigation: reduce time taken at slowest parts of system, revise tasks in web
application to improve user experience

Schedule

