Motivation: Traditional Pet Cameras

- Pet cameras are increasingly popular as a way to ease pet owners' minds when not at home
- However, owners must actively watch (or review) the feed in order to catch bad behaviors or get a sense of their pets' activity, which can be inconvenient does

Introducing PetSTAR (System to Track And Report)

- With a combination of software and signal processing, we aim to creating a pet monitoring system with added convenience:
 - Detect and report bad behaviors as they happen
 - Differentiate between multiple pets in the home
 - Provide a concise log of the pet's activity through the day

Requirement: vision algorithms should be *fast* and *accurate*

- Identify when an animal has entered the frame within 5 seconds
- Pinpoint the animal's location <u>within 1 foot</u> of its actual location
- Detect if the animal has entered a forbidden zone within 1 second
- Classify between animals with <u>90% accuracy</u>
- Determine which animal it is <u>within 5 seconds</u> of it being in full view

Requirement: Web application and overall system should be *intuitive* and *user friendly*

- Notification from the camera to the user should take <u>less than 10 seconds</u>
- The overall system should take <u>no more than 5 minutes</u> to set up
- <u>At least 95%</u> of users should be able to complete core tasks on the website with little or no instruction
- Granularity of the forbidden zone should be sufficiently fine for <u>at least 95%</u> of use cases
- The overall system should cost <u>no more than \$100</u>

Technical Challenges

- What if we need to differentiate between two animals which look incredibly similar?
- What if a forbidden zone is at the edge of the frame?
- What hardware will it take to meet ML accuracy and timing requirements?
- What data structures should be used to store forbidden area and pet activity data in the database?
- How to tell the web application from the Raspberry Pi to send a notification to the user that the pet has entered a forbidden zone?

Solution Approach

- Hardware Raspberry Pi 4 Model B
 - $\circ \quad {\sf Camera\,Module\,\text{-}\,supply\,video\,feed}$
 - OpenCV Library locate and track the animal
- Machine Learning Convolutional Neural Network
 - InceptionV3 base ML architecture
 - Cats & Dogs Breed Classification Datasets initial training data
 - User supplied images supplemental training data from web application
- Software Web application
 - React frontend
 - Django backend
 - MySQL database

Solution Approach, Continued

Testing and Verification - CV and ML

- Phase 1: Printed images
 - Can we track an animal as it moves?
 - Can we differentiate between different images?
 - Do the necessary notifications send correctly?
 - How does the activity report look?
- Phase 2: Stuffed animals
 - Does tracking still work if the animal changes direction/profile?
 - Can we still differentiate between multiple plushies at different angles?
- Phase 3: Live animal testing, if possible (Rebecca's apartment, 1 cat)
 - How does it perform under real world conditions? (single pet household)

User Testing - Web App

- Phase 1: Volunteer users interact with website
 - Are they able to accomplish simple tasks?
 - Is anything confusing?
- Phase 2: Volunteer full-system set up
 - Can they successfully set it up?
 - How long did it take?

Tasks and Division of Labor

Brandon (Web App)	Rebecca (Computer Vision)	Max (Machine Learning)								
 Create Login using Google OAuth Display live video feed User can select sections of the camera view that are forbidden to pets Notifies user of any disallowed activity from the pet Gives user animal activity on request Store logs of animal activity in database 	 Set-up OpenCV on the Raspberry Pi Detect when an animal has entered the frame Track its movements through the environment Flag if it enters a forbidden area 	 Adapt current CNN architecture for animal classification Integrate user supplied images with existing datasets for improved accuracy Validate flags prior to notification Validate animal activity logs 								

Schedule

WBS NUMBER TASK TITLE	TASK	START	DUE		PCT OF TASK	WEEK 1						WEEK 2			WEEK 3			WEEK 4			4		WEEK 5						
	TASK TITLE	OWNER	DATE	DATE	DURATION	COMPLETE	м	т	w	RF	1	и т	w	R	F	м	тw	R	F	м	т	w	R	FN	1 т	w	R	F	N
1	Test User can define forbidden area on image	All																											
1.1	User can upload image	Brandon	2/6/23	2/12/23	6	0%																							
1.2	User can click parts of image that are forbidden	Brandon	2/13/23	2/19/23	6	0%																							
1.3	Web app stores in database what parts of image are forbidden	Brandon	2/13/23	2/19/23	6	0%																							
2	Validation of Flags	All																											
2.1	Animal Classification	Max	2/6/23	2/12/23	6	0%																							
2.2	Flagging operation	Max	2/13/23	2/19/23	6	0%																							
2.3	Forbidden zone setup	Max	2/13/23	2/19/23	6	0%																							
3	Animal Classification	All																											
3.1	Operational CNN	Max	2/6/23	2/12/23	6	0%																							
3.2	Trained CNN	Max	2/13/23	2/19/23	6	0%																			_				
4	Forbidden zone setup by user	All																											
4.1	User can upload image	Brandon	2/6/23	2/12/23	6	0%																							
4.2	User can click parts of image that are forbidden	Brandon	2/13/23	2/19/23	6	0%																							
4.3	Web app stores in database what parts of image are forbidden	Brandon	2/13/23	2/ <mark>19/2</mark> 3	6	0%																							_
5	Trained CNN	All																											
5.1	Get trained data	Max	2/6/23	2/12/23	6	0%																							_

In Summary

- We aim to create a pet monitoring system which identifies each animal in frame, tracks its position, and communicates to the user via a web app
- Key challenges/requirements will be the accuracy and speed of the detection, and communicating with the user in a straightforward and intuitive way
- We plan to test our system with images and stuffed animals, before hopefully graduating to a live animal