
18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

1 

 

Abstract —A system capable of allowing a user to play music notes 

on an AR piano in any location for the purpose of music composition 

and arrangement. Includes pressure for volume sensing, computer 

vision detection for piano keys, phone for camera, and desktop 

computer for user interface.  
 

Index Terms— Arduino, Android, arrangement, chord, Chromatic 

Tuner, composition, computer vision, data structure, decibel, Gantt 

chart, gloves, iPhone, Kivy, microcontroller, MIDI, piano, portability, 

pressure-sensors, sensor, synthesizer,  

I. INTRODUCTION 

ur project is centered around portability for music 

composition and/or arrangement. Arranging music is 

taking an existing song and writing sheet music for it by 

ear for different voice parts or instruments, while music 

composition is writing original pieces. Both of these uses 

similar software, such as Musescore (a free, accessible software 

commonly used by arrangers), to create sheet music. 

Music composition and arrangement is significantly easier 

when you have a piano to play chords on. At Carnegie Mellon, 

arrangement is often done by people not in the College of Fine 

Arts, such as for a cappella or Greek Sing, and thus don’t have 

easy access to pianos. Although lightweight keyboards do exist, 

they are bulky to carry to and from campus. Virtual piano sites 

only allow users to play one note at a time, making it hard to 

hear a chord, and both typically only play notes at one volume. 

On a real piano, users can play each note in a chord at different 

volumes depending on how hard you are pressing each key, and 

quickly go up and down in volume.  

Our goal is to solve many of these challenges for students, 

focusing on making a portable device that allows users to hear 

chords with overlapping notes simultaneously, and play notes 

at different volumes without having to manually change 

settings. Our product is an augmented reality (AR) piano that 

can be played anywhere for accessibility to all students. The 

user plays the piano on a paper printout of a piano layout while 

a phone app and a glove of sensors are used to help the 

computer analyze what notes the user is playing at what 

volume.  

Through our device, the user can create chords at different 

volumes and octaves while offering a portable advantage and 

offer a more realistic piano sound than current virtual pianos. 

This allows students and young professionals to arrange and 

compose on-the-go and ease the arranging process. 

II. USE-CASE REQUIREMENTS 

The user seeks to have a portable, affordable piano with good 

quality sound that acts like a real-piano in that there is pressure-

based volume control of the keys. The user carries around our 

product with them, so it must remain lightweight and be able to 

fit into their backpack. We have assumed our main user to be a 

typical student at Carnegie Mellon who has access to their 

phone and laptop; as such, these devices are utilized so that the 

user needs to carry around minimal additional hardware. Most 

people already bring their phones and laptops everywhere, so 

relying on the technology they already use makes our product 

even more portable. Achieving affordability is much easier too 

since the design is simpler and more optimized.   

The user must be able to use the portable piano for at least 

three hours consecutively; this is how long it typically takes to 

make a basic arrangement of a song and frame the chord 

progressions in an outline. Further, the product must allow 

maximum freedom of movement to play the piano. Therefore, 

any gloves must be wireless. 

The user must have access to at least a 49-key range; this 

covers most notes that would be sung by a human, allowing the 

user to arrange and compose for all voice parts in a single 

session. They must be able to hear each note as they play it on 

the piano. It takes a piano player, sitting around three feet from 

a. piano, around 2.7 milliseconds to hear a note once they play 

it. Given that the device is wireless and requires time to output 

sound, we feel that hearing sound in less than 100 milliseconds 

would be acceptable, as it would feel instantaneous to the user 

with no perceived delay. 

The notes they play should output with 98% accuracy of what 

they expect. Since users may themselves also make mistakes on 

what note they play, we feel that 98% accuracy can be 

reasonably expected from our system. 

The glove must be volume-controlled by the pressure the user 

plays the key. At least three discrete volumes must be heard: 

soft, medium, and loud, so that there is a perceivable difference 

between the levels.  

The user must be able to play chords, and hear all notes in 

the chords be played simultaneously. Since a chord in arranging 

consists of three to four notes, the user must be able to play and 

hear four notes at once, at least. Notes with different volumes 

within a chord should be played at their individual volume, so 

that the user can replicate louder or softer sections contributing 

to that note in the chord. 

The user would also like to be able to see what notes they are 

playing on the screen and what volume they are pressing at by 

having the note color-coded. Each note has a distinct color on 

the screen so they can visually make sure they are playing the 

AnywheRe Piano 

Anisha Nilakantan, Caroline Liu, and Lee Poirier 

Department of Electrical and Computer Engineering, Carnegie Mellon University 

O 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

2 

right note. Further, the shade of the color is adjusted to reflect 

the volume the note is being played at. This way, they can 

visually identify if the output was at the right volume for what 

they intended. For example, a C might be orange. If the user 

plays the note loudly, it is a dark orange; else, a lighter orange. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION  

Our solution comprises of a set of gloves with pressure 

sensors on the fingertips, a paper keyboard, and a ring light with 

a phone mount. By creating portable gloves and a paper 

keyboard, we minimize the weight of the system. We use a 

phone and laptop as these devices are usually carried by people 

arranging or composing, as the software they use is on their 

laptop. We assume that the user is playing on a flat, horizontal 

surface, with no obstructing items that block the paper keyboard 

from sight of the phone’s camera. 

On the computer is an app that detects what key the gloves 

are trying to play on the paper keyboard, and play the note out 

of the phone’s speakers at the appropriate volume. 

Figure 3 describes the physical components of our system. 

The green shows materials that the subsystems are made of, and 

the blue shows the technological components that is integrated 

on our device. 

On a high level, each glove is made up five pressure sensors 

(one on each finger), that connect to a microcontroller which is 

powered by batteries. Using Bluetooth Low Energy (BLE) 

communication, the microcontroller sends data about which 

finger, on which hand, is attempting to play a key, and how loud 

it is trying to play it. Figure 2 shows the glove, without the 

attached battery pack. BLE allows the user to get fast enough 

transmission rates (data being sent from the glove to the laptop 

at least every 10 ms), while requiring low enough power that an 

attached battery pack is able to power the glove wirelessly. 

The phone is mounted to a ring light stand such that the user 

can see the interface of the app while the phone camera can see 

the paper keyboard. The stand is essential so that the camera 

can get a good angle that views the entirety of the paper 

keyboard. It streams a video feed of the gloves on the paper 

keyboard. The paper keyboard itself comprises of two pieces of 

paper taped together; this is needed to print out keys that are the 

same size as a real piano. The paper keyboard has four octaves, 

and each corner of the entire keyboard layout has red dots to 

help identify its location. 

Essentially, the gloves send information about how loud to 

play a key, and the CV tells the computer what pitch to play. 

Figure 4 explores the software structure of the app. The 

diagram here depicts the flow of the app on the computer; Kivy 

can be launched natively and directly interact with the speaker 

and BLE transmission. The app itself walks the user through the 

stages of connecting the gloves (left and/or right), and then 

calibrating their piano. We assume that the user does not move 

the paper piano, but if they do, they can recalibrate by returning 

to the calibration screen at any point. 

First, the gloves send over the pressure information of any 

finger that is pressed down. This information is received by the 

app where CV processing occurs to determine which key was 

pressed (using information from the paper keyboard). Putting 

together these pieces of information, the piano sound is 

rendered by the computer, which is outputted through the 

computer’s speakers. 

Our design has changed slightly from our design report. 

Firstly, our app was initially going to run on our phone. 

However, in order to get a good angle on the paper piano to 

perform the warp, we opted to use an overhead stand for the 

phone. This means that the user can no longer really see the 

phone interface while it is using the camera. Therefore, we 

moved our interface to be on the laptop. This way, the user can 

see both the visualizer and their hands playing the piano, while 

sitting down comfortably like they would at a real piano. 

Figure 1:Overall Physical System  

Figure 2: Gloves Subsystem  



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

3 

Changing our app into the desktop interface allowed us to get 

rid of any need for Xcode, so we wrote our whole app in Python 

using Kivy language. It required using the Bleak package to 

connect to the BLE from the app itself on the laptop. With these 

changes and mounting our phone overhead, we also are now 

able to design a system that can play all 4 octaves at once, since 

we can get them in the frame of our camera view. Previously, 

we were limited to playing at most 2 octaves at a single time, 

due to the camera view and the limited space to visualize the 

keys on the phone interface. 

Further, our last design report played a heavy emphasis on 

audio processing and attempting to write MIDI files. We 

removed this as our audio processing now uses WAV files to 

play notes, using an inbuilt mixer (via Pygame) to synthesize 

sounds. This let us focus on the timing component of integrating 

our pressure input with the CV hand positions that is integral to 

our use case. We did keep the element of MIDI files as an 

additional feature. Users can choose to set a tempo and write to 

a MIDI file as they play, and then the final file is saved onto 

their desktop can be opened in apps like Musescore. This is a 

nice feature that allows users to save their chords—however, it 

is no longer a focus in our use case or design requirements.  

 

IV. DESIGN REQUIREMENTS 

The gloves (pressure sensors & micro-controller) and phone 

holder is be at most 2 lbs in total. The total cost of creating the 

gloves (pressure sensors & micro-controller) and the ring light 

with phone mount is at most $100 in total. This keeps the device 

portable and affordable. Though a typical portable 49-key piano 

might be cheaper at around $60, the quality of sound is poor. 

Portable pianos of better sound quality cost at least $130, 

making our option cheaper than the current market option. 

To have an interface on the laptop, allowing the user to see 

what keys they are playing and how loud, our design needs to 

be made on a platform that can be launched from any laptop. 

Therefore, we used Kivy, a cross-platform app development 

tool that runs our interface in Python. This also allows us to 

implement computer vision in a language we are already 

familiar with (Python). In order to view the paper piano, another 

camera is required, held up on a stand. To minimize cost to the 

user, we are using their phone as a webcam to their computer. 

This allows users with both Androids and iPhones to use the 

interface; on iPhone, for testing purposes, we are using the 

Continuity Camera on iOS16 and macOS Ventura to use our 

phones as a webcam, requiring no additional set-up. 

 The note playback time from when the user hits the key and 

hears it must be at most 100ms. This can be achieved through 

the use of a BLE microcontroller (Arduino Nano BLE) 

connected to the computer. For the duration of the BLE 

information being transferred, the data is sent at least every 

10ms and each thread to receive the data is checked at 30Hz, 

which is how often data about where hands/fingers are on the 

piano is updated.  This allows around 40 milliseconds of slack 

time, in case of concurrency blocks for other processes going 

on such as rendering the visualizer of the piano on the interface. 

The piano keyboard layout has red dots which serve as 

colored markers for our piano with 4 octaves (49-keys). This 

helps the CV algorithm identify where the printed piano 

keyboard layout is in the video stream. 49 keys were chosen as 

this is typically how many keys are on portable pianos that cost 

about $100.  

Figure 3: A Block Diagram depicting the Physical Structures (green) and Technological Components (blue) of 3 Interfacing Subsystems (Pink) 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

4 

Different volume levels are determined if pressure sensor 

output voltage is within three distinct intervals which can only 

be fully determined through testing. We are also be able to tell 

which finger is pressing at what volume, since each of the 10 

pressure sensors on each finger are unique to each other when 

they send information to the microcontroller. 

Gloves need to be calibrated when beginning to play. This 

means that if the gloves are faced in the upright orientation 

where the sensors might be pressed by the weight of the glove, 

it should instead be reset to detect nothing when there are no 

external forces on it. These pressure sensors are less than the 

size of your finger which is less than 14mm. This allows the 

user to have a comfortable experience wearing the gloves, and 

let them play the piano as naturally as possible. 

On the software side, it is programmed to have an array that 

stores the value of which note is being played simultaneously. 

Software is programmed to store all 49 total keys which 

encompasses all 4 octaves in an array data structure. The CV 

algorithm must be able to detect the note in under 40 ms. To 

summarize our timing requirement, we can analyze the worst-

case scenario. If CV takes 40ms to find the location of the 

finger, and it takes 33 ms to read the newest data from the BLE, 

it takes 77 ms to output the note. This is under 100 ms. We do 

not consider the 10ms it takes for the BLE to send over the 

information, as our thread checks whatever is currently in the 

BLE at the point of checking. If it only checks the BLE at the 

end of the 40 ms it takes for the CV to run, it adds on the full 

33 ms, so 77 ms is our worst-case scenario. 

Computer vision edge detection must detect key locations 

and outlines 100% of the time. Computer vision finger 

detection must detect the location of fingers based on key 

detection outlined above 98% of the time. We want to be as 

accurate as possible, but as the piano is flat, there may be edge 

cases where the algorithm cannot tell which key the finger is 

distinctly on. 

 Finger detection accounts for all 10 total fingers to analyze. 

To calibrate the computer vision, the phone mount holder must 

be a top down 90 degrees from the horizontal in order to view 

the entire piano layout. 

The battery must have at least 3.3V, with enough current to 

power the Arduino Nano BLE and the pressure sensors. We 

want our battery to last at least three hours, which is an 

approximation of how long it takes to arrange a song. The 

Design Trade Studies will further explore the battery 

requirements.  

V. DESIGN TRADE STUDIES 

We encountered several trade-offs in our design, especially 

regarding picking our microcontroller + BLE modules, power 

supply, how to write our interface, and how to create our gloves 

and identify the user’s fingers. 

A. Microcontroller + BLE Module 

We considered several different microcontrollers and BLE 

modules. We want our glove to be as lightweight as possible, 

and minimize the bulk carried on a user so as to increase 

portability and keep the weight of the entire system under 1 

pound. We also wanted to use BLE to transmit data, as regular 

Bluetooth modules are more difficult to pair with iPhones 

which would limit the cross-platform independence outline in 

order design requirements. At the same the time, the 

microcontroller only needs to sense the pressure, threshold the 

value and encode it, and transmit, so familiarity with the 

microcontroller and module would be beneficial as its 

programming is not the main focus of our system.  

Initially, we wanted to use the STM32F103 with an HC-05 

Bluetooth module due to Lee and Nish’s prior experience with 

STM32; however, we discovered that HC-05 is in fact low-

Figure 4: Software Block Diagram 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

5 

power rather than actual BLE. Thus, we analyzed three different 

options, as in the table below (Table I): 

TABLE I.  MICROCONTROLLER ANALYSIS 

 
Microcontroller + BLE 

STM32WB[7] nRF52840[6] 
Arduino Nano 

33 BLE [4] 

Size 7 x 11.3 mm 7 x7 mm 18 x 45 mm 

Processor ARM Cortex M4 Arm Cortex M4 Arm Cortex M4 

Power 3.6V 1.7V 3.3V 

Experience With STM32  None With Arduino 

Weight 7.2 g 0.6 g 5 g 

The Arduino Nano 33 BLE is much larger than the other two 

options. In fact, the Nano has the nRF52840 on its board. 

However, it requires less power than the STM32WB, and all 

three members of the group have worked with Arduino before. 

Furthermore, though we have experience with the STM32, the 

setup and debugging process seemed to far exceed what we 

were using the microcontroller for. Since we are not 

implementing threading on the microcontroller, a simple 

Arduino would suffice. We also wouldn’t need to build a 

Printed Circuit Board for I/O with the pressure sensors, whereas 

if we used the STM32WB or nRF52840, we would need to 

account for the size of the PCB and test it.  

To account for the size of the Nano, we placed the Nano 

horizontally, so that it fits within the user’s wrist, still. Now, we 

will analyze how to power the Nano and pressure sensors.  

B. Batteries 

We considered coin cell batteries (CR2032), AAA, and AA 

batteries to power our system. We wanted to make sure our 

product lasts at least 3 hours.  

The Nano and pressure sensors each require 3.3 V to operate. 

CR2032 can supply these 3.3 Volts with only one cell – 

however, it operates at around 235 mAh, assuming that you 

only draw around 15 mA at a time (optimal conditions). We 

first calculate how long each glove would run using a CR2023 

cell.  

To play loudly on a Kawai (a brand known for heavy keys) 

requires about 40 N, while a soft note is about 4 N. On a paper 

piano, we don’t need to flip up the hammer of the piano, so we 

can scale our “loud” “medium” and “soft” to average about 10 

N for medium notes [5]. The following equations calculate 

battery life when playing medium loudness notes. 

The force sensitive resistor draws 0.45 mA when a 10N force 

is exerted upon it [8]. Since we have scoped our design to be 

able to play at least four notes at once (a full chord or tetrad), 

we can see in Equation (1) that we need at least 1.8 mA/chord. 
 

0.45 𝑚𝐴 ∗ 4 𝑛𝑜𝑡𝑒𝑠 = 1.8
𝑚𝐴

𝑐ℎ𝑜𝑟𝑑
                    (1) 

 
 However, each I/0 pin on the Arduino Nano requires 15mA, 

which means that our system needs 75 mA per hand for at least 

3 hours before needing to change batteries.  A typical coin 

battery has 235mAh, AAA batteries have an mAh of 1200, 

while AA batteries have 2500 mAh. From equation (2) we 

calculated that coin batteries can last up to 3.1 hours, while 

AAA batteries can last up to 16 hours and AA batteries can last 

up to 33 hours given the amount of current needed to power our 

system. 
235𝑚𝐴ℎ

75𝑚𝐴
= 3.13 ℎ𝑜𝑢𝑟𝑠                              (2) 

 
1200𝑚𝐴ℎ

75𝑚𝐴
= 16 ℎ𝑜𝑢𝑟𝑠                               (3) 

 
2500𝑚𝐴ℎ

75𝑚𝐴
= 33 ℎ𝑜𝑢𝑟𝑠                             (4) 

 
It would not be feasible to have coin cell batteries that need 

to be replaced every 3 hours, entirely. While AA batteries hold 

more charge and can last longer than AAA batteries, AA 

batteries are also heavier and bulkier. AA batteries weigh 0.8 

ounces each and AAA batteries only weigh 0.3 Oz each. Since 

our requirement is that we should be able to compose at least 

one song (~15 hours), we decided that the extra 17 hours that 

the AA batteries could give us would not be crucial. 

C. App Interface 

We went back-and-forth on what to build our app interface 

with. Initially, we wanted to launch the app from an iPhone, 

but code as much of our interface in Python as we are familiar 

with OpenCV in Python. However, iPhone apps need to be 

written in Xcode using Swift and Objective-C (languages none 

of us are familiar with); therefore, we planned to build most of 

our app in Kivy, a Python cross-platform interface, and use the 

Kivy-ios library to wrap this app in Xcode and launch it from 

our phones. 

            However, we found out that Kivy-ios is limited. 

Although apps can be launched from the iPhone, the wrapping 

prevents Kivy from touching iPhone hardware such as the 

camera, speaker, and BLE transmission access. These three 

components were integral to our app, so we started learning 

Swift and writing our app. 

            At the same time, we also decided to mount our phone 

from the overhead angle to get a better angle on our paper 

piano. This would render our phone app useless as the user 

wouldn’t be able to see the app. Therefore, we moved our 

entire platform to the Desktop/Laptop, and were able to code 

in Kivy and access our camera, speakers, BLE, and write our 

OpenCV in Python. Previously, we would have had to 

integrate a Python interpreter into our Xcode app, which 

would slow it down considerably, or rewrite OpenCV in C++. 

Although it came it a cost of rewriting our interface, we 

believe we saved a lot of time in integration of BLE and 

OpenCV 

D. Gloves 

For the gloves, we decided to use the cotton finger wraps 

instead of the latex finger cots because we want our design and 

parts to be reusable after every use. This would reduce the 

amount of waste we would produce and also would feel better 

on the user’s fingers.  
There were also complaints about how the latex finger cots 

would be really tight against the user’s fingers and were 

uncomfortable for long periods of time. Since we expect our 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

6 

user to be using the cots for multiple hours, we would want to 

have as comfortable as a device as possible. 

We also considered various methods to create a frame for the 

glove so that the circuit would have a place to sit firmly and 

securely. Dish gloves had the strong material we were looking 

for but they never came fit to size and so we wouldn’t want the 

fingers at the end not snug when you would be pressing on the 

pressure sensors. We considered using latex gloves again, but 

did not use them for the same reasons as above. We then 

considered 3D printing out own gloves with a plastic material 

as durable as the dish gloves but would also be snug against 

fingers and palms of the hands. This didn’t work out as 3D 

printing was too risky to try out especially this late in the work 

schedule.  

We lastly landed on purchasing lifting gloves, which 

essentially cover a portion of the hand, mainly the palms. This 

would provide a place to glue in the microcontroller and 

batteries. The lifting gloves also had a Velcro strap that helped 

the user tighten the glove so that it would be a better fit. Lastly, 

it did not interfere with the use of the cotton finger wraps where 

the pressure sensors would be located. 

E. 68k Ohm Resistor vs 10k Ohm Resistor 

Instead of using a 68k resistor for our circuit, we changed to 

using a 10k resistor because we found that using the 68k 

resistor limited the range of the pressure sensor to sense 

certain thresholds for various volumes. The 68k resistor led to 

medium touches outputting the max value on the sensors, 

whereas the 10k resistor allowed us to read high force pressure 

from the sensor and better threshold our loud, medium, and 

soft touches.   

F. Finger Identification 

Originally to identify distinct fingers we were thinking of 

putting colored fiducials on each of the fingers to conduct color 

thresholding and feature matching CV algorithms. We decided 

to change it to using an external module called Media Pipe so 

as not to reinvent the wheel. It is faster, more efficient, and 

largely more accurate to find the locations of the fingers. The 

tradeoff to using Media Pipe is that if too much of the fingers 

are covered by the gloves, then the algorithm that we rely on 

may have trouble discerning the fingers. This can be 

troublesome as the only way to debug this is in the design of the 

gloves since you can’t modify the Media Pipe package.  

G. Camera Angle 

We wanted to attach a phone mount to our laptop since the 

mount would be lightweight and miniscule, but because of the 

distance and angle away from the paper piano, the mount would 

have to be at a 45-degree angle below the horizontal. We 

decided to change this to a ring light stand with a phone mount 

because it could provide a top-down 90-degree vertical view of 

the paper piano. This is important because it would make 

identifying the paper piano keyboard easier since you wouldn’t 

have to warp the image from a stretched image (at the 45-degree 

angle) to a size-fitted image (top-down view).  

Even though we still have to warp. It is a process that only 

requires zooming in and eliminates any stretching of the piano 

keys that may have emerged from taking the input frames at 

such a low angle.  

The ring light was a useful addition since it would help keep 

lighting environments consistent which would be helpful for 

identifying the contours of the piano keyboard. We wouldn’t 

want it too overexposed while not too underexposed in terms of 

lighting. 

We also considered using a goose neck functionality of the 

stand with the phone mount, however, there were very few 

options on Amazon that offered a goose neck long enough to 

stretch over the piano print out. Other alternatives have longer 

goose necks, but were not a desk stand but rather a desk clamp. 

We did not want to limit our users to only being able to play on 

surfaces that required an edge (this edge also cannot be too thick 

or thin for the clamp). 

H. CV vs Accelerometers and gyroscopes 

We decided to use computer vision as the algorithm for key 

detection rather than using additional sensors on the fingers 

such as accelerometers and gyroscopes to determine position. 

This was because it would have made the gloves much bulkier 

already since it had the pressure sensors on each finger to 

begin with. Additionally, it would be more expensive to buy 

10x the sensor since we would need one for all 10 fingers.  

Another reason is that the work would have better lined up 

with Lee since he had more experience with computer vision 

than the accelerometers and gyroscopes. Lastly, even though 

computer vision is never “perfect”, it is still easier to 

implement than doing the math and trigonometry to obtain the 

position from those sensors.  

VI. SYSTEM IMPLEMENTATION 

This section explores the implementation of each main 

subsystem: Gloves, Paper Keyboard, App Interface, Computer 

Vision Processing, and Audio Processing.  

A. Gloves 

Figure 3 denotes the components of the gloves. Referring to 

Figure 5, we can see top and bottom views of the gloves. The 

pressure sensors used are MD 30 60 force resistor sensors, 

which are approximately ½” in diameter and fit on the pad of 

each finger. In the case of the thumb, the sensor is be placed on 

the side of the thumb, where it would most naturally strike a 

piano without inducing awkward posture of the hands. The 

sensors are connected to the Arduino Nano that sits on the back 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

7 

of the hand, held together by the wrist strap. The batteries 

currently sit on the on the underside of the wrist. 

These sensors work on a logarithmic scale, as seen in Figure 

6, so we have to carefully threshold where we want our “loud, 

medium, and soft” forces to lie; very low forces are difficult to 

distinguish from each other. The Arduino Nano reads the 

resistance of the pressure sensors, determining if the circuit 

(shown in fig 7) is open (no force, or very little force), or encode 

the volume depending on the read value. 

The BLE Flow diagram (Figure 8) outlines how information 

is sent from each glove to the laptop. The pressure sensors 

output a voltage value between 0 and 5. The pressure sensors 

work as a variable resistor and limit the amount of voltage that 

is able to flow through. Having a higher pressure means that 

there is a higher resistance which correlates to a higher voltage 

read. We have thresholded these values based on testing of what 

constitutes a soft, medium, and hard touch. We translated these 

into values: 0 for off, 1 for soft, 2 for medium, 3 for hard. Each 

of these values was stored as a char, so that it takes up exactly 

one byte. 

We combined all this information into an 8-byte long, to hold 

5 bytes of information (1 byte per pressure sensor/finger) with 

3 bytes of padding. Since each pressure sensor always sends its 

value to the same spot in the long, we are able to extract which 

finger has what value by reading the entire long. 

BLE works by first pairing to the app. Once paired, the app 

searches for all the services the BLE offers; in this case, it offers 

one service, the pressure service, with one characteristic, the 

pressure characteristic. The app calls read on the characteristic, 

and reads the entire 8-byte value. We chose to condense 

information from all the sensors on a glove into one 

Figure 5: Top and Bottom Views of the Gloves 

Figure 6: MD 30 60 Force vs Resistance [8] 

Figure 8: BLE Flow 

Figure 7: BLE Nano Circuit Diagram 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

8 

characteristic to minimize read time from the BLE. With one 

read, five sensors can be read. 

Each glove is read 30 times per second. This is because our 

CV updates the hand positions at minimum 30 times per second, 

in order to be able to view our video stream, so we need to read 

our value at least as frequently. The read reportedly can take up 

to 30 ms in worst case scenario [4], but the two reads (one per 

glove) occur simultaneously. 

We know now the pressure of each finger after the read, and 

their positions from the last CV run. Therefore, we can play the 

note at the right volume. 

B. Paper Keyboard 

Our 49-key paper keyboard has 4 red dots that serve as 

colored markers on each of the corners so that the computer 

vision algorithm can determine the location of the paper 

keyboard when computing on frames from the video stream.  

C. Interface 

Figures 9 and 10 show our interface. Figure 9 depicts the 

standard screen the user sees. The four octaves they are playing 

shows up on the screen. Keys that are pressed light up, and the 

name of the key appears above the keyboard so the user can 

verify that the app has detected and is playing the correct notes. 

Every key has its own color, as previously mentioned. The 

same note in different octaves has the same color, as they are 

far enough apart visually to discern between them. For the same 

reason, black keys are all red, since they are separated by white 

keys so they won’t be confused. This was made as having 13 

different colors on the screen was reportedly too much, 

according to our initial user studies. Playing louder induces a 

deeper color. 

We considered not having every key be a different color, and 

simply coloring the note green when soft, yellow when 

medium, and red when loud. However, when implemented, the 

users preferred the version with many different colors. 

Although the volume output wasn’t intuitive to interpret with 

having different shades of the base color of the key, they 

enjoyed playing the piano and seeing aesthetically pleasing key 

colorings with a wide range on the screen. Ultimately, we found 

that we needed visual volume cues while testing the device, but 

now that the volume has been tested, the user does not need to 

verify how loud their note was while arranging. 

At the top, of the screen, we see three buttons: calibrate, 

tempo, and create MIDI. Calibrate is shown in Figure 10. This 

is a step the user must go through every time they set up the app 

or shift the camera. The video feed is shown to the user. They 

capture and image of just the piano, with no gloves or hands 

covering the keys. Once the image is captured, they are able to 

select the 4 red dots, and the warp is rendered as they are taken 

to the Piano screen. The piano screen does not show the video 

feed, as it is not necessary for the user. The user is free to tape 

down the keyboard. If the keyboard shifts, they will see the 

notes on the interface registered incorrectly, and will be able to 

recalibrate the screen. 

The interface also accounts for users that may only want to 

use one hand to play (as they might be using the other hand to 

compose on their laptop as they listen to the piano). The user 

can choose which gloves to pair in an initial screen upon 

launching the app. They individually pair the left and right 

gloves. 

The app uses asynchronous functions to check the left and 

right gloves. Technically, the app is continually reading the 

values from each sensor, which may take up to 30 milliseconds 

in a worst-case scenario. It also checks at minimum 30 times 

per second, due to how we have scheduled the async task with 

the Kivy Clock. The Kivy Clock also schedules the CV 

algorithm to check hand placements of the user 30 times a 

second, which can be bumped up to 60 times a second. We 

chose to do 30 times a second initially to account for a worst-

case scenario and see if we can still meet our timing 

requirements. 

After the CV is run and we know where the user’s fingers 

are, the latest call from the BLE reading is taken and fed to the 

piano. The respective PianoKey is called with the appropriate 

volume setting, and the sound is outputted. It is important to 

note that may receive multiple pressure readings for notes that 

are held down; this is accounted for in our software. The note is 

played with the volume of the first reading, and won’t be played 

again until we see that the finger has been lifted off the paper (0 

values for pressure) and is pressed again. This is because real 

pianos don’t loop notes as someone holds down the key. 

The tempo and create MIDI buttons essentially allow the user 

to save chords. They can set a tempo, which is necessary to 

create a MIDI file. From there, any time they press a note, the 

message is also written to a file using the Mingus MIDI library. 

Figure 9: Rendering of Piano Interface 

Figure 10: Rendering of Image Capture Interface 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

9 

At the end of the session, the user can save the file to their 

computer that is running the app as a .mid file. 

D. Computer Vision Processing 

Figure 11 shows a flow of the CV processing that occurs in 

the app. Upon receiving the video input of the gloves playing 

the keys, the computer vision uses an external package called 

Media Pipe which relies on a machine learning algorithm to 

identify the positions of all fingers on the gloves to identify their 

location in space. We program it so that it only searches for 

fingers for which it has received pressure information via BLE.  

Once the finger has been located in space, the CV identifies 

if the finger is within the bounds of the paper keyboard.  

If a finger has pressure information (it is pressing something), 

but the finger is not on the bounds of the keyboard, nothing will 

be played; this allows the user to use their hands for other 

activities such as typing or using a mouse, alternating between 

that and playing the piano. 

If within the bounds of the keyboard, CV will determine 

which key the finger is on by using contour and edge detection 

to delineate between keys [1]. If the finger is located exactly 

between two keys, our algorithm will consistently take the 

higher key. At this point, the pitch each finger is playing has 

been identified. 

 The next step is to match the pitch with the pressure/volume 

information received from the glove. After combining this data, 

it then outputs the desired sound out of the computer’ speaker.  

VII. TEST, VERIFICATION AND VALIDATION 

For our testing, verification and validation, we all worked 

together to ensure that we didn’t miss out on any edge 

cases/tests that might have influenced the success of our project 

and to test the robustness of our design requirements for our 

use-case. 

A. Tests for Note Accuracy 

The main purpose of our project depends on the accuracy of 

the notes we play. This means that this initial test is our most 

important test. Thus, we performed rigorous tests to test its 

robustness. This test involves playing each individual note 

separately. We tested the accuracy of each note within our 4-

octave range, so any note played should be correct. We would 

compare each note played with a chromatic tuner.  

We played all 49 keys on our piano as inputs with a goal of 

98% accuracy (48/49 keys) which resulted in 100% accuracy.   

B. Tests for Chord Accuracy 

We want to ensure that our notes stay accurate when played 

together. Thus, on top of just note accuracy, we also tested for 

chord accuracy. This involves a similar test as our note accuracy 

tests, but involves chords instead.  

We played all 49 keys on our piano as inputs with a goal of 

98% accuracy which resulted in 100% accuracy again.   

C. Tests for Multi-note Volume Comparison 

Another important requirement we have is having multiple 

volume outputs for how hard the user presses down on a certain 

key. We tested volume by having five users play “loud, 

medium, or soft” notes (10 per note), marking what they expect 

vs what the actual output is. We also made sure that different 

notes play “loud” at the same volume, by playing successive 

notes at the same pressure and measuring and comparing their 

decibel output level, on our phone, to each other. Any errors 

here was fixed by mitigating our volume thresholds in our 

interface. We also allowed the users to have a few minutes to 

get used to the gloves and the pressure. 

Of the 50 soft notes tested across subjects, we received 100% 

accuracy. Of the 50 medium notes, we achieved 88% accuracy, 

and of the 50 loud notes, we achieved 100% accuracy. This is 

results in an average accuracy of 96%, and the thresholds will 

continue to be tuned.  

 
D. Tests for Multi-note Volume Threshold 

When playing multiple notes simultaneously, we didn’t want 

to overpower the speaker if all the notes played are “loud”. We 

wanted to ensure that the maximum decibel value of all of the 

notes played together is less than 70 dB, which is a few decibels 

under the maximum phone volume limit. If it had exceeded this 

threshold, we went back to our interface and toned down the 

volume output for the “loud” notes until it fitted our 

requirement. 

We played 49 “loud” notes as our inputs as inputs with a goal 

of 98% accuracy which resulted in 98% accuracy.   

 
E. Tests for Playback 

Because we are playing multiple notes at the same time, we 

want to have a fast-enough playback time for the notes played. 

First, we tested our playback speed, playing at least 8 notes. We 

Figure 11: CV Flow 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

10 

started the time when the Arduino BLE Nano registers a pressed 

key, and then checked to see how long it took to reach the app 

and call the command to play the speaker. The goal was for all 

of this to happen in under 100ms. If it didn’t, we altered how 

our apps’ threads handle input and prioritize better. 

We played 8 notes as our inputs as inputs with a goal of under 

100ms which resulted in the greatest time of 61.3 ms, with an 

average of under 40 ms. We expected a worst-case scenario of 

77 ms. We think it was under 77 ms because our BLE runs 

asynchronously and can be checked at any point, so the reads 

are taking less than 30 ms when we use the data 30 times per 

second, immediately following our CV process.   

 
F. Tests for Edge Cases 

With computer vision, we expected that there could be some 

unexpected behavior when it came to playing at the edge of a 

note. Thus, this test evaluates the robustness of our CV 

algorithm. We used one finger to play two adjacent notes, 

which includes pressing the edge between a black key and the 

neighboring white key and pressing two adjacent white keys. 

We wanted to ensure that only one note was played in these 

scenarios, so that it wouldn’t play something that the user didn’t 

want. Throughout our different tests, we wanted the note played 

to be consistent. This meant that when one finger pressed two 

keys, we wanted the highest note to be played. We wanted this 

to also have a 98% accuracy, just like our normal note accuracy 

test. 

We played 10 sets of two adjacent keys (black/white and 

white/white) on our piano as inputs with a goal of 90% accuracy 

which resulted in 100% accuracy.   
 

G. Tests for Typing/Using Fingers with Glove on 

With music composition, we expected that our user would be 

using their computer while their gloves were on. Thus, we 

needed to ensure that when the user was not actively playing, 

they didn’t trigger any notes by just using their hands/fingers. 

We tested this by pressing the table surrounding our paper piano 

and seeing if that would trigger any notes. We wanted to have 

a 98% success rate, meaning that we wanted our system to not 

play a note if something was pressed in the surrounding areas 

and also to play a note if it was pressed on the keyboard 98% of 

the time. In addition, if the user’s fingers were not in sight of 

the camera, it should have never played a noise even if pressed. 

We played all 49 keys on our piano as inputs with a goal of 

98% accuracy which resulted in 100% accuracy.   
 

H. Tests for Battery Life 

We tested the battery life that powers our Arduino Nano 

board and we wanted our battery to be able to operate at 3.3V 

for at least 3 hours without replacement. In order to test this, 

we let the Arduino sit for three hours with the battery plugged 

in and transmitting BLE data. At the end of the three hours, 

we tried to use our glove and see if it was still powered.  

Since the glove was still powered at the end of the three 

hours, we considered this a successful trial. 

 

I. Tests for Warp Consistency 

Whenever the user moves the printed paper piano keyboard 

layout, the points use to warp to the corners of the piano may 

be different. The user would have to calibrate their piano 

keyboard by choosing a new set of points and then warping 

again. This test is designed to validate how well the warping 

function works since it will be used often whenever a user 

needs to calibrate their piano keyboard again.  

 We ran the warp function under 25 test images of 

different lighting environments and different locations of the 

piano keyboard as our inputs with a goal of 95% accuracy and 

with a result of 100% accuracy now. 

 

J. Tests for Key Segmentation 

For the same reason as above in the warp consistency test 

case, every time the user calibrates their system by choosing a 

new set of points for their piano keyboard, the key 

segmentation function will also be run again. Since we can 

expect this to occur frequently, this test is designed to validate 

how well the key segmentation algorithm works.  

 We ran the segmentation function under the same 25 test 

images of different lighting environments and different 

locations of the piano keyboard as our inputs with a goal of 

95% accuracy and with a result of 84% accuracy. The 

thresholding stage of segmentation is what causes this 

segmentation to fail. Therefore, we are working on the lighting 

accuracy, and if we are unable to adjust for lighting, we will 

offer the user a check to make sure that the thresholding stage 

was accurate before they try to play the piano. This and the 

key identification test are linked, and have the same solution. 

 

K. Tests for Key Identification 

For the same reason as the previous two test cases, this one 

verifies the accuracy of the next step in the computer vision 

process which is identifying the key from where the fingers 

are hovering over the piano in the video stream. This is before 

the gloves are incorporated with the CV subsystem.  

 We ran the segmentation function under the same 25 test 

images of different lighting environments and different 

locations of the piano keyboard as our inputs with a goal of 

100% accuracy and with a result of 84% accuracy. 

 

L. User Testing 

We decided to add some user experience testing. We had 5 

people try our entire system together, and walked them 

through pairing the device, calibrating the screen, and then 

playing the piano. The MIDI feature was not tested as it was 

not ready at the time of user tests. 
In our first round, users tested the version with the 

visualizer that had each key a different color. We received 

some feedback that users wanted to try a version where there 

were only three colors the keys would change to, 

representative of the volume, as the understanding the volume 

was a little bit confusing with so many different colors. We 

implemented this and asked those people to test again. While 

they agreed it was easier to understand volume now, they 

preferred the older version as it was more fun to use and they 

didn’t know what to do with the volume information other 

than checking if our device was running correctly. 
We also received feedback that we should work on making 

our interface more intuitive by adding help text so the user 

understands how to calibrate the image and pair the devices. 

This is currently being added in. They also reported that the 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

11 

paper piano really needed to be taped to the surface in order to 

comfortably play the piano, which was a valid point. 
A few times, the warp didn’t work. The warped images are 

saved in our code for debugging, but not shown to the user 

until they try to start playing the piano. The stage that 

frequently messes up our warp is in thresholding. Given that 

we have not yet hit our 95% accuracy mark, they requested 

that there be a check for the thresholding stage. As such, we 

are adding in a screen that shows the thresholded image, and 

asks the user to check it against an example thresholded imag 

before proceeding to the piano. 
Overall, users enjoyed using our device. 4/5 said that they 

would use this for arranging music, though the glove seemed a 

bit fragile to be carrying around. When asked about the time 

delay between playing a key versus hearing it, users did not 

seem to notice too much of a time lag. They felt that it was 

overall a portable, nice-sounding piano interface.  
 

VIII. PROJECT MANAGEMENT 

A. Schedule 

In the appendix, Figure 12 shows our full GANTT chart for 

our project. Because we changed project ideas later in the 

semester, our GANTT chart starts on when we first started 

doing work on this idea (moved from “Airport Tag” idea to 

this “Piano AR” idea). We also added an additional two weeks 

to include the last week of classes as well as the first week of 

finals before Monday May 8th. We lastly removed audio 

processing as a task from our schedule and changed to 

implementing the app on the computer rather than the phone 

so some of the tasks on the left-hand side were also modified 

and updated to reflect this change. 

B. Team Member Responsibilities 

We split up the primary responsibilities of this project based 

off of each member’s experience. While there might be some 

overlap where other members help out each other on their work, 

we assigned each member as the main lead for their primary 

responsibility. 
Caroline focused on the gloves of our product. This included 

soldering the glove the together and onto the wrist device, 

making the glove adjustable for different hand sizes of the user, 

and working to send the BLE information to the laptop. 
Lee focused on the computer vision aspect of our project 

because he has a lot of experience in CV. This includes warping 

and thresholding the paper piano, and implementing code to 

check where all 10 fingers are simultaneously and process this. 

Nish has more experience in using the program Kivy, so she 

worked on the app interface. She worked on integrating the CV 

and glove information together, using asynchronous models 

and Kivy Clock, and the interface flow. 
All of our members were involved the testing process. 

 

C. Bill of Materials and Budget 

Our Bill of Materials is listed in Table II (Appendix). 

 In our bill of materials, the items that we did buy at the 

beginning of the semester but did not use was the airplane 

phone mount holder with multi-directional dual 360-degree 

rotation. What we did not plan for in our design report but 

realized we needed to complete the project was the weight-

lifting straps for the gloves and the ring light stand with the 

phone mount.  

D. Risk Management 

No one in the team has ever previously used Xcode for this 

Arduino BLE Nano, so our primary risk was getting it set up to 

wrap over the Kivy interface. To mitigate this risk, we planned 

on creating a dummy app to access the BLE and the speaker, 

and make a mini Kivy app wrapper to test. Instead, we ended 

up not using Xcode since we switched to running the app on the 

computer so this risk was eliminated this way. 
Another risk was that Lee was in charge of the CV, but had 

a Windows OS on his personal computer and therefore couldn’t 

test the work on Xcode, as Xcode only works on a Mac OS. To 

mitigate this risk, we decided that Lee can just send video and 

test frames as images to do vision processing on. Ultimately, 

we followed through with sending test images by taking photos 

with my pheon and running my program to test its functionality 

locally. However, it wasn’t that we couldn’t test it on Xcode, 

but more so because accessing the video stream from an apple 

iPhone to a Windows OS wasn’t implemented yet. 
The risk of having pressure sensors from Amazon is their 

robustness and quality. There is a risk of how the range of 

sensitivity performs according to our design requirements. To 

mitigate this risk, we planned on testing the current Amazon 

sensors to check if this risk existed. If they did not perform as 

expected, we would have ordered from Digikey for more robust 

ones. We ended up mitigating this risk when some of our 

pressure sensors did actually break even near the end of the 

project, we just ordered more from amazon last minute since 

amazon shipping proved to be quick enough for our needs. 

IX. ETHICAL ISSUES 

Some of the biggest ethical issues related to our project was 

with user privacy concerns since we were using a camera for 

computer vision. To mitigate this concern, the user can choose 

to point the camera wherever they desire and can turn it off 

whenever they want too. They are in control and the video 

stream isn’t recording, but only processing frames in real time 

locally, which means it is still private. 

 If the product doesn’t behave as intended, then the 

composer or arranger could go back to a real piano. Or in the 

adverse, but exceptionally rare case is if the battery 

shorts/explodes and injures the user. It is also not advised to 

use our product to learn the piano, as this may lead to hand 

injuries. However, our wrist-strap should also mitigate this 

ethical issue. 

X. RELATED WORK 

There are a multitude of other work and projects dedicated 

towards creating a better piano experience for users. One 

project that relies on AR technology like ours attempts to create 

a piano experience at an actual real-life piano. In doing so their 

project goals strive to improve the user experience while 

playing on an actual piano, whereas for our project, we focus 

on portability and accessibility with the use case of composition 

and arrangement.  



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

12 

Their project creates an AR visual in a piano learning app on 

a real-life piano and draws out all the names of the notes on the 

piano for the user. In addition, the AR portion visualizes an 

animation of the notes coming toward them at the correct timing 

as to when the note is supposed to be played, similar to music 

rhythm video games such as “Guitar Hero” or “Piano Tiles 2”.  
Some newer improvements to this technology was that it 

would also now just project a virtual piano keyboard for you so 

that you would be able to play it without an expensive real-life 

piano [3][10].  

XI. SUMMARY 

Our system was able to meet most design specifications 

because we were able to get our system to a functional level.  

 

A. Future Work 

Some further design extensions are on creating a synth 

engine with MIDI capabilities. Another extension is adding a 

large range of volume levels for the users which would be 

achieved by increasing the accuracy for volume thresholding. 

Lastly, an extension would be added to the interface for having 

a capability for the pedal which allows you to have more 

accurate resonance for loud and soft notes. 

 

B. Lessons Learned 

It is not a polished product though as there were some 

limitations that affected the overall design. The performance is 

affected under various lighting environments since there exists 

no perfect threshold values to identify the red markers. The 

outsourced pressure sensors proved to be more fragile than 

expected and lacked durability. Lastly, the audio processing 

goal was not reached as well due to the complexity of the task 

and it being not fundamental to the functionality of the design. 

GLOSSARY OF ACRONYMS 

AR - Augmented Reality 

BLE – Bluetooth Low Energy 
CV - Computer Vision 

MIDI – Musical Instrument Digital Interface 

REFERENCES 

1. geeksforgeeks.org, “OpenCV Python Tutorial,” Month, year, 

doi: 2.2023 

2. Ravinath Wanni Arachch, “How to use iPhone camera for video 

capture in your openCV project” Feb, 2022. 

3. Kyle Melnick, “AR Piano App For Quest Doesn’t Require An 

Actual Piano” Aug, .2022. 

4. “Arduino Nano 32 BLE” in Arduino,  Mar, 2023. 

5. Hiroshi Kinoshita and Shinichi Furuya, “Loudness control in 

pianists as exemplified in keystroke force measurements on 

different touches,” in Journal of the Acoustical Society of 

America, May 2007. 

6. “nRF52840” in Nordic Semiconductor,  Feb, 2019. 

7. “STM32WB55xx” in STMicroelectronics,  Aug, 2022. 

8. Lady Ada, “Force Sensitive Resistor (FSR)” in Adafruit 

Industries, Dec 2022. 

9. Alan, “Making A Synth With Python — Controllers” in Python 

in Plain English, Mar 2021. 

10. “Virtual Piano” in Crystal Magic Studio Ltd, 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

13 

 

 

 

 

 

 

 

 
Figure 12: Gantt Chart 



18-500 Design Project Report: AnywheRe Piano 05/05/2023 

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


