
1
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

Robotic Trash Concierge
George Gao, Jack Girel-Mats, Zachary Mason

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The modern workplace has evolved such that many
office workers collaborate in the same area. However, this has
resulted in many small trash bins scattered across the office.
These bins regularly overflow, forcing janitors to make repeated
trips to hundreds of tiny trash-bins scattered across an office
space. This is not only inconvenient and unhygienic for office
workers, but it’s a point of great inefficiency for janitorial staff
to check hundreds of possibly empty bins. We have devised a
solution using an autonomous robot capable of taking out an
office worker’s trash can by bringing it to a centralized dumping
area, where janitorial staff will empty dirty bins and place clean
bins for the robot to bring back to their original positions. This
method streamlines the trash collection process and eliminates
the need for janitors to check hundreds of tiny bins across the
office space.

Index Terms—Autonomous, LiDAR, Robot, Roomba, ROS,
SLAM, Trash Bin

I. INTRODUCTION
The work environment has continuously evolved from era

to era, and along with it problems and solutions. The modern
workplace is no exception. Offices have become increasingly
open, and collaborative, with tech campuses at the forefront
of such changes. They have introduced architectures with
open seating and shared desk space. It however introduces a
copious amount of trash bins into the office, one for each
desk. This places an excess burden on janitorial staff to
accomplish the dull, monotonous work to take out all the
scattered bins.
We’ve noticed that the scale of the problem and its

monotonous nature, this was an appropriate application of
automation. Thus we have designed a solution as such.
Our proposed solution introduces a robot designed for the

flexible nature of open office spaces, with a goal of greatly
reducing the workload on custodial staff. Our robot will be
able to map out an open office area, and track where trash
bins are located. Using a tracking system, the robot will be
able to navigate to the trash bins, and bring them to a
centralized dumping ground to be taken out by janitorial staff.
Janitorial staff will then return clean trash bins to their
original locations. This reduces the running around custodians
have to do as now the trash is centralized in a common area.
While there are no competing products on the market, we

realize that some technologies can be retrofitted to solve the
same problem, notably other robotic delivery systems such as
Proteus Robotics warehouse robots [1]. However, each such
solution was not designed for an office space specifically, and
would be clunky to use.

FIG. 2.1. Floorplan of Meta’s 770 Broadway office in NYC [2].

II. USE-CASE REQUIREMENTS

We first introduce unit metrics that our project must meet.
We estimate that the average worker will be out of the office
work area by 6 p.m., so we chose a one hour buffer for the
starting time of our robot, 7 p.m. We also take note that night
custodians should still be in the office by 12 a.m and thus
our robot must be finished by then, giving us a working time
of five hours. Within these five hours a robot must travel at a
speed of 0.21m/s. This comes from our use-case study into
the dimensions of the average working area of a Meta office
space (Fig. 2.1). The room we looked at came from Meta’s
770 Broadway NY office, which had a working area of 19m
x 23m, and assuming a common starting ground to the
middle of the room (as the average distance for all trash
cans) we calculated a round distance time of 42m. For a
working area with 90 trash cans for 5 hours; we reached our
0.21m/s average speed after adding some buffer time.
The next use-case requirement we want to meet is to have

an 85% trip success rate, with a successful trip defined as
successfully navigating to a trash can and bringing it back
without spillage or human collisions. The 85% comes from
two sub requirements in series: a 90% bin docking success
rate, 95% non-collision rate, and a 99% no spillage during
transport. We think 90% is viable for bin docking due to the
numerous ways a bin could be moved or mishandled by
humans in between cleaning periods. A 95% non human
collision rate is also acceptable due to the work period of the
robot being designed for an after hours setting, alongside its
menial movement speed of 0.21m/s, meaning collisions are
both unlikely to happen and inconsequential if they were to
happen. Nonetheless we don’t want to inconvenience
workers, thus we decided 95% would be acceptable in this
case. For a given bin collection trip, there should be at least a
99% rate of transport without the bin tipping over. We deem
this to be acceptable since spilled bins nullify our system, and
our work area of 90 trash cans means 1 bin could tip over, in

2
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

which case it wouldn’t be too burdensome for a custodial staff
member to take care of manually, since they may already be
performing a separate task nearby. Considering these success
rates in series, we follow the derivation

(1)𝑅
𝑠

= 𝑅
𝑏𝑖𝑛 𝑑𝑜𝑐𝑘𝑖𝑛𝑔

× 𝑅
𝑛𝑜𝑛−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 × 𝑅
𝑏𝑖𝑛 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒

to reach the final success rate of being 85%. We deem 85%
success rate to be acceptable due to the still drastic reduction
in labor that it entails, cutting the number of trips to be a
trivial amount. Furthermore, due to how 85% encompasses
human collisions, the number of trips that succeed in purely
bringing back trash cans would be much higher. Following
the same equation as (1), except getting rid of the
non-collision rate, we achieve a success rate of 89%. In terms
of our use case study this means around 10 left-over bins, a
drastic reduction from 90.
Another requirement for our system is it should be able to

lift a 10 pound, 7-gallon standard trash bin. Given the office
environment where bins are expected to be emptied nightly,
bins won’t fill up too much throughout the day, as it’s mostly
going to be food waste and packaging that gets thrown out,
along with the occasional document, none of which are that
heavy. Bins themselves weigh 2-3 pounds, so this allows for
7–8 pounds of waste to be removed at a time.
We also want to be mindful of the health and safety

implications of our project. Our robot is going to be working
alongside other humans in an office environment, so it’s

Fig. 3.1. System block diagram

important to keep the safety of the office staff central to our
project's goals. This includes adding obstacle detection,
emergency stop procedures, and making the robot easy to see.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The high level architecture of our solution is laid out in the
block diagram below in Fig. 3.1. We will now describe the
overall principle of each subsystem in detail.

Fig. 3.2. A simplified model demonstrating a high level representation of
our robot’s operating environment

A. Bin Pickup System
The pickup apparatus consists of an arm powered by

motors for a stable and reliable system that minimizes the
janitorial staff’s workload. The trash bins are placed on
specialized bases which allow for a stable and consistent
docking interface with our robot.

3
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

B. Mapping
In order to create an autonomous system, we need to have

knowledge of the office space that the robot will be operating
inside. To accomplish this we will use SLAM to precreate a
map of the office environment. This map will contain
elements such as desks, chairs, walls, and bin locations.

C. Bin Tracking
In order to keep track of and locate the bins in an office

environment, each bin will be given a unique tag. During
mapping, every bin's location will be recorded into a database.
This database will then be queried during pickup for the bins’
statuses and coordinates.

D. Path Planning System
Once our robot has created a map of its environment, and

enters the pickup routine, it will need to plan a path from its
location to its desired bin pickup location. The path planning
system will be responsible for creating a path from the map of
the office environment. This system will also implement a
local path planning strategy to accommodate new obstacles.

E. Drive System
For the robot, we will be using an iRobot Create2 (Roomba).

This will allow for a solid base on which we can mount
various components, as well as being supported by interfaces
to send custom movement commands.

F. Computer Vision System
Our camera feeds will be piped into OpenCV to accomplish

bin identification. We will calibrate our camera to be able to
calculate the distance and orientation of bins from our robot.
These will be used during mapping for bin location
acquisition, and during pickup for bin alignment.
A depth-sensing system will be used for mapping of the

office environment, as well as obstacle avoidance and
navigation during the bin pickup routine.

G. State Coordinator
Our robot has many tasks: mapping, path planning, bin

identification, bin alignment, bin pickup, and so on. The state
coordinator will have the final say on signals sent to the drive
system and bin pickup system. It will also be responsible for
identifying situations in which janitorial staff are needed, such
as in the case of the Roomba getting stuck.

IV. DESIGN REQUIREMENTS

Our project’s design requirements are derived from our use
case requirements, and specify the performance of various
subsystems that will meet our use case requirements after
system integration.
To design a robot that fits within the constraints of open

office environments, we used the Meta NYC office to
estimate the size restrictions for our robot. Based on our
findings the robot’s height needs to be less than 30 inches and
it needs to be less than three feet wide and and 3 feet long to
fit between and under desks.

During the robot’s pickup routine, it may encounter
obstacles and humans, which could result in trash spills and
collisions. We determined that a system for obstacle detection
and avoidance was required. Additionally, it is important for
the robot to be easily identifiable by office and janitorial
staff.
Given the use cases’ movement speed requirement and

cleanup time period, we need to ensure the robot has enough
power to complete its tasks. The Roomba has an advertised
runtime of 2 hours, but this is with the cleaning motor active,
which uses a significant amount of power. Since we’re only
using the drive motors, the overall power use is significantly
reduced and should allow us to meet the 5 hour requirement.
However, the robot’s computation system, bin pickup system,
and sensing systems will require an additional battery
attached to the Roomba’s body.
Our camera system should be able to process data with at

least 15fps (frames per second), as this is recommended for
applications that move at less than 2m/s for proper CV
applications [3].
For accurate bin identification and environment tag usage,

we specify that the computer vision subsystems must be able
to correctly identify with 90% accuracy from greater than 2
meters away in distance. 2 meters away would mainly be used
for sanity checking the location that the robot is moving
towards is correct, and is not that important. Thus lower
accuracy is acceptable. The accuracy must reach 95% within
1 meter away but greater than 0.15 meters away from the
camera, barring any obstructions when in proper office
lighting conditions, as this would be the distances the docking
procedure would be working within. We want to be as
accurate as possible due to the inconvenient nature of fixing
such mistakes of moving the wrong bin. However, due to the
video stream-like nature of our application, both 90% and
95% accuracy over the course of 15fps means it's virtually
impossible over the course of a docking procedure to
continuously mistake the tag.
Furthermore, the sensing system must be able to do relative

distance sensing within 1 meter away with an accuracy of
90% with accuracy in this case defined by how far off the
camera position is to the labeled tag with the following
equation:

1 - (2)| 𝑑
𝑟

− 𝑑
𝑠
| / 𝑑

𝑟

with being the real distance and being the sensed𝑑
𝑟

𝑑
𝑠

distance. We apply a 90% accuracy to be sufficient due to the
relative nature of docking to a bin, which would be the main
use case of distance sensing. Due to how close bins are and
low movement speeds, software bounds can be used to
heavily compensate to be safely within distance bounds to
properly pick up bins with the given location accuracy, as
long as sensed distances are consistent.
In order to lift a 10 lb bin vertically, a great enough force

needs to be generated, and the bin needs to be lifted high
enough off the ground to prevent any contact with the ground.

4
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

Any floor imperfections are assumed to be relatively small
(<1in). The bin weighs approximately 44 N, and should be
lifted up to 1.5in (~4cm) total, allowing for 0.5in of vertical
misalignment during the docking process.
To properly traverse the office space and reach bin

locations, our mapping of the area should be qualitatively
accurate. Then during pickup, we need to have a localization
accuracy of at most .5m in order to not bump into mapped
obstacles and end up in the desired destination.

V. DESIGN TRADE STUDIES

A. Trash Bin Modifications
In order to support moving a 10 pound trash can in the

office environment, we considered many bin modifications,
including the addition of wheels to the bin, a fixed pedestal,
forklift-style slots, circular base plate, or side-mounted flange.
Because our Roomba may not have perfect positioning and

drive accuracy, any bin that requires fine positioning would
make it difficult to meet the 90% docking success rate. This
meant a forklift-style slot would not be feasible since it
requires alignment with the bin at a specific angle. Similarly,
we decided against using wheels on the trash bin itself since
any physical contact by the Roomba could shift the bin’s
position, using up valuable time by having to re-adjust, and
perhaps even causing a docking failure if the guidance

algorithm was slightly off.
Fig. 5.1. CAD model showing the circular base selected for the bin.

Another idea was to use a pedestal that we could place the
trash bin on top of, where the Roomba could drive underneath
and lift the bin for pickup. The issues with this solution are
twofold. One is that a trash bin elevated off the floor restricts
the position it can be in for a pickup, so employees would not
be able to move a trash bin around unless they also moved the
pedestal. It also complicates the design unnecessarily since
the cameras and LiDAR would have to be mounted low to the
ground where they have less visibility.

This leaves the side-mounted flange and circular base as
the last 2 bin attachments to consider. Both these designs
would offer greater variability in pickup positioning, but the
side-mounted flange would require a more complicated lift
system as explored in part B below. This resulted in our
selection of the circular base plate as the best option that
would allow us to meet use case requirements as shown in
Fig. 5.1.

B. Docking Arms
Since the Roomba is a circular object with no existing

attachment to mount a lift system on, we had to design our
own. In part A above, we explored the different bin
modifications and arrived at two potential solutions. Because
7-gallon trash cans are rectangular, the apparent width varies
based on the position around it, so our arms would have to
have to similarly change width if using a side-mounted
flange. This would require actuation in two axes, which
reduces the overall strength and could jeopardize our 10
pound load requirement, in addition to increasing complexity
that could reduce the docking success rate. For this reason, we
chose to use fixed arms in conjunction with an
omnidirectional base.

C. Bin Lift System
Since we decided against the use of wheels, the bin must be

physically lifted off the ground for transport. There was really
only one practical option here, which was to use stepper
motors, since they offer relatively high torque and fine
control. To generate lift motion, we considered using either a
cam that would spin a partial rotation or a worm gear to
produce linear motion. We decided to use a custom cam
driven by the stepper motor through gears (see Fig. 8) since it
allows for more customization. Additionally, worm gears
were deemed unreasonably large since they must be mounted
sideways relative to the motor, which increases the width of
the lift arms and leaves less alignment room for the bin.

D. Onboard Processor
We explored performing offboard and onboard data

processing, with a combination of microcontrollers and PC’s,
including the RPi, Jetson Xavier NX, and the Jetson Xavier
AGX. The vision and navigation subsystems for our robot
require a significant amount of data to be processed, which
may not happen at the 15 fps laid out in our design
requirements on the RPi, leaving the Jetsons or a PC as the
only options to perform computation. Furthermore, the
onboard processor must support multiple processes running
concurrently in a real time setting, as multiple ROS nodes,
written in C++ and Python, must all be running and
communicating with each other through the publish-subscribe
system. Hardware control processes must also be scheduled
properly, as the processor must control motors for the bin lift
system, communicating with the Roomba, streaming video
frames from two cameras and processing LiDAR scans.
A PC would have to be wirelessly networked into a

microcontroller onboard, which increases the chance of

5
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

failure, latency, and reduces autonomy since the Roomba
would be reliant on data processing and communication from
multiple hardware nodes. Because the Jetsons already have
GPIO and plenty of computational power, it was the logical
choice to meet our design requirements. We then needed to
further decide between the AGX and the NX. The AGX
provided faster computation, but drained more power. In
addition, SSH development on the AGX was finicky. After
testing, we found the NX’s computation to be fast enough for
the ROS nodes to meet their required publish rates, and the
smoother development experience made the NX the clear
choice for onboard processing.

E. Onboard Vision System
To actually sense our surroundings, we had to use some

form of camera, LiDAR, or both. LiDAR has demonstrated
success in room mapping, especially with acquiring depth
information, but cannot provide the fine positioning data
required for navigation to a bin for successful docking. As
such, we decided to use both a LiDAR and camera. These will
be mounted on top of the Roomba to have the best vantage
point possible.
We could have gone with a single camera that faces the

docking mechanism, but this means its view is obstructed (see
Fig. 4) half the time (anytime we tow a bin), and cannot be
used for positioning. Because the bin drop-off point needs to
be at a certain location, we decided to use two cameras facing
in opposite directions that allows for visual navigation all the
time.As for the LiDAR, there were two models in the ECE
inventory that we could have used, but to avoid a similar issue
as the camera where a carried bin causes a significant
obstruction, we decided to use the 360-degree version due to
better handle obstructions.

F. Environment Mapping
The Environment mapping function went through several

iterations. Initial research showed built-in MatLab libraries
for LiDAR mapping to be sufficient for our application. We
planned to export the MatLab library into C and port it onto
the onboard processor. However, after further research and
testing, the library seemed to be for stationary applications
instead of live exploration. While this application could work
due to our robot’s low speed, we transitioned to ROS open
source navigation libraries. There were two libraries that we
considered, hector_slam [4], and gmapping_slam [5]. Both
were viable, but we decided on using gmapping_slam because
the hector_navigation library is not supported on the version
of ROS (Noetic) we are using [6].

G. Robot Path Planning
Like the environment mapping system, MatLab was the

first choice for path planning as it supported built-in libraries
that can navigate based on the given output of the mapping
library. However, due to swapping the mapping system to
ROS, we decided that transitioning the map input to one that
would work with the MatLab library would be inefficient and
impractical. Thus we have decided to stick to a unified system

for path planning and mapping. Keeping libraries within the
same system decreases development time and has more
supported features due to increased synergy and compatibility.
We decided to use the ROS navstack [6] as it is fully
supported by our ROS release unlike hector_navigation [7].

H. Bin Tracking
To track the location and status of each bin, we will be

using a database in conjunction with ArUco tags. There were
many options for tagging the specific bins. We first
considered using April Tags due to their inherent uses in
LiDAR applications, however due to the ease of use and
compatibility of ArUco tags with the OpenCV library (which
is the main onboard camera vision computation system), we
decided to use them instead. We also considered different
options of the stateful tracking of bins themselves. We needed
some system to keep state in between runs, as such, we
considered some system that writes to an external hard drive
through some sort of file I/O interface, or using a database.
File I/O would’ve involved writing our own file system
interface and developing our own encoding / decoding
scheme or using a higher level abstraction combined with
some Python library such as pickling. This would’ve provided
much stronger flexibility in handling bin storage for future
applications but we decided that such flexibility was a low
priority for the current project. Thus we decided on a more
inflexible state tracking system involving a database, and
building an abstraction interface library on top of that. The
database streamlines fetching and writing concurrently and
has sufficient features for the current goals of the project.
Furthermore, there are many built in interfaces in Python to
interact with a database of choice.

VI. SYSTEM IMPLEMENTATION

Fig. 6.1. Top-down photo of the final robot

A. Trash Bin Modifications
The trash bin itself needed to support omnidirectional

docking as discussed previously, and necessitates a circular
interface. To allow for variations in robot positioning while
maintaining stability, we will be using a large disk with a
slightly smaller diameter than the length of the trash bin,
affixed to a larger circular base plate via a central column that

6
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

also provides room for the lift arms to slide underneath as
shown in Fig. 6.2. All of these components will be made with
laser-cut 1/4” and 1/8” plywood, joined together with wood
glue. The upper and lower disks will both be 11 inches in

diameter. Because the lower disk has a larger footprint than an
original bin, we actually increase stationary stability further.
For our testing we will build two of these bins..
Fig. 6.2. Modified bin with ArUco tags and the elevated base

B. Camera System
The Roomba will be outfitted with two cameras, both

oriented to be facing opposite directions, 180 degrees away
from each other. The front camera will be responsible for
identifying bins during pickup. As our robot’s pickup arm is
mounted onto the rear of its body, our second camera is
mounted on the rear. The purpose of the rear camera is to
gather information for proper alignment of the robot to the
bins before the arm is activated for pickup.

C. Docking Arms
Our docking arms look like forklift arms, but will actually

be static. They will be a box-like structure to provide rigidity,
while allowing for components to be mounted inside, namely
the stepper motors, gears, and cams for the lift mechanism.
The arms will also have small caster wheels at the end, since a
bin extended out on the arms will not be able to stay upright
independently. These wheels will roll across the base plate on
every docking sequence as shown in Fig. 6.3, which is
accounted for with additional clearance between the arms and
upper bin plate. The arms will be fixed to the top of the
Roomba via existing screw holes.

Fig. 6.3. Side view of the lift arms midway through the docking sequence

D. Bin Lift System
The lift system uses stepper motors, gears, and cams to

achieve our 44 N*m lift capacity and 4 cm lift height,
requiring a 4 cm diameter cam. We are using 2 NEMA
17HS4023 stepper motors, which have a reported torque
output of 13 N*cm, while being in a small form factor that

will fit in our docking arms. The required torque to lift the
bins is given by the following equation:

(3)τ = 𝐹 × 𝑟

where is the force perpendicular to a radial from the axis of𝐹
Fig. 6.4. Zoomed-in view of the gear with attached cam

rotation, and is the radius at which is applied. Note that𝑟 𝐹
the cam will contact at a distance of away from the axis𝑟/2
of rotation, cutting the lift height in half. We can then
compute the required torque output of the lift system per
motor, which is:

(4)τ
𝑜𝑢𝑡

= 1
2 (𝐹

𝑏𝑖𝑛
× 𝑟

𝑐𝑎𝑚
)

(5)τ
𝑜𝑢𝑡

= 1
2 (44 𝑁 × 2𝑐𝑚)

(6)τ
𝑜𝑢𝑡

= 44 𝑁𝑐𝑚

The gear equation given below will determine what
input-output tooth ratio is required to meet the torque
requirement. This is because a high gear ratio (>>1) will
provide a significant increase in output torque.

(7)𝑅𝑎𝑡𝑖𝑜 =
𝑁

𝑖𝑛

𝑁
𝑜𝑢𝑡

=
τ

𝑖𝑛

τ
𝑜𝑢𝑡

Using this equation, we can calculate the required ratio:

(8)𝑅𝑎𝑡𝑖𝑜 =
𝑁

𝑖𝑛

𝑁
𝑜𝑢𝑡

= 13 𝑁𝑐𝑚
44 𝑁𝑐𝑚 = 0.3

1 = 3. 38

To add a buffer that allows for component friction and other
non-idealities, we selected a gear ratio of 6.25:1. This is
achieved with two sets of gears having a 2.5:1 ratio, to
maintain a low profile and fit within the arms.
The cam is fixed off-center with its edge on the center of

rotation of the output gear as shown in Fig. 6.4. For each
motor, we have 2 output gears, each with a cam, allowing for
a total of 4 contact points to lift from. This ensures stability of
the bin and will prevent tipovers from occurring during the
pickup process. The gears and cams are 3D printed since it
allows for a high degree of customization, and the infill can
be adjusted to balance cost and strength. This also allows us
to manufacture the cam and output gear as a single piece
which makes integration far easier.

7
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

Fig. 6.5. Side-view of one half of a gear set in the static-raised position

The final element of the lift system is a static resting
position for the cam in the raised state. This is achieved by
allowing the cam to rotate slightly past vertical, with a cut
that rests on the other large gear as shown in Fig. 6.5 above.
This allows us to turn off the motors when the cams are in the
raised position, conserving power and extending the runtime
to help meet our 5-hour runtime target.

E. Drive System
Our drive system is built on top of the iRobot Create2. This

robot is a Roomba modified with a serial connection for
manual control. Using an included USB to serial cable, we
will control the Roomba’s movements from our NVIDIA
Xavier NX using the ROS library create_robot [8] which
supports tethered driving. This library creates a ROS node
that provides a listener on the cmd_vel topic, and a publisher
on the odom topic, both vital to interfacing with the ROS
navastack. Additionally, these topics allow the coordinator to
publish velocity commands to the Roomba over the cmd_vel
topic during the bin alignment procedure.

F. Onboard Vision System
The vision system uses Python's OpenCV library to handle

bin identification, location as well as rudimentary distance
sensing. The vision system greatly depends on the camera
used, and thus should be calibrated on the software side to
handle distortion effects [9]. The camera is used to identify
ArUco tags in the environment and communicate ArUco
coordinates in relation to the robot to the central logic hub.
ArUco tags also provide unique identification numbers which
can be read with OpenCV. This system also uses the ArUco
tags to differentiate between the different possible orientations
of a trash-bin in relation with the robot itself (by assigning a
different ArUco id modulo the number of orientations).
Our LiDAR system is implemented using the Slamtec

RPLIDAR A1M8. The LiDAR will be used for mapping,
localization, and obstacle detection, and be connected directly
to the Jetson Xavier NX using an included USB adapter. Due
to the height restriction of our robot, which is necessary to
drive under desks, the mounting position of the LiDAR will
bring the trash bin in alignment with the LiDAR sensor. This
creates an obstruction that the LiDAR will interpret as a wall,
messing up localization. To avoid this issue, a mask will be
applied to the LiDAR’s output. This decreases its FOV, but
this is a reasonable tradeoff as it makes localization and
implementation much more straightforward. We further
discuss this in section J.

G. Environmental Mapping
We will be using SLAM to create a 2D map of the robot’s

office environment. Specifically, we will be using the ROS
module gmapping_slam which constructs a map from 2D
laser_scans provided by the Slamtec RPLIDAR A1M8 and
odometry data provided by the Roomba. In order to create the
initial map, a one time setup is completed, which requires a
manual exploration of the office space by remote controlling
the Roomba until a satisfactory map is created.

H. Navigation System
We use a ROS open library called navstack for our

navigation system. The navstack is a conglomeration of ROS
modules each that pertain to a specific task. Critically, it
includes the amcl package, which is responsible for localizing
the robot, the global_planner package which creates the path
from robot to bin locations, and the basic_local_planner
package which handles following the overall path while
taking into account the environment and obstacles. The
high-level components that the amcl subscribes to are the
scans from the LiDAR, the pregenerated map, as well as the
Roomba’s odometry data.

It utilizes these readings, alongside an adaptive particle
filter to estimate the robot’s position. With it, it generates a
global shortest path to goal destinations through the use of
Dijkstra's. Local cost planning is used for obstacle avoidance.
The navigation system’s output will then be routed into the
state coordinator system for control of the robot.

Due to the nature of the amcl package, if significant
slippage occurs, the orientation of the Robot in relation to the
room can become misaligned. To combat this issue, we
implemented tuning of the navstack, which required us to
adjust the max and min linear and theta velocity of the robot,
the robot’s footprint, the inflation radius of obstacles,
weightage given to the noise of odometry and LiDAR scan
data, map update frequency, exponential cost functions for
obstacles, and goal tolerances. All of these parameters are
dependent on the robot implementation as well as the
environment in which the robot is intended to navigate within.

I. State Coordinator
To coordinate all of the tasks that the robot needs to

accomplish, a central decision maker is necessary. To keep
our software stack unified, this system will be implemented as
a ROS node in Python. The control flow logic must
accomplish the task set out by the use-case requirement, and
thus different states are needed to track necessary logic and
metadata. The state machine is responsible for tracking
additional meta information such as current goal bin, the
current goal location to reach, as well as the robot’s current
position. Initial information about bins are fetched from the
database. Due to stateful behavior and the necessary tracking
of metadata, the coordinator is implemented as a Python
class. Depending on the state, the coordinator will subscribe
and/or pull information from the LiDAR, and two web
cameras to decide on state logic. To receive information from
the LiDAR, the coordinator subscribes to the scan topic, and

8
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

to get information from the webcams it uses a Python video
stream from OpenCV. To communicate with other
components, it publishes movement directives to rostopics
that the Roomba’s movement system subscribes to, in order to
control the bin alignment system. The coordinator also uses
the custom Arms class to control the motors for the bin pickup
system. Furthermore, it is responsible for publishing and
canceling goals to their respective rostopics that the navstack
subscribes to. Similarly, the coordinator subscribes to a
transform topic published by the navstack to track where the
robot’s current coordinates are. State changes are done after
one task is accomplished and can be seen in the state diagram
below (Fig. 6.6).
The state coordinator uses the rospy framework to interface

with ROS nodes. We use rospy to register callbacks with
different topics. For example, we listen in on the robot’s
current orientation and LiDAR scans. These sensor fields are
both used during bin docking, but our coordinator uses a
single process with no mutex locking, which introduces a
challenge for obtaining updated sensor information in a thread
safe manner. We rely on the Python GIL (Global Interpreter
Lock), which only allows a single Python thread to be running
at a given time. This means that to get an updated LiDAR
scan, we need to sleep the coordinator thread, which drops the
GIL, allowing the LiDAR scan callback to acquire the GIL
and update the distances array object. Then, it sleeps again
allowing the coordinator to take back GIL, and access the
LiDAR scan distances array object without data races.
Fig. 6.6. Software state coordinator functional diagram

J. LiDAR Masking
In order for the navigation to work properly while the robot

is carrying a bin that can block the back field of view of the
LiDAR, masking is necessary, which may be perceived as a
local obstacle by the navstack. Furthermore, due to the
proximity of the bin while the robot is carrying it, it intersects
with the robot’s footprint, creating a negative costmap value,
which can stop navigation entirely. In order to avoid this
problem, we mask out the back of the LiDAR scan such that
the navstack has no view of the potential area a bin will be in.

This is accomplished through the use of a ROS node written
in C++, which subscribes to the LiDAR and transforms the
information into a 251º view in front of the robot as shown in
Fig. 6.8, then publishes to a different topic, which the
navstack subscribes to. Due to frequent publishing and the
crucial nature of this information for the entire navstack, low
latency was a must. The lower-level control and speed of C++
was chosen over Python for the success of this proxy node.
Fig. 6.7. Top-down diagram demonstrating the masked-out region of the

LiDAR

K. Bin Tracking
Tracking bins is a stateful protocol, and must be maintained

between sessions. It must also be scalable and have
concurrency control for future scaling. As such, a lightweight
database with standard Python library support is perfect for
our use case. Thus, we chose to go with SQLite, which is part
of the standard Python library. The database tracks bin
locations in the mapping environment, whether the trash
needs to be taken out, each bin’s identification number,
whether the bin is missing, the bin’s location for the janitor to
pick up and the bin’s home location. The database interfaces
with the backend logic system on the onboard processor
through a custom Python interface that handles bin tracking
logic, including tracking bin locations on drop-off, pick-up,
and spillage of bins, fetching current free bins, fetching bins
to take back as well as successfully emptied bins.

L. Electronics Power System
As for our power system, the primary concern is delivering

enough current at the appropriate voltages to keep all
components active, while avoiding brownouts or
current-limiting conditions. See the table below for the power
requirements of our various components. Note that the
currents are maximum ratings, and are likely less under
normal operating conditions.

TABLE I. SYSTEM POWER REQUIREMENTS

9
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

Component Voltage (V) Peak Current
(mA)

Nvidia Jetson AGX (10W mode) 12 ~850

USB Camera (x2) 5.0 (USB) 70

360-degree LiDAR 5.0 (USB) 100

TB6600 Drivers (x2) 3.3/5, 9-42 1500

With this analysis, we can determine that the peak current
needed is 4250mA, which is the sum of the Jetson and stepper
drivers, but not including the USB devices. This is because
the 10W Jetson power mode includes the running of USB
peripherals, which itself has a rated max output current of
500mA. With these requirements, we believe a battery >20Ah
of capacity and a 12V DC output will be more than enough to
meet our needs for a 5-hour runtime.
The Jetson’s GPIO pins drive output at 3.3V, which is

sufficient for the TB6600 drivers, but the current output from
the Jetson is insufficient to maintain the control signal
voltage. As a result, we designed a relay circuit that makes
use of a 12V-to-5V voltage converter to provide ample current
at sufficient voltages to control the stepper (Fig. 6.8). The
relay circuit has independent controls for the enable pins of
the drivers, but the direction and pulse controls are shared for
ease of use.

Fig. 6.8. Schematic of the stepper driver relay circuit

M. Bin Lift Software System
The bin lift arms are controlled by using the Arms Python

class. The Python code controls the lift arms by using the
Jetson’s GPIO pins to send signals to the motor control relay
circuit. The class itself exposes method calls to raise and
lower the bin, and keeps track of the current state of the arms
(whether the arms are in a raised or lowered position) to
protect the gear system from over-rotation. Originally, we
hoped to use a dedicated PWM pin made available by the
Jetson, but due to non-functional PWM pins on the Jetson
(and many other broken pins), we had to implement software
PWM control, where we turned a regular GPIO pin on and off
in a tight loop with manual process sleep commands.
Due to shifts in the gears when docking, the left and right

gear lift systems may become out of sync when initiating a lift
operation. This mismatch may cause a bin lift failure by not
raising the cams enough. To correct this drift, we over-rotate
the gear system on lift, causing the cams to come into contact
with the primary reduction gear, ensuring all gears are in the
same position as shown in Fig. 6.9.
Fig. 6.9. Side-view of the bin platform on the cams in the raised position

N. Bin Alignment Hardware System
We originally planned for a guideless docking system, but

found the alignment system to be unreliable. To mediate this,
we added an alignment funnel that pushes the bin into the
correct position for lifting. Specifically, we wanted to avoid
issues when a cam wouldn’t be under the upper plate of the
bin, which would cause a lift failure. The funnel also accounts
for different bin dock orientations by having an extra divet at
the back of the funnel, and increases lift success by increasing
the angle from which the robot can approach.
Fig. 6.10. Close-up view of the alignment funnel located between lift arms

O. Bin Alignment Software System
As denoted in the state diagram (Fig. 6.7), when the robot

is in the process of traveling to a bin position, it periodically
checks both the front and rear cameras for the presence of an
ArUco tag. Each bin has some associated ArUco tag ids, if the
current bin to pickup’s associated ArUco tag is recognized by
the cameras, and the tag is less than 110 cm away, then we
transition to docking. If no ArUco tag is detected, then the
coordinator waits until the goal position is reached, and then
transitions to the searching for bin state. In this state we rotate
in place checking the cameras for detected ArUco tags. If we
are unable to find the bin, then we set the bin’s state to
missing in the database and return to the idle state and begin
searching for other bins to pick up.
Once the docking state is entered, we first check if the front

camera has detected the tag, if so we align the camera to be in
line with the center of the tag, then initiate a 180º turn to
position the back camera. At this point, we enter a loop where
we first check if the back camera is lined up with the tag, and
then if so move forward a set distance. We have a vector that
denotes the max left and max right alignment of the tag at
different distances from the tag (and use LERP for in-between
distances). This is necessary because as the robot approaches

10
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

the bin, the max left and right positions of the bin necessarily
shift as the arc length that the tag can cover decreases.
Additionally we found that waiting 0.25 seconds between
orientation adjustments, greatly increased docking success.
Once we get to about 56 cm away from the bin, we

transition to using the LiDAR scanner to detect the distance
from the robot to the bin, which is denoted by the minimum
distance reported by the LiDAR inside a 47º FOV to the rear
of the scanner. We slowly move backward towards the bin,
making sure to sleep in between movements to run LiDAR
scanner callbacks and stop momentum between distance
calculations. We decide the final stopping distance based on
the orientation of the bin. The bins have different ArUco tags
on different sides enabling us to detect the orientation. If the
bin is oriented with the wider side to the robot, we move back
until the minimum distance is 27 cm, if the thinner side is
oriented to the robot, we move back until 22 cm. Finally, we
send one last move back command to ensure the bin stand is
fully contained by the bin funnel, at which point we lift the
bin and prepare for returning the bin.

VII. TEST, VERIFICATION AND VALIDATION

A. Physical Constraints
We imposed several physical constraints on the dimensions

of the robot, to ensure smooth performance within an office
environment. We specified a height of 30 inches, less than
three feet wide and 3 feet long to fit between and under desks.
After measurement with a meter stick, we found that our
robot had a height of 8 inches, a length of 30 inches (2.5 ft)
and a width of 15 inches (1.25 ft). These fall within the
constraints.

B. Battery Life
We specified a working period of 5 hours. During testing,

for a non-stressed system, we were able to drain 80% of the
battery bank within 4 hours, extrapolating to a success in that
case. However, during larger stress tests, with constant
movement, we lost 23% battery over the course of an hour,
which extrapolates to a failure, and another stress test with
non-consistent use of motors and navstack caused the system
to run out of battery after 4 hours and 11 minutes. Another
full stress test that ran continuous movement, with navstack
and bin lift netted a decrease of 67% over the course of 2.65
hours. This is extrapolated to failure as well. We are
surprisingly bottlenecked by the onboard battery bank that
provides power to the processor, and the motors rather than
the Roomba battery itself. One note we need to make is that
our theoretical assumption was that the processor drew 10W
of power, however we adjusted the configuration to be a 20W
setting for faster computation. That may explain the offset in
theory and application, though it is also possible that our
theoretical guess does not account for all real world variables.
This is another case of a trade-off we made, favoring
computation over power draw.

C. Camera FPS
We chose hardware components that hit the 15 fps we laid

out, and verified with a fps tracker that both front and back
webcamera’s support an average fps of 30. This matches the
hardware specifications, and matches our theoretical
prediction.

D. Sensing Accuracy
We require a distance measurement accuracy to be within

90%. We found that the exact distances measured by the
webcams to be relatively useless, as logic surrounding them is
based more on the consistency of camera readings rather than
how accurate they are. When we require more accurate
distance sensing such as when to decide if a bin is sufficiently
within the funnel during docking, we swap to the LiDAR’s
readings. Nonetheless, we found both sensing systems to be
relatively accurate. We did five trials, with each trial placing a
trash bin with an ArUco marker at different distances, and
read the sensor data and applied equation (2) to our readings
to find a LiDAR accuracy on average of 99.6% and web
camera average accuracy of 92.3%. This sufficiently falls
within the 90% we set out for.

E. Bin Identification
We specify that the bin identification must be correct at

90% for up to 2 meters away, followed by a higher accuracy
of 95% for distances from 0.15 m to 1 m. Through testing, we
found that we actually achieve a 100% accuracy through the
entire range from 0.15 m - 2 m. We achieved this result by
putting various ArUco tags at 0.15 m from the sensing device,
then 0.1 m - 2 m in 0.1 m increments for 10 trials each. This
took some tuning however, as we needed to calibrate the
camera as well as change the background on which the ArUco
tags were posted on. We added a white sheet of paper as the
background of the ArUco tag, as a raw tag on the black bin
had an extremely low success rate for bin identification
because there is little differentiation between the black of the
tag and the bin.

F. Bin Pickup Weight
We originally specified that our system must be able to lift

a load of 10 lbs, as we estimated that the full trashcan of an
average office worker to be around that amount. This amount
is estimated to be from left-over food, but mostly wrappers
which are light in nature. The heavy items are unfinished
drinks which can be 1-2 lbs each, but we suspect that most
office workers are not tossing copious amounts of unfinished
drinks. Through iterative testing, we found that our bin lift
system cannot lift anything beyond 6.1 lbs. We did iterative
testing from 3 - 6.1 lbs, with 5 - 8 trials each. We stopped at 5
trials for weights that consistently failed, and went to 8 for
consistent success.
We had a 100% success rate for weights up to 4.1 lbs, and

found a drop off at 5 lbs to 75%. We considered the test a
success if the bin was lifted far enough off the ground to be
carried around by the robot. Unfortunately this does not hit
the 10 lb goal we set out with. Our theoretical conditions

11
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

showed that in ideal conditions with maximum tolerable
voltage (42V) we could lift 18lbs. Our 4-pound consistent lift
capacity is a far cry off that goal, which we believe is due to
both friction in the system and our lower motor operating
voltage of 12V.

G. Bin Docking
We also chose to test the docking system as a

subcomponent itself. We wanted to achieve a 90% success
rate to hit the 85% success rate for full integration testing. To
do so, we did 5 trials of placing bins at different angles with
respect to the robot, for multiple different configurations,
tuning the linear and rotational speed of the robot during the
docking process.
The final configuration we settled on had a 100% success

rate within the 5 trials, and we noticed that generally as we
increased the speeds, we had worse results. We added pauses
to allow for the robot movement to settle down, and the lower
speeds meant the effect of the arms’ angular momentum on
the rotation accuracy was reduced.
Also, we were only able to achieve our success rate after

adding a funnel to the arms, as before adding the funnel, the
tolerance of the top base of the trash bin and the cams were
too small at 1 cm for any consistent ability to dock. The
funnel was able to get us from virtually no success to 100%,
when combined with the lower movement speeds. The
trade-off introduced here is the more mass we add to the arm,
the slower our rotation could be, increasing the amount of
time it took for a successful docking to happen. However, we
chose to opt for consistency over speed.

Fig. 7.1. Test results of linear docking speed versus docking success rate

H. Mapping Accuracy
Qualitatively, our map resembled the two environments we

ran it in. We, however, did notice that the LiDAR scans did
not work well with windows, as the scan will usually project
through them. As such, maps generated in the HH1307 room
were quite poor due to the low windows of the room.
However, a more traditional work area such as A101 provided
a much more accurate map.
We did not make a serious attempt to quantitatively

measure the accuracy of the map as our use-case solution
involved working flexibly without needing to remap the office
Fig. 7.2. Test results of rotational docking speed versus success rate

every day, where furniture and equipment can be moved, and
thus a general map with the overall structure must suffice.

I. Path Planning with Goal Tolerance
To ensure our navigation stack works properly, we want the

robot to reach its goal within a 0.5 m radius. The navstack has
a parameter for this, which we tuned to be lower than the 0.5
m specification by setting a goal tolerance of 0.2 m.
We ran navigation testing on two goal locations with 5

trials each, both with one turn, although one was further and
one was closer. For the closer one we achieved an average
offset of the center of the robot from the goal location of 0.2
m and 0.21 m from the further one. Notice that we always
remained within the 0.5 m specification we set out with, but
stray just a bit from the set goal tolerance of 0.2 m. This is
expected from the accumulation of slippage over the course of
a trip. This is another reason why we set our goal tolerance to
be much lower than 0.5 m to account for such a possibility.
This value was tuned up from the original 0.15 m, as lower

goal tolerances mean longer overall trip times. With a low
tolerance, the robot may get stuck trying to get within the goal
even if it is off by just a couple of centimeters. Due to the
nature of the application however, we decided that increasing
it would improve the consistency and lower the time taken for
the robot to complete its goal. This brings up a trade-off
between accuracy and speed, and given our use case we
decided in this case accuracy was a worthy loss as it still fell
within our design-case requirements.
Next we look towards verifying our use-case requirements

are met through a series of integration tests between our
subsystems.

J. Results for Collision Testing
Apart from full integration testing, we did separate trials for

navigation with human obstacles. We did 20 trials, moving
the robot between 2 different locations with 2 human
interventions to see if the robot is able to stop itself from
colliding with the humans. We had 19 successful trips and 1
failure, where the robot collided with the first human,
resulting in a 95% trip success rate. This hits our use-case
requirement of 95% that we set out for. Further testing in
integration trials were run with humans and we found that no
human collisions happened within the 20 trials done there.

K. Results for Movement Speed
Extrapolated from the use-case study of the Meta NYC

12
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

office, we found that a movespeed of 0.21m/s would be
required for the worst case of all 90 bins needing to be taken
out in one day in addition to having some buffer. Through
testing of 5 standard trials we found that the robot was able to
move at a speed of 0.235 m/s by timing how long it took for it
to cover a distance of 3 m. This matched our theoretical
prediction of how fast the Roomba could move. We do note
that this speed is not always hit during trips. During
integration testing, we found that navigation with 0.22 m/s
did not lead to any decrease in success rate in comparison to
slower speeds of 0.1 m/s. This was done with navigation over
10 trials at each configuration. We do acknowledge that while
navigation speed is able to meet the use-case requirement, the
speed of the robot during docking processes is kept to a
minimum to ensure smoother and more accurate control.

L. Results for Full Trip Integration Testing
We set out with the goal of hitting a round trip success rate

of 85%, which is made up of various sub component success
rates. We require 95% of trips to have no collisions, 99% of
trips to have no spillage, and a 90% bin docking success rate.
To get our results we ran 20 trials, with 5 trials each of
different bin locations and robot movement speeds. From
these 20 trials, we achieved a 80% success rate, with 4
failures total. We had a 100% success with bin spillage, as no
trash bin fell off the robot during any of the trips, two docking
failures, one collision failure, and one navigation failure. This
means we hit the docking success rate of 90%, and a 95%
collision prevention success rate. However, due to the one
navigation failure, we still ended up just below our goal.
We decided that this continuous run of 20 trips was a good

representation of a full integration test, as our tests were run
with the system continuously on, just with the same bin taken
to 2 different locations after each trip. We found that this test
had an average round trip time of around 3 minutes, which if
extrapolated means that we are under the time limit for 90
bins over 5 hours. For 90 bins over 5 hours means a round trip
time of 3 minutes and 20 seconds. However, we also
acknowledge that the office space that we tested in is much
smaller than the Meta use case, and thus our system could
take much longer.
We also did a full software loop of the state diagram test

with a single bin, where a bin is fetched, brought back to take
out position (the bin drop off location), then picked up and
brought back to the original position (the desk location). This
mimics the full work flow of the robot, and we found that the
current state of the robot is able to complete one full state
transition loop. The point of this test was more to see how the
control logic flows rather than testing the other navigation
components as we felt that those had been sufficiently tested
at this point.

VIII. PROJECT MANAGEMENT

A. Schedule
The schedule is color coded based on the team member that

is primarily responsible for the task, with color combination

involving shared tasks. Tasks were usually done in one week
periods with a steady progression of subsystem bring up prior
to March 3rd 2023. While that was our initial plan, and we
followed our schedule strongly for the first half of the project,
the second half of our project encountered significant
setbacks, which forced us to use a lot of our slack time, and
even fall behind at points. Full integration fell to the end of
finals week. Hardware freeze was a setback, and navigation
tuning took much longer than expected. Further changes and
iteration on hardware forced repeated software tuning which
further delayed development. The full schedule can be found
by the Gantt chart showcased by Table III.

B. Team Member Responsibilities
Team members' responsibilities are split by team member

backgrounds.
Mason has a strong hardware background, giving him

default responsibilities on hardware-related tasks. This
includes 3-D modeling, designing, and building the docking
mechanism. His embedded background also means he has
partial responsibility in embedded communication between
subsystems of the robot, specifically power distribution and
stepper motor controls with GPIO.
George and Jack both come from software-oriented

backgrounds, relegating most software tasks split amongst
them. While Jack has the primary responsibility of LiDAR
bring up, and George is responsible for the bin tracking
backend with a database; more complicated software systems
such as path planning, CV, and scheduling logic have shared
responsibility between them.
Integration is the partial responsibility of all team members

due the embedded communication and software and hardware
nature of the project.
While individual team members have primary

responsibilities, each is responsible for the success of the
project as a whole. This means that we each are responsible
for helping in the case that challenges arise for tasks.

C. Bill of Materials and Budget
Please refer to Table II at the end of this document for the

bill of materials and their associated costs. We ended up not
using some of our materials because they were only backups
for other systems (like the AGX) or prototypes for 3d
printing. The one item we had to purchase post design report
were the caster wheels which were necessary to add stability
to the lift arms.

D. Risk Management
Our robot will have numerous systems, any of which could

fail. It is vital that we have backup systems and
implementation plans in place in the event that this occurs.
During the initial stages of our project, we ran into

connectivity issues with the NVIDIA Xavier AGX. The AGX
would sometimes disconnect from our secure shell session
making it difficult to develop. These issues were resolved by
reflashing the AGX and switching to an ethernet cable instead
of a USB cable for SSH. We have many software components

13
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

to tackle, so the developer workflow is vital to the success of
our project. If we were to run into an unrecoverable situation
with the AGX, our contingency plan was to utilize the Xavier
NX which prior teams have found less problematic. Halfway
through the semester we ended up utilizing this fallback, and
decided to swap to the Xavier NX, which greatly improved
development efficiency and wireless SSH performance.
Luckily, we reserved the NX early, making the swap painless
as we didn’t need to wait for the hardware component.
We also developed a backup plan for the LiDAR system.

We are currently using the Slamtec LiDAR A1M8, which
accurately identifies solid objects such as desks, frames and
walls, but may not correctly identify other objects like desk
chairs. Therefore, we have also acquired the Intel RealSense
LiDAR Depth Camera L515 as a backup. In case our original
LiDAR does not provide accurate obstacle detection, our
implementation would have pivoted to the L515. However, in
the end, the LiDAR A1M8 was sufficient for our application
and we did not have to pivot.
Another risk that we have addressed is the Roomba’s power

supply. The Roomba itself is powered by an internal battery
pack. This battery pack is old, and may have lost
performance. To meet the use case requirement of running the
Roomba for 5 hours, we have located aftermarket battery
replacements that provide additional range, and ordered it as
well. Doing so, we replaced the old Roomba battery to have a
much longer battery life. However, we did not foresee that the
battery bank for the processor and motors was the actual
bottleneck. Although we had plans to address this, by utilizing
2 batteries instead of 1, or getting a larger battery, we did not
have time to reimplement design changes to incorporate the
additional battery or buy another one.
Finally, to address the risks in the SLAM and navigation

stacks, we analyzed past projects that have implemented robot
localization and path planning using overhead camera
systems. We believe that this technology could be adapted to
our problem space, and identified this route very early. We
had plans to pivot to an overhead camera configuration if we
could not have gotten the navstack up and running.
Additionally, our team has previous experience with this type
of system. Fortunately we were able to get the open source
navstack up and running, though it might have been helpful to
incorporate stop losses in our schedule for pivoting to other
solutions, as it took us nearly 3 weeks to tune the navstack to
a working state.
Unfortunately we did not have a risk mitigation plan for bin

docking, and had to engineer solutions on the fly near the end
of our schedule during iteration testing. This constrained us
into the types of solutions we could attempt especially given
the constrained time-frame and resources near the end of the
semester.
We found our budgeting strategy was relatively successful

albeit a bit inefficient. We ordered the main components we
needed early, leaving a lot of buffer for unforeseen
circumstances. This, however, left us with some budget left
over that we could have used to potentially buy additional

components to implement such as a larger battery bank.

IX. ETHICAL ISSUES
Our primary ethical concern is that we want our robot to

assist janitorial staff, rather than replacing them. We
understand that as robotics become more and more advanced,
some jobs will eventually be replaced, but we hope that our
design lives symbiotically with janitors, as they will be
responsible for managing the autonomous system, as well as
maintaining its operations.
Another concern that may be raised is the operation of the

robot in corporate offices, where trade secrets may be present
and privacy is necessary. Our robot operates in the evenings
when there are few people around, so there will be minimal
disturbances and the onboard cameras will not be seeing
private information. Additionally, the only pieces of data we
store are the bin positions and the pre-generated map so there
is no way to access any visual information captured, unless
our system is infiltrated.
For the issue of infiltration, our system can function on

internal networks, so any malicious override attempts would
have to first bypass the security measures put in place by the
company who uses our system. Ensuring adequate network
security is not the responsibility of our robot, but it would be
a recommended item to have for any user.

X. RELATED WORK

Autonomous robots that are used to move items around are
not unique, especially as robotics rapidly develops. Thus,
there are quite a few predecessors to our implementation
albeit designed for different use-case scenarios and purposes.
Perhaps the first implementation when we think of

autonomous item movement is Amazon warehouse robots.
Amazon, the world’s leading online retailer, deploys over
520,000 drive units of its proprietary robot named Proteus.
They are warehouse robots designed with navigation and
perception features to move GoCarts (warehouse storage
containers) [1]. These are designed for warehouse usage
which includes rugged industrial design choices that are unfit
for the office applications that our project is geared towards.
Similar to swarm warehouse robotics, there was a project

that tested the feasibility of swarm applications called
PARROT. The implementation used several robots to
transport pallets in parallel, offering large speedups [10].
Although there are similar aspects in perception and path
planning, we note that their implementation focuses on scale
of parallelization in a proof-of-concept fashion, and is not
applicable nor actually usable in the office environment.
Another application that is similar in use case and

technologies to our implementation are the food delivery
robots we see on the streets, with the most notable example
called Starship. Such robots use different perception
technologies than ours, and they do involve heavy path
planning. They are also designed for much more rugged
outdoor environments and as such their form factor would not
fit well in the open office environment.

14
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

In a familiar vein, a robot that uses similar technologies and
has to do with garbage pick up and cleanliness rests in
Recycle Bot, an autonomous robot that uses LiDAR, CV and
a Roomba drive system to identify plastic bottles on the
ground to pick up and store on its onboard container [11].
While thematically similar and using similar technologies, our
use case is quite different from theirs, and as such the
mechanical portions of our designs differ greatly.
We notice that there are a great deal of applications that are

geared towards moving something around to make human
lives easier. We find that as such our implementation is but
another iteration, or rather step, in the frontier of robotics.

XI. SUMMARY

In all, our design uses proven systems and combines them
to provide a solution that can greatly streamline and improve
the logistical challenges of maintaining large open offices.
The autonomous nature of the robot means that a one time
setup of this robot in a given office greatly improves
efficiency and gets rid of a large menial task for custodial
workers, and can be easily scalable to cover multitudes of
areas.
Nonetheless, while the benefits scale greatly, we faced

challenges in implementation both due to the technical nature
of the task as well as our inexperience. We faced large
challenges with working with ROS as well as integrating the
open source resources we are using.
As a result, while we met most design and use-case

requirements, we failed others. Some design requirements can
easily be fixed with additional time and resources such as
buying a bigger battery bank, however others require more
experience and larger software changes. For one, perhaps a
lift system that raises the bin from directly on top of the robot
instead of using arms could have made localization better due
to less slippage of the arms, as well as increased docking
abilities. Furthermore, stronger motors could’ve been used to
help us reach the bin weight lift goal. If given the time, we
could’ve also opted to add an IMU, to help with slippage, and
also a more accurate robotic base instead of the Roomba
could have provided better odometry data.

Over the course of the project, we learned a lot of lessons.
Tuning ROS parameters as we worked with them took a
significant amount of effort, and we believe that setting up a
simulated environment could’ve greatly increased efficiency
in tuning. We also learned that hardware design is incredibly
important in streamlining software logic. In hindsight there
may have been different form factors to change to greatly
decrease the software complexity. This was learned from the
alignment of the arms, as we found that adding a funnel made
a software task possible that was originally near impossible
due to the poor motor controls. There is a balancing act that
must be struck with balancing hardware implementations with
software complexity, as hardware itself also faces immense
challenges.
We found it incredibly difficult to bring up the motors for

the arms, as it took us an entire day to find an unexplainable

bug in the relay circuit added to drive the motors. Increasing
hardware complexity introduces more points of failure and
increases the number of components to fabricate, greatly
slowing down the development process. We also learned that
hardware freezing as soon as possible is important. It allows
the software stack to be tuned more efficiently because
whenever hardware components were added, some retuning
needed to be done on the software side to account for the
change of design.
While we are all graduating, we like to think that there are

still many components that can be improved. The software
state machine could become more robust to include better
error detection and state transitions. We also think that
iterating on the design is important and can make the system
more reliable.
Nonetheless, we learned and grew a lot, facing many

challenges along the way, allowing us to end up with a
working implementation. However, we believe that while
we’ve built a working foundation, with more experience and
time we could've made the system much more robust. With
further tuning and design iterations we believe that our
solution can be a flexible and robust implementation that can
be applied to thousands of offices across the world. In
addition, the modular nature of software and robotics means
that scaling the implementation and adding additional use
cases is not only feasible, but easy to do. We believe our
solution to be one that can provide great efficiency and
betterment for the modern workforce, and is another step in
the robotic revolution.

GLOSSARY OF ACRONYMS

CV – Computer Vision
FOV – Field of View
FPS - Frames Per Second
GIL - Global Interpreter Lock
GPIO – General Purpose Input/Output
LERP - Linear Interpolation
LiDAR – Light Detection and Ranging
ROS – Robot Operating System (software package)
RPi – Raspberry Pi
SLAM – Semi-autonomous Localization and Mapping

REFERENCES

[1] Jed John Ikoba, “Amazon announces the Proteus, a fully autonomous
warehouse robot”, Accessed on 3/3/2023, [Online]. Available:
https://www.gizmochina.com/2022/06/23/amazon-proteus-fully-autono
mous-warehouse-robot/

[2] Meta Floor Plans, Accessed on 3/3/2023, [Online]. Available:
https://www.vno.com/office/property/770-broadway/3311677/landing

[3] “Camera Basics for Visual SLAM”, Accessed on 3/1/2023, [Online].
Available:
https://www.kudan.io/blog/camera-basics-visual-slam/#:~:text=The%20
ideal%20frame%20rate%20for,fps%20based%20on%20the%20applicat
ion.&text=There%20are%20ways%20to%20
increase,based%20on%20the%20use%20case.

[4] “hector_slam” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/hector_slam

[5] “gmapping” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/gmapping

15
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

[6] “navigation” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/navigation

[7] “hector_navigation” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/hector_navigation

[8] Perron, Jacob. “create_robot.” ROS Wiki, 4 October 2022,
http://wiki.ros.org/create_robot. Accessed 5 May 2023.

[9] Fernando Souza, “3 Ways To Calibrate Your Camera Using OpenCV
and Python”, Accessed on 2/24/2023, [Online]. Available:
https://medium.com/vacatronics/3-ways-to-calibrate-your-camera-using
-opencv-and-python-395528a51615

[10] Prithu Pareek, Omkar Savkur, Saral Tayal, “P.A.R.R.O.T: Parallel
Asynchronous Robots, Robustly Organizing Trucks” Accessed on
3/3/2023, [Online]. Available:
http://course.ece.cmu.edu/~ece500/projects/f22-teama2/wp-content/upl
oads/sites/211/2022/12/Capstone_Design_Report-2-compressed.pdf

[11] Meghana Keeta, Serena Ying, Mae Zhang “RecycleBot” Accessed on
3/3/2023, [Online]. Available:
http://course.ece.cmu.edu/~ece500/projects/f22-teama4/wp-content/upl
https://www.irobotweb.com/-/media/MainSite/Files/About/STEM/Creat
e/2018-07-19_iRobot_Roomba_600_Open_Interface_Spec.pdf

16
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

Description Manufacturer Model Quantity Cost (Dollars) Not Used

NEMA 17 Stepper Motor Twotrees Twotrees-16565 3 $27.59

TB6600 Stepper Driver OUYZGIA 200205003 2 $29.47

7 Gallon Trash Bins AmazonCommercial B08PDV3YY7 2 $23.08

USB C to 4x USB A adapter Keymox B0835L59N2 1 $9.55

24Ah battery, 12VDC & USB out SinKeu HP500S 1 $99.99

Jetson Computing Device NVIDIA Xavier AGX 1 ~$1900.00 X

2D, 360 degree LiDAR system SlamTec A1M8 1 $99.99

Programmable Roomba iRobot Create2 1 $199.99

1080p Camera TedGem CE0140_01 2 $27.80

Small Gear Mason/TechSpark v1.26/27 2 $2.00

Cam Gear A Mason/TechSpark v0 1 $10.00 X

Full Gear Set Mason/TechSpark v1 1 $23.50 X

Additional Gear Set Mason/TechSpark v1.1 1 $4.50 X

Small Gear Mason/TechSpark v1.1 1 $1.00 X

Cam Gear Set Mason/TechSpark v1.1 1 $12.50 X

DC Wires GINTOOYUN B09573KNGW 1 $10.00

DC Splitter GINTOOYUN FQL20210419 1 $8.00

Wheels HOLKIE PBJL2BBS 1 $17.61

Cutoff Gear Fronts Mason/TechSpark v1 1 $16.50

Cutoff Gear Rears Mason/TechSpark v1 1 $16.50

Reduce Gear Mason/TechSpark v1 1 $14.00

Battery 3850mAh Tenergy 11742 1 $39.99

Redo Gears (Small + Cam) Mason/TechSpark v2 1 $9.00

Reduce Gear Mason/TechSpark v2 1 $14.00

1/8 Plywood 1x2 ft TechSpark 1 $3.00

1/4 Plywood 1x2 ft TechSpark 1 $4.00

Jetson Computing Device NVIDIA Xavier NX 1 ~$1200.00

LiDAR Camera Intel Realsense L515 1 $589.00 X

Miscellaneous Plywood TechSpark 1 $0.00

Wifi Adapter TP-Link Nano AC600 2 $17.99 X

17
18-500 Final Project Report: Robotic Trash Concierge 05/05/23

