
1
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

Robotic Trash Concierge
George Gao, Jack Girel-Mats, Zachary Mason

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The modern workplace has evolved such that
many office workers collaborate in the same area. However,
this has resulted in many small trash bins scattered across the
office. These bins regularly overflow, forcing janitors to make
repeated trips to hundreds of tiny trash-bins scattered across
an office space. This is not only inconvenient and unhygienic
for office workers, but it’s a point of great inefficiency for
janitorial staff to check hundreds of possibly empty bins. We
have devised a solution using an autonomous robot capable of
taking out an office worker’s trash can by bringing it to a
centralized dumping ground, where janitorial staff will empty
dirty bins and place clean bins back into their proper
locations. This method streamlines the trash collection process
and eliminates the need for janitors to check hundreds of tiny
bins across the office space.

Index Terms—Autonomous, LiDAR, Robot, Roomba, ROS,
SLAM, Trash Bin

I. INTRODUCTION
The work environment has continuously evolved from

era to era, and along with it problems and solutions. The
modern workplace is no exception. Offices have become
increasingly open, and collaborative, with tech campuses at
the forefront of such changes. They have introduced
architectures with open seating and shared desk space. It
however introduces a copious amount of trash bins into the
office, one for each desk. This places an excess burden on
janitorial staff to accomplish the dull, monotonous work to
take out all the scattered bins.
We’ve noticed that the scale of the problem and its

monotonous nature, this was an appropriate application of
automation. Thus we have designed a solution as such.
Our proposed solution introduces a robot designed for the

flexible nature of open office spaces, with a goal of greatly
reducing the workload on custodial staff. Our robot will be
able to map out an open office area, and track where trash
bins are located. Using a tracking system, the robot will be
able to navigate to the trash bins, and bring them to a
centralized dumping ground to be taken out by janitorial
staff. Janitorial staff will then return clean trash bins to their
original locations. This reduces the running around
custodians have to do as now the trash is centralized in a
common area.
While there are no competing products on the market, we

realize that some technologies can be retrofitted to solve the
same problem, notably other robotic delivery systems such
as Proteus Robotics warehouse robots [6]. However, each
such solution was not designed for an office space
specifically, and would be clunky to use.

Fig. 1. Floorplan of Meta’s 770 Broadway office in NYC [9].

II. USE-CASE REQUIREMENTS

We first introduce unit metrics that our project must
meet. We extrapolate that the average worker will be out of
the office work area by 6 p.m., so we chose a one hour
buffer for the starting time of our robot, 7 p.m. We also take
note that night custodians should still be in the office by 12
a.m and thus our robot must be finished by then, giving us a
working time of five hours. Within these five hours a robot
must travel at a speed of 0.21m/s. This comes from our
use-case study into the dimensions of the average working
area of a Meta office space (Fig. 1). The room we looked at
came from Meta’s 770 Broadway NY office, which had a
working area of 19m x 23m, and assuming a common
starting ground to the middle of the room (as the average
distance for all trash cans) we calculated a round distance
time of 42m. For a working area with 90 trash cans for 5
hours; we reached our 0.21m/s average speed after adding
some buffer time.
The next use-case requirement we want to meet is to have

an 85% trip success rate, with a successful trip defined as
successfully navigating to a trash can and bringing it back
without spillage or human collisions. The 85% comes from
two sub requirements in series: a 90% bin docking success
rate, 95% non-collision rate, and a 99% no spillage during
transport. We think 90% is viable for bin docking due to the
numerous ways a bin could be moved or mishandled by
humans in between cleaning periods. A 95% non human
collision rate is also acceptable due to the work period of
the robot being designed for an after hours setting,
alongside its menial movement speed of 0.21m/s, meaning
collisions are both unlikely to happen and inconsequential if
they were to happen. Nonetheless we don’t want to
inconvenience workers, thus we decided 95% would be
acceptable in this case. For a given bin collection trip, there

2
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

should be at least a 99% rate of transport without the bin
tipping over. We deem this to be acceptable since spilled
bins nullify our system, and our work area of 90 trash cans
means 1 bin could tip over, in which case it wouldn’t be too
burdensome for a custodial staff member to take care of
manually, since they may already be performing a separate
task nearby. Considering these success rates in series, we
follow the derivation

𝑅
𝑠

= 𝑅
𝑏𝑖𝑛 𝑑𝑜𝑐𝑘𝑖𝑛𝑔

× 𝑅
𝑛𝑜𝑛−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 × 𝑅
𝑏𝑖𝑛 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒

(1)

to reach the final success rate of being 85%. We deem 85%
success rate to be acceptable due to the still drastic
reduction in labor that it entails, cutting the number of trips
to be a trivial amount. Furthermore, due to how 85%
encompasses human collisions, the number of trips that
succeed in purely bringing back trash cans would be much
higher. Following the same equation as 1, except getting rid
of the non-collision rate, we achieve a success rate of 89%.
In terms of our use case study this means around 10
left-over bins, a drastic reduction from 90.
Another requirement for our system is it should be able to

lift a 10 pound, 7-gallon standard trash bin. Given the office
environment where bins are expected to be emptied nightly,
bins won’t fill up too much throughout the day, as it’s
mostly going to be food waste and packaging that gets
thrown out, along with the occasional document, none of
which are that heavy. Bins themselves weigh 2-3 pounds, so
this allows for 7–8 pounds of waste to be removed at a time.
We also want to be mindful of the ethical, health, and

safety implications of our project. Our robot is going to be
working alongside other humans in an office environment,
so it’s important to keep the safety of the office staff central
to our project's goals. This includes adding obstacle
detection, emergency stop procedures, and making the robot
easy to see. Additionally, we want our robot to help
janitorial staff not replace them. We understand that as
robotics become more and more advanced, some jobs will
eventually be replaced, but we hope that our design lives
symbiotically with janitors, as they will be responsible for
managing the autonomous system, as well as maintaining
its operations.

Fig. 2. Basic CAD model showcasing bin pickup and drive systems.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The high level architecture of our solution can be found
on Fig. 9 at the end of this document.. Now we will
describe each sub-system in detail.

A. Bin Pickup System
The pickup apparatus will consist of an arm powered by

stepper motors to create a stable and reliable system to
minimize the janitorial staff’s workload overhead.

B. Mapping
In order to create an autonomous system, we need to

have knowledge of the office space that the robot will be
operating inside. To accomplish this we will use SLAM to
precreate a map of the office environment. This map will
contain elements such as desks, chairs, walls, and bin
locations.

C. Bin Tracking
In order to keep track of and locate the bins in an office

environment, each bin will be given a unique tag. During
mapping, every bin's location will be recorded into a
database. This database will then be queried during pickup
for bins’ status and coordinates.

D. LiDAR System
Our robot needs sensing capabilities to navigate flexible

office environments. These environments may have
obstacles and varying layouts. The LiDAR sensor will
provide the robot with a representation of its surroundings,
and be used for mapping and obstacle avoidance.

E. Path Planning System
Once our robot has created a map of its environment, and

enters the pickup routine, it will need to plan a path from its
location to its desired bin pickup location. The path
planning system will be responsible for creating a path from
the map of the office environment. This system will also
implement a local path planning strategy to accommodate
new obstacles.

F. Drive System
For the robot, we will be using an iRobot Create2

(Roomba). This will allow for a solid base on which we can
mount various components, as well as being supported by
interfaces to send custom movement commands.

G. Camera System
The roomba will be outfitted with two cameras, both

oriented to be facing opposite directions, 180 degrees away
from each other. The front camera will be responsible for
identifying bins during pickup. As our robot’s pickup arm is
mounted onto the rear of its body, our second camera is
mounted on the rear. The purpose of the back camera will
be to gather information for proper alignment of the robot
to the bins before the arm is activated for pickup.

3
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

H. Computer Vision System
Our camera feeds will be piped into OpenCV to

accomplish bin identification. We will calibrate our camera
to be able to calculate the distance and orientation of bins
from our robot. These will be used during mapping for bin
location acquisition, and during pickup for bin alignment.

The LiDAR feed will be used for mapping of the office
environment, as well as obstacle avoidance during the bin
pickup routine.

I. State Coordinator
Our robot has many tasks: mapping, path planning, bin

identification, bin alignment, bin pickup, and so on. The
state coordinator will have the final say on signals sent to
the drive system and bin pickup system. It will also be
responsible for identifying situations in which janitorial
staff are needed, such as in the case of the roomba getting
stuck.

IV. DESIGN REQUIREMENTS

Our project’s design requirements are derived from our
use case requirements, and specify the performance of
various subsystems that will meet our use case requirements
after system integration.
To design a robot that fits within the constraints of open

office environments, we used the Meta NYC office to
estimate the size restrictions for our robot. Based on our
findings the robot’s height needs to be less than 30 inches
and it needs to be less than three feet wide and and 3 feet
long to fit between and under desks.
During the robot’s pickup routine, it may encounter

obstacles and humans, which could result in trash spills and
collisions. We determined that a system for obstacle
detection and avoidance was required. Additionally, it is
important for the robot to be easily identifiable by office
staff.
Given the use cases’ movement speed requirement and

cleanup time period, we need to ensure the robot has
enough power to complete its tasks. The Roomba has an
advertised runtime of 2 hours, but this is with the cleaning
motor active, which uses a significant amount of power.
Since we’re only using the drive motors, the overall power
use is significantly reduced and should allow us to meet the
5 hour requirement. However, the robot’s computation
system, bin pickup system, and sensing systems will require
an additional battery attached to the Roomba’s body.
Our camera system should be able to process data with at

least 15fps (frames per second), as this is recommended for
applications that move at less than 2m/s for proper CV
applications [1].
For accurate bin identification and environment tag

usage, we specify that the computer vision subsystems must
be able to correctly identify with 90% accuracy from
greater than 2 meters away in distance. 2 meters away
would mainly be used for sanity checking the location that
the robot is moving towards is correct, and is not that

important. Thus lower accuracy is acceptable. The accuracy
must reach 95% within 1 meter away but greater than 0.15
meters away from the camera, barring any obstructions
when in proper office lighting conditions, as this would be
the distances the docking procedure would be working
within. We want to be as accurate as possible due to the
inconvenient nature of fixing such mistakes of moving the
wrong bin. However, due to the video stream-like nature of
our application, both 90% and 95% accuracy over the
course of 15fps means it's virtually impossible over the
course of a docking procedure to continuously mistake the
tag. Furthermore, the vision system must be able to do
accurate distance sensing within 1 meter away with an
accuracy of 90% with accuracy in this case defined by how
far off the camera position is to the labeled tag with the
following equation:

1 - (2)(𝑑
𝑟

− 𝑑
𝑠
) / 𝑑

𝑟

with being the real distance and being the sensed𝑑
𝑟

𝑑
𝑠

distance. We apply a 90% accuracy to be sufficient due to
the relative nature of docking to a bin, which would be the
main use case of distance sensing. Due to how close bins
are and low movement speeds, movement can be
compensated to be safely within distance bounds to
properly pick up bins with the given location accuracy.
In order to lift the 10 lb bin vertically, a great enough

force needs to be generated, and the bin needs to be lifted
high enough off the ground to prevent any catches on the
ground. Any floor imperfections are assumed to be
relatively small (<1in). The bin weighs approximately 44 N,
and should be lifted up to 1.5in (~4cm) total, allowing for
0.5in of vertical misalignment during the docking process.
To properly traverse the office space and reach bin

locations, our mapping of the area should be qualitatively
accurate. Then during pickup, we need to have a
localization accuracy of at most .5m in order to not bump
into mapped obstacles and end up in the desired destination.

V. DESIGN TRADE STUDIES
A. Trash Bin Modifications
In order to support moving a 10 pound trash can in the

office environment, we considered many bin modifications,
including the addition of wheels, a fixed pedestal,
bidirectional latching mechanism, omnidirectional base
plate, or side-mounted flange.
Because our Roomba may not have perfect positioning

and drive accuracy, any bin that requires fine positioning
would make it difficult to meet the 90% docking success
rate. This meant a bidirectional latch system would not be
feasible since it requires alignment with the bin at a specific
angle. Similarly, we decided against using wheels on the
trash bin itself since any physical contact by the Roomba
could shift the bin’s position, thereby using up valuable
time by having to re-adjust, and perhaps even causing a

4
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

docking failure if the guidance algorithm was slightly off.
Another idea was to use a pedestal that we could place

the trash bin on top of, where the Roomba could drive
underneath and lift the bin for pickup. The issues with this
solution are twofold. One is that a trash bin elevated off the
floor restricts the position it can be in for a pickup, so
employees would not be able to move a trash bin around
unless they also moved the pedestal. The other is that
elevating a trash can off the ground by the height of the
Roomba (approx. 4in after attachments) immediately adds
25% to the bin height, which increases the risk of tipovers
that we are trying to avoid. It also complicates the design
unnecessarily since the cameras and LiDAR would have to
be mounted low to the ground where they have less
visibility. This leaves the side-mounted flange and
omnidirectional base as the last two bin attachments to
consider. Both these designs would offer greater variability
in pickup positioning, but the side-mounted flange would
require a more complicated lift system as explored in part B
below. This resulted in our selection of the omnidirectional
base plate shown in Fig. 3 as the best option that would
allow us to meet use case requirements.

Fig. 3. CAD model showing the omnidirectional base selected for the
bin modification.

B. Docking Arms
Since the Roomba is a circular object with no existing

attachment points to mount a lift system on, we had to
design our own. In part A above, we explored the different
bin modifications and arrived at two potential solutions.
Because 7-gallon trash cans are rectangular, the apparent
width varies based on the position around it, so our arms
would have to have to similarly change width if using a
side-mounted flange. This would require actuation, which
reduces the overall strength and could jeopardize our 10
pound load requirement, in addition to increasing
complexity. For this reason, we chose to use fixed arms in
conjunction with an omnidirectional base.

C. Bin Lift System (BLS)
Since we decided against the use of wheels, the bin must

be physically lifted off the ground for transport. There was
really only one practical option here, which was to use
stepper motors, since they offer high torque and fine
control. To generate lift motion, we considered using either
a cam that would spin a partial rotation or a worm gear to
produce linear motion. We decided to use a cam mounted to
the stepper motor through gears (see Fig. 8) since it allows
for more customization of torque and lifting profiles, as
well as being lower-cost and more easily manufactured.

D. Onboard Processor
We explored performing offboard and onboard data

processing, with a combination of microcontrollers and
PC’s, including the RPi and Jetson Xavier AGX. The vision
and navigation subsystems for our robot require a
significant amount of data to be processed, which may not
happen at the 15fps laid out in our design requirements on
the RPi, leaving the Jetson or a PC as the only options to
perform computation. A PC would have to be wirelessly
networked into a microcontroller onboard, which increases
the chance of failure and reduces autonomy since the
Roomba would be reliant on data processing and
communication from multiple nodes. Because the Jetson
already has GPIO and plenty of computational power, it
was the logical choice to meet our design requirements.

E. Onboard Vision System
To actually sense our surroundings, we had to use some

form of camera, LiDAR, or both. LiDAR has demonstrated
success in room mapping, especially with acquiring depth
information, but cannot provide the fine positioning data
required for navigation to a bin for successful docking. As
such, we decided to use both a LiDAR and camera. These
will be mounted on top of the Roomba to have the best
vantage point possible.

We could have gone with a single camera that faces the
docking mechanism, but this means its view is obstructed
(see Fig. 4) half the time (anytime we tow a bin), and
cannot be used for positioning. Because the bin drop-off
point needs to be at a certain location, we decided to use
two cameras facing in opposite directions that allows for
visual navigation all the time.

As for the LiDAR, there were two models in the ECE
inventory that we could have used, but to avoid a similar
issue as the camera where a carried bin causes a significant
obstruction, we decided to use the 360-degree version due
to better handle obstructions.

5
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

Fig. 4. Figure showing masking requirements on LiDAR due to bin
obstruction during transport.

F. Environment Mapping
The Environment mapping function went through several

iterations. Initial research showed built-in MatLab libraries
for LiDAR mapping to be sufficient for our application. We
had planned to export the MatLab library into C and port it
onto the onboard processor. However, after further research
and testing, the library seemed to be more for stationary
applications instead of live exploration. While this
application could work due to the slow nature of our robot,
we decided to transition to ROS open source navigation
libraries. There were two libraries that we considered,
hector_slam[5], and gmapping_slam[3]. Both were viable,
but we decided on using gmapping_slam because the
hector_navigation library is not supported on the version of
ROS (Noetic) we are using[4].

G. Robot Path Planning
Like the environment mapping system, MatLab was the

first choice for path planning as it supported built-in
libraries that can navigate based on the given output of the
mapping library. However, due to swapping the mapping
system to ROS, we decided that transitioning the map input
to one that would work with the MatLab library would be
inefficient and impractical. Thus we have decided to stick to
a unified system for path planning and mapping. Keeping
libraries within the same system decreases development
time and has more supported features due to increased
synergy and compatibility. We decided on using the ROS
navigation stack as it is fully supported by our ROS release
unlike hector_navigation [4].

H. Bin Tracking
To track the location and status of each bin, we will be

using a database in conjunction with ARuco tags. There
were many options for tagging the specific bins. We first
considered using April Tags due to their inherent uses in
LiDAR applications, however due to the ease of use and
compatibility of ArUco tags with the openCV library

(which is the main onboard camera vision computation
system), we decided to use them instead. We also
considered different options of the stateful tracking of bins
themselves. We needed some system to keep state in
between runs, as such, we considered some system that
writes to an external hard drive through some sort of file
I/O interface, or using a database. File I/O would’ve
involved writing our own file system interface and
developing our own encoding / decoding scheme or using a
higher level abstraction combined with some python library
such as pickling. This would’ve provided much stronger
flexibility in handling bin storage for future applications but
we decided that such flexibility was a low priority for the
current project. Thus we decided on a more inflexible state
tracking system involving a database, and building an
abstraction interface library on top of that. The database
streamlines fetching and writing concurrently and has
sufficient features for the current goals of the project.
Furthermore, there are many built in interfaces in python to
interact with a database of choice.

VI. SYSTEM IMPLEMENTATION

A. Trash Bin Modifications
The trash bin itself will be omnidirectional as discussed

previously, and necessitates a circular interface. To allow
for variations in robot positioning while maintaining
stability, we will be using a large disk with a slightly
smaller diameter than the length of the trash bin, affixed to
a larger circular base plate via a central column that also
provides room for the lift arms to slide underneath as shown
in Fig. 5. All of these components will be made with
laser-cut ¼” plywood, and joined with a combination of
glue and metal hardware. The upper and lower disks will be
10 inches and 14 inches in diameter, respectively. Because
the lower disk has a larger footprint than an original bin, we
actually increase stationary stability further.

Fig. 5. Side view of the modified trash bin showing the bin, upper disk,
central column, and lower disk (from top to bottom).

6
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

B. Docking Arms
Our docking arms look like forklift arms, but will

actually be static. They will be a box-like structure to
provide rigidity, while allowing for components to be
mounted inside, namely the stepper motors, gears, and cams
for the BLS. The arms will also have small omnidirectional
wheels at the end, since a bin extended out on the arms will
not be able to stay upright independently. These wheels will
roll all the way across the base plate on every docking
sequence.
The arms will be fixed to the top of the Roomba via

existing screw holes, and have drop-down members on the
front to fit under the upper bin disk, while simultaneously
reducing the risk of a tip-over.

Fig. 6. Cross-sectional diagram showing the docking arm and
components housed inside.

Fig. 7. Diagram showing cam rotation in minimum (raised) and
maximum (halfway) torque positions.

C. Bin Lift System (BLS)
The lift system uses stepper motors, gears, and cams to

achieve our 44 N lift capacity and 4 cm lift height. We are
using 2 NEMA 17HS4023 stepper motors, which have a
reported torque output of 13 N*cm, while being in a small
form factor that will be able to fit in our docking arms. The
required torque to lift the bins is given by the following
equation:

(3)τ = 𝐹 × 𝑟

where is the force perpendicular to a radial from the axis𝐹
of rotation, and is the radius at which is applied. Based𝑟 𝐹
on Fig. 7, we can compute the required torque output of the
lift system per motor, which is:

(4)τ
𝑜𝑢𝑡

= 1
2 (𝐹

𝑏𝑖𝑛
× 𝑟

𝑐𝑎𝑚
)

(6)τ
𝑜𝑢𝑡

= 1
2 (44 𝑁 × 2𝑐𝑚)

(7)τ
𝑜𝑢𝑡

= 44 𝑁𝑐𝑚

The gear equation given below will determine what
input-output tooth ratio is required to meet the torque
requirement. This is because a low gear ratio (<1) will
provide an increase in output torque

(8)𝑅𝑎𝑡𝑖𝑜 =
𝑁

𝑖𝑛

𝑁
𝑜𝑢𝑡

=
τ

𝑖𝑛

τ
𝑜𝑢𝑡

Using this equation, we can calculate the required ratio:

(9)𝑅𝑎𝑡𝑖𝑜 =
𝑁

𝑖𝑛

𝑁
𝑜𝑢𝑡

= 13 𝑁𝑐𝑚
44 𝑁𝑐𝑚 = 0.3

1 = 3. 38

This ratio means for every 3.38 turns of the stepper motor,
our output cam should rotate once. To add a buffer that
allows for component friction, we select a gear ratio of 1:4.
The cam will be circular and 4 cm in diameter, but mounted
off-center with its edge on the center of rotation of the
output gear as shown in Fig. 8. For each motor, we will
have 2 output gears, each with a cam, allowing for a total of
4 contact points to lift from. This ensures stability of the bin
and will prevent tipovers from occurring during the pickup
process. The gears and cams will be 3D printed since it
allows for a high degree of customization, and the infill can
be adjusted to balance cost and strength. This also allows us
to manufacture the cam and output gear as a single piece
which makes integration far easier.
One final part of the BLS is going to be a resting bar for

the cam just beyond the vertical position. This will allow
for static stability without having to constantly power the
stepper motors, helping us to meet our 5 hour runtime
requirement.

Fig. 8. CAD model of single gear system with cam shown.

D. Drive System
Our drive system is built on top of the iRobot Create2.

This robot is a Roomba modified with a serial connection
for manual control. Using an included USB to serial cable,
we will control the Roomba’s movements from our
NVIDIA Xavier AGX using the pyCreate2 library [7]

7
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

which supports tethered driving [12]. To coordinate with
other ROS software, the off the shelf ROS module
diff_drive_controller[2] will be used, as it implements a
differential drive controller as necessitated by the design of
the Roomba. Additionally, an emergency stop system will
be added to the drive system to end all movement if
necessary.

E. Onboard Vision System
The vision system uses Python's openCV library to

handle bin identification, location as well as rudimentary
distance sensing. The vision system greatly depends on the
camera used, and thus should be calibrated on the software
side to handle distortion effects [13]. The camera is used to
identify ArUco tags in the environment and communicate
ArUco coordinates in relation to the robot to the central
logic hub. ArUco tags also provide unique identification
numbers which can be read from with openCV. This system
also uses the ArUco tags to differentiate between the
different possible orientations of a trash-bin in relation with
the robot itself (by assigning a different ArUco id modulo
the number of orientations).
Our LiDAR system is implemented using the Slamtec

RPLIDAR A1M8. The LiDAR will be used for mapping,
localization, and obstacle detection, and be connected
directly to the Jetson Xavier AGX using an included usb
adapter. Due to the height restriction of our robot, which is
necessary to drive under desks, the mounting position of the
LiDAR will bring the trash bin in alignment with the
LiDAR sensor. This creates an obstruction that the LiDAR
will interpret as a wall, messing up localization. To avoid
this issue, a mask will be applied to the LiDAR’s output.
This decreases its FOV, but this is a reasonable tradeoff as it
makes localization and implementation much more
straightforward.

F. Environmental Mapping
We will be using SLAM to create a 2D map of the robot’s

office environment. Specifically, we will be using the ROS
module gmapping_slam which constructs a map from 2D
laser scans provided by the Slamtec RPLIDAR A1M8 and
odometry data provided by the Roomba. In order to create
the initial map, a one time setup is completed, which
requires a manual exploration of the office space by remote
controlling the roomba until a satisfactory map is created.

G. Robot Path Planning
Much like our mapping system, we will be using an off

the shelf ROS stack called “navigation”[8]. The navigation
stack is a conglomeration of ROS modules each that pertain
to a specific task. Critically, it includes the acml package,
which is responsible for localizing the robot, the
global_planner package which creates the path from robot
to bin locations, and the basic_local_planner package which
handles following the overall path while taking into account
the environment and obstacles. The navigation system’s

output will then be routed into the state coordinator system
for control of the robot.

H. State Coordinator
To coordinate all of the tasks that the robot needs to

accomplish, a central decision maker is necessary. To keep
our software stack unified, this system will be implemented
as a ROS node. It will take in movement directives from the
manual control system, bin alignment system, and bin
pickup system, then in combination with the state of the
system, output the required movement commands to our
drive and bin pickup systems.

I. Bin Tracking
Tracking bins is a stateful protocol, and must be

maintained between sessions. It also must be scalable and
have concurrency control for future scaling priorities. As
such, a light-weight database with standard library python
support is perfect for our use case. Thus, we chose to go
with SQLITE, which is part of the standard python library.
The database tracks bins locations in the mapping
environment, whether the trash needs to be taken out, as
well as each bins’s identification number. The database
interfaces with the backend logic system on the onboard
processor through a custom python interface that handles
bin tracking logic, including tracking bin locations on
drop-off, pick-up, and spillage of bins, as well as
successfully emptied bins.

J. Electronics Power System
As for our power system, the primary concern is

delivering enough current at the appropriate voltages to
keep all components active, while avoiding brownouts or
current-limiting conditions. See the table below for the
power requirements of our various components. Note that
the currents are maximum ratings, and are likely less under
normal operating conditions.

TABLE I. SYSTEM POWER REQUIREMENTS

Component Voltage (V) Peak Current
(mA)

Nvidia Jetson AGX (10W mode) 12 ~850mA

USB Camera (x2) 5.0 (USB) 70

360-degree LiDAR 5.0 (USB) 100

TB6600 Drivers (x2) 3.3, 12 1500

With this analysis, we can determine that the peak current
needed is 4250mA, which is the sum of the Jetson and
stepper drivers, but not including the USB devices. This is
because the 10W Jetson power mode includes the running
of USB peripherals, which itself has a rated max output
current of 500mA. The TB6600 drivers use 3.3V on the
pulse, direction, and enable lines, which is perfect since the
Jetson has 3.3V GPIO pins. With these requirements, we
believe a battery >20Ah of capacity and a 12V DC output
will more than meet enough to meet our needs for a 5-hour

8
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

runtime. This is especially true because the steppers only
run for a brief period of time when the BLS is active, and
are otherwise in an idle mode with very low current
consumption.

VII. TEST, VERIFICATION AND VALIDATION

A. Trash Bin Modifications
The 30 inch height requirement will be measured from

the floor to the uppermost point of the robot. A constraint of
3 feet has also been placed on the width and length of the
robot. By meeting these standards we ensure the robot can
fit between the aisles ensuring the robot can physically get
to all bins.

B. Battery Life
The robot must last for the average working session.

Currently, its intended use involves finishing the task within
a five-hour time frame. The primary test to confirm this will
drive the robot while carrying a full bin for 2.5 hours
followed by movement until the robot runs out of battery.
This mimics the full 5 hour use time.

C. Vision System Accuracy
To test the minimum requirements of the vision system

we will set up the standalone vision system
implementations and place tags within various distances.
We will place an ArUco tag at distances of 0.15, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 meter away from the
camera lens, and do 10 trials each, to target an accuracy of
99%. Further testing will be done in the same method from
1.1m - 2m (in 0.1m increments) with 2 trials each to target a
95% accuracy. Such accuracy will allow us to make sure the
use case requirement of proper bin identification is met. We
will also test at each of the listed distances to ensure that
distance accuracy is also met. We will use equation (1) to
calculate the average accuracy amongst all trials, to ensure
we hit the 90% accuracy laid out.

D. Movement System
The move system in place must be able to hit the

minimum of 0.21 m/s when traveling in straight lines. To
make sure that our implementation hits this baseline, we
shall take videos of the robot moving forward across a
distance of 3 meters. We would then confirm if it can be
completed in 13 seconds (this includes slack such that our
robot must be moving on average faster than 0.21m/s).

E. Bin Pickup
The pickup system must be able to lift a trash bin that is

10 lbs at maximum. We will test over the course of 10 trials
whether our system can lift a trash bin weighing 10 lbs 1.5
inches off the ground without spillage. This will be used to
validate the use case of bin docking without spillage.

F. Mapping System
We will create and analyze a map of the HH1307

laboratory space over three trial runs to qualitatively
measure the accuracy of the resulting map. This map should
clearly portray the rooms walls and other large obstructions
such as desks.

G. Localization System
After creating a map of HH1307, we will place the robot

in 10 different locations, manually move the robot for 30
seconds to warm up localization accuracy, and then measure
the accuracy of the perceived position vs. the actual position
of the robot.

H. Path Planning System
To test the path planning system, two points in HH1307

will be picked 15 ft apart, one for the robot's starting
position and the other for the bin location. Then, the robot
will create a round trip path to the destination and back,
which will be followed by the robot. We will measure the
success rate, (getting <.5m to the trash bin location where
cameras take over, no collisions), over 5 trials. Then we will
pick two new points, and rerun the test.

Next we look towards verifying our use-case
requirements are met, through a series of integration tests
between our subsystems.

A. Bin Docking
Using the vision system that has strong accuracy in bin

identification and distance sensing within a 1 meter distance
metric, we want our implementation to successfully dock
with a full 10 lb trash bin. The robot must be able to attach
the docking mechanism successfully and lift up the bin
according to the design specifications outlined, hence the
full 10 lb trash bin used. We repeat the test from various
orientations of the bin for a total of 20 trials. A successful
dock involves the robot being able to identify the correct
bin being picked up, as well as the lift up of the bin to 1.5
inches off the ground without spillage.

B. Non-Collision
We require that during a trip between two destinations

10ft directly apart from each, no collisions occur 95% of the
time. We will trial 20 trips between two points with a
walking human in each test, in which we want the robot to
stop before hitting a human if the human crosses its path.

C. Full Integration Testing
We require a successful trip to happen 85% of the time,

and using all the subsystems that have met our
specifications, we will run a full integration test 20 times to
ensure a 85% success rate is hit. Bin Docking and collision
rates must be met such that a successful trip is defined as no
collision happening with a trash bin reaching the final
destination without spillage. This includes proper path
planning to be within <0.5 meters of the bin that is targeted
for pickup, successful docking, and bring back. Single trips

9
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

will be trialed individually with a single bin to bring back,
from various locations and orientations.
Finally, one full integration test will be done on rotating

bins for a total of 12 bins in the HH1307 room. Rotating
bins means after a bin has been taken to the dumping
ground, we manually replace the tags and bring it to another
location that will be targeted to emulate a room full of bins.
The robot must finish getting to all of the bins within a time
span of 20 minutes. This time span is extrapolated from the
ratio of bins that must be completed in the META NYC use
case study of 90 bins over 5 hours with a round trip time of
42 meters, compared to the smaller room of HH1307 and 12
bins and an average round trip distance of 18 meters. Using
this ratio we solve that to roughly accomplish essentially
the same task as our use-case study in the HH1307 room,
the robot must finish the task in 17.4 minutes. We round to
20 to account for bin rotation and thus having a human
continuously moving in the environment causing
unnecessary stoppages.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule will follow the Gannt chart showcased by

Table III. It is color coded based on the team member that is
primarily responsible for the task, with color combination
involving shared tasks. Tasks are usually done in one week
periods with a steady progression of subsystem bring up
prior to March 3rd 2023, then integration following March
11th 2023. Various amounts of slack have been built into
the schedule to account for unforeseen circumstances, and
the color coding for responsibilities acts as a guideline for
bring-up. This means multiple and different members may
step in to help accomplish tasks in the scheduled weeks
even if not required by the chart specifically.

B. Team Member Responsibilities
Team members' responsibilities are split by team member

backgrounds.
Mason has a strong hardware background, giving him

default responsibilities on hardware-related tasks. This
includes 3-D modeling, designing, and building the docking
mechanism. His embedded background also means he has
partial responsibility in embedded communication between
subsystems of the robot.
George and Jack both come from software-oriented

backgrounds, relegating most software tasks split amongst
them. While Jack has the primary responsibility of LiDAR
bring up, and George is responsible for the bin tracking
backend with a database; more complicated software
systems such as path planning, CV, and scheduling logic
have shared responsibility between them.
Integration is the partial responsibility of all team

members due the embedded communication and software
and hardware nature of the project.
While individual team members have primary

responsibilities, each is responsible for the success of the

project as a whole. This means that we each are responsible
for helping in the case that challenges arise for tasks.

C. Bill of Materials and Budget
Please refer to Table II at the end of this document for the

bill of materials and their associated costs.

D. Risk Mitigation Plans
Our robot will have numerous systems, any of which

could fail. It is vital that we have backup systems and
implementation plans in place in the event that this occurs.
During the initial stages of our project, we ran into

connectivity issues with the NVIDIA Xavier AGX. The
Jetson would sometimes disconnect from our secure shell
session making it difficult to develop. These issues were
resolved by reflashing the AGX and switching to an
ethernet cable instead of a usb cable for SSH. We have
many software components to tackle, so the developer
workflow is vital to the success of our project. If we were to
run into an unrecoverable situation with the AGX, our
contingency plan is to utilize the Xavier NX which prior
teams have found less problematic.
We also developed a backup plan for the LiDAR system.

We are currently using the Slamtec LiDAR A1M8, which
accurately identifies solid objects such as desks, frames and
walls, but may not correctly identify other objects like desk
chairs. Therefore, we have also acquired the Intel RealSense
LiDAR Depth Camera L515 as a backup. In case our
original LiDAR does not provide accurate obstacle
detection, our implementation will pivot to the L515.
Another risk that we have addressed is the Roomba’s

power supply. The Roomba itself is powered by an internal
battery pack. This battery pack is old, and may have lost
performance. To meet the use case requirement of running
the Roomba for 5 hours, we have located aftermarket
battery replacements that provide additional range.
Finally, to address the risks in the SLAM and navigation

stacks, we analyzed past projects that have implemented
robot localization and path planning using overhead camera
systems. We believe that this technology could be adapted
to our problem space. Additionally, our team has previous
experience with this type of system.

IX. RELATED WORK

Autonomous robots that are used to move items around
are not unique, especially as robotics rapidly develops.
Thus, there are quite a few predecessors to our
implementation albeit designed for different use-case
scenarios and purposes.
Perhaps the first implementation when we think of

autonomous item movement is Amazon warehouse robots.
Amazon, the world’s leading online retailer, deploys over
520,000 drive units of its proprietary robot named Proteus.
They are warehouse robots designed with navigation and
perception features to move GoCarts (warehouse storage
containers) [6]. These are designed for warehouse usage
which includes rugged industrial design choices that are

10
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

unfit for the office applications that our project is geared
towards.
Similar to swarm warehouse robotics, there was a project

that tested the feasibility of swarm applications called
PARROT. The implementation used several robots to
transport pallets in parallel, offering large speedups [11].
Although there are similar aspects in perception and path
planning, we note that their implementation focuses on
scale of parallelization in a proof-of-concept fashion, and is
not applicable nor actually usable in the office environment.
Another application that is similar in use case and

technologies to our implementation are the food delivery
robots we see on the streets, with the most notable example
called Starship. Such robots use different perception
technologies than ours, and they do involve heavy path
planning. They are also designed for much more rugged
outdoor environments and as such their form factor would
not fit well in the open office environment.
In a familiar vein, a robot that uses similar technologies

and has to do with garbage pick up and cleanliness rests in
Recycle Bot, an autonomous robot that uses LiDAR, CV
and a RRoomba drive system to identify plastic bottles on
the ground to pick up and store on its onboard container [8].
While thematically similar and using similar technologies,
our use case is quite different from theirs, and as such the
mechanical portions of our designs differ greatly.
We notice that there are a great deal of applications that

are geared towards moving something around to make
human lives easier. We find that as such our implementation
is but another iteration, or rather step, in the frontier of
robotics.

X. SUMMARY

In all, our design uses tried and tested systems and
combines them in a way to provide a solution that can
greatly streamline and improve the logistical challenges of
maintaining large open offices. The autonomous nature of
the robot means that one time setups in the office greatly
improves efficiency and gets rid of a large menial task for
custodial workers, and can be easily scalable to cover
multitudes of areas.
Nonetheless, while the benefits scale greatly, we face

challenges in implementation both due to the technical
nature of the task as well as our inexperience. We foresee
large challenges with working with ROS as well as
integrating the open source resources we are using. Control
logic will be a challenge when integrating data pipelines
from multiple sensors, including optometry, CV, and SLAM
applications. Another technical challenge we face is having
our docking mechanism align correctly, as this would
require fine-tuned controls as well as having the mechanical
strength to lift up the 10lb trash bin outlined in our use-case
requirements.
However if we can overcome these challenges we end up

with a flexible, and robust implementation that can be

applied to thousands of offices across the world. In
addition, the modular nature of software and robotics means
that scaling the implementation and adding additional use
cases is not only feasible, but easy to do. We believe our
solution to be one that can provide great efficiency and
betterment of the modern workforce, and is another step in
the robotic revolution.

GLOSSARY OF ACRONYMS

BLS – Bin Lift System
CV – Computer Vision
LiDAR – Light Detection and Ranging
MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
ROS – Robot Operating System
RPi – Raspberry Pi
SLAM – Simultaneous Localization and Mapping
acml - Adaptive Monte Carlo Localization

REFERENCES

[1] “Camera Basics for Visual SLAM”, Accessed on 3/1/2023, [Online].
Available:
https://www.kudan.io/blog/camera-basics-visual-slam/#:~:text=The%
20ideal%20frame%20rate%20for,fps%20based%20on%20the%20ap
plication.&text=There%20are%20ways%20to%20
increase,based%20on%20the%20use%20case.

[2] “diff_drive_controller” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/diff_drive_controller

[3] “gmapping” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/gmapping

[4] “hector_navigation” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/hector_navigation

[5] “hector_slam” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/hector_slam

[6] Jed John Ikoba, “Amazon announces the Proteus, a fully autonomous
warehouse robot”, Accessed on 3/3/2023, [Online]. Available:
https://www.gizmochina.com/2022/06/23/amazon-proteus-fully-auto
nomous-warehouse-robot/

[7] “iRobot® Create® 2 Open Interface (OI) Specification based on the
iRobot® Roomba® 600”, Accessed on 3/3/2023, [Online]. Available:
https://www.irobotweb.com/-/media/MainSite/Files/About/STEM/Cr
eate/2018-07-19_iRobot_Roomba_600_Open_Interface_Spec.pdf

[8] Meghana Keeta, Serena Ying, Mae Zhang “RecycleBot” Accessed on
3/3/2023, [Online]. Available:
http://course.ece.cmu.edu/~ece500/projects/f22-teama4/wp-content/u
ploads/sites/213/2022/12/Keeta_Ying_Zhang_final_report.pdf

[9] Meta Floor Plans, Accessed on 3/3/2023, [Online]. Available:
https://www.vno.com/office/property/770-broadway/3311677/landing

[10] “navigation” Accessed on 3/3/2023, [Online]. Available:
http://wiki.ros.org/navigation

[11] Prithu Pareek, Omkar Savkur, Saral Tayal, “P.A.R.R.O.T: Parallel
Asynchronous Robots, Robustly Organizing Trucks” Accessed on
3/3/2023, [Online]. Available:
http://course.ece.cmu.edu/~ece500/projects/f22-teama2/wp-content/u
ploads/sites/211/2022/12/Capstone_Design_Report-2-compressed.pd
f

[12] “Python Tethered Driving”, Accessed on 3/3/2023, [Online].
Available:
https://edu.irobot.com/learning-library/python-tethered-driving-with-
create-2

[13] Fernando Souza, “3 Ways To Calibrate Your Camera Using OpenCV
and Python”, Accessed on 2/24/2023, [Online]. Available:
https://medium.com/vacatronics/3-ways-to-calibrate-your-camera-usi
ng-opencv-and-python-395528a51615

11
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

Description Manufacturer Model Quantity
Cost
(Dollars)

NEMA 17 Stepper Motor Twotrees Twotrees-16565 3 $27.59

TB6600 Stepper Driver OUYZGIA 200205003 2 $19.99

7 Gallon Trash Bins Continental Commercial B08PDV3YY7 2 $23.08

USB C to 4x USB A adapter Keymox B0835L59N2 1 $9.55

24Ah battery, 12VDC & USB out SinKeu HP500S 1 $99.99

Jetson Computing Device NVIDIA Xavier AGX 1 ~$1900.00

2D, 360 degree LiDAR system SlamTec A1M8 1 $99.99

Programmable Roomba iRobot Create2 1 $199.99

1080p Camera TedGem CE0140_01 2 $27.80

3D printed components Zachary Mason/TechSpark N/A Variable Variable

Laser cut components Zachary Mason/TechSpark N/A Variable Variable

12
18-500 Design Project Report: Robotic Trash Concierge 03/03/23

