
1
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

Mobile Steering Wheel
Xiao Jin, Yuxuan Zhu, Qiaoan Shen

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Our design is a wireless video game controller system capable of detecting gyroscopic input, dedicated to function with
BeamNG.Drive. For driving simulation games such as BeamNG.Drive, having a steering wheel controller helps tremendously with the
level of immersion users can get. However, such steering wheel controllers tend to cost more than 10 times the cost of a generic gaming
controller. Our wireless steering wheel controller is designed to expand on the abilities of generic controllers, by adding 360 degree
angle sensing to simulate turning a steering wheel, a 5 inch LCD display for vehicle information, and a 3D printed enclosure that
resembles real steering wheels in race cars. The whole package weighs around 400 grams, around the average of what smart phones
weigh nowadays.

Index Terms—Design, controller, driving, gaming, racing simulator, steering wheel, wireless, gyroscope, accelerometer, Raspberry Pi,
HDMI, LCD, BeamNG, PC

I. INTRODUCTION

SIMULATED Racing, or simply Sim Racing, is a form of
entertainment involving the simulation of driving or racing
cars on computer games. Over the years, enthusiasts have
evolved from using keyboard control, to dedicated game
controllers, and now to full custom-made cockpits with 1:1
replication of real cockpits. Such sim racing cockpits often
cost more than a few thousand USD, making it an
extremely high bar of entry, and for this reason sim racing
has been a very niche hobby. However, during the
COVID-19 lockdown, an influx of newcomers surprised the
sim racing community. As active members of this
community, we were thrilled to see so many people
interested in joining sim racing. It was unfortunate,
however, for enthusiasts to learn that many people were
turned away by the high cost of controller devices such as
steering wheels and pedal sets. There simply isn't a
controller on the market that combines the affordability of
generic game controllers, and the immersive experience
from an enthusiast-grade custom sim racing cockpit.
There is a void in the market for a cheap sim racing

controller with immersive gaming experience, and our
project is going to fill this void. As users of sim racing
controllers ourselves, we brainstormed some use cases for
such a product. The product will be used to control one of
the most popular sim racing games, called BeamNG.Drive.
It will resemble a steering wheel in a Formula One race car
to introduce some level of immersion. It must be portable,
in the sense that users can just stuff it in their backpack and
take it on a trip. This means that such a product will not
have force-feedback functionality, one of the reasons why
some steering wheel controllers are very expensive. For
people who are just trying out sim racing, however,
force-feedback is not a necessity. This means that our
product can be a free-floating, steering wheel shaped

controller. Accurate steering input, on the other hand, is
vital to sim racing. Traditionally when casually playing
racing games, people simply use the arrow keys on
keyboards to control acceleration, braking and turning. In
order to achieve a high level of immersion in sim racing,
controllers need to have analog acceleration, braking and
steering inputs. Our product will have analog steering angle
sensing capabilities, to simulate the effect of turning a
steering wheel, even though there is no fixed axle the wheel
should be attached to (steering column). Our controller will
also support wireless connection to PCs, making it an
ultimate package for maximizing portability.
Although portability is one of the biggest features of our

controller, it is still important to retain some level of
immersion. After all, it was the "simulated" aspect of sim
racing that attracted people who used to play arcade style
racing games. Compared with the XBOX Wireless
Controller, which has a joystick for analog steering input,
our product adds a more intuitive way of sensing the degree
of tilt, making users' hand movement similar to turning the
steering wheel in a real car. Our controller will also have a
small form factor LCD display facing the user, so the user
can choose to display some vital information about the car
they are driving, just like how a real car's instrument cluster
works. Compared with a more hardcore steering wheel
controller such as the Thrustmaster T300RS, a very popular
steering wheel controller setup amongst enthusiasts, our
controller does not have a heavy base that needs to be
clamped onto a desk, and that means unfortunately the
force-feedback function is gone. Functionally, our product
is very similar to how a smartphone racing game is played.
On smartphones with Android or iOS operating systems,
there are many racing games (Asphalt 9 for example) that
use the phone's accelerometer to allow the user to control
the car by turning the smartphone. On top of the
smartphone experience, we are adding analog accelerator
and brake control to raise the level of realness.

2
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

fig1. System Architecture Diagram

Overall, our controller eliminates some high-end features
of existing steering wheel controllers, while retaining the
core functionalities without breaking the bank, in a portable
package that users can carry around in a backpack. The
product borrows inspiration from racing games on
smartphones. The goal is to significantly lower the level of
commitment, both in terms of money and space, required to
get started with sim racing, and to attract more people into
the wonderful world of sim racing.

II. USE-CASE REQUIREMENTS

1) The controller should be able to detect the controller
tilt angle at least within +180 degrees and -180 degrees
from the horizontal position when users rotate the
controller. This requirement stems from analysis of multiple
steering systems, such as Formula 1 race cars and GT3 race
cars. In a video showing the onboard camera of an F1 car
[1], it can be observed that the steering angle never
exceeded + or - 180 degrees from center. The same can be
observed in a video showing a GT3 race car's driver's view
[2]. For the competitive nature of the racing games our
users will be playing, this requirement seems reasonable
and well-justified.
2) The controller should be able to last for 8 hours in

order to create a smooth gameplay without having users to
charge frequently. From personal experience, the longest
session we have played any racing game is below or just
around 4 hours. We would like users to be able to play
multiple sessions without having to charge the device. For

example, if the user forgot to charge the controller after they
played, then the next day they wouldn't miss a gaming
session, say, with their best friend.
3) The controller should have remappable digital buttons,

an accelerator input, and a brake input. The buttons on the
controller can be programmed to simulate various
functionalities on a real steering wheel. The brake and
accelerator input should have a range of values, similar to
real car gas and brake pedals.
4) There should not be perceivable input lag from the

moment a user makes an input, to the moment the input is
registered in the game. Controllers such as PS5 and XBOX
controllers have no perceivable input lag. Their input lag
metric is below 20ms [3], and it is reasonable to set our
requirement as 20ms.
5) The weight of the controller should be less than 400g.

Similar devices that users hold in their hands for extended
periods of time, such as smartphones, usually weigh less
than 400g, ranging from half of that to around 75% of that
[4]. We tested with multiple smartphones, and discovered
that a controller that weighs more than 400g will cause
strain on the user's arms and hands as they hold it for a long
time in the air. Many popular game controllers also weigh
less than 400g.
6) The user should have a dashboard or a display that can

show some vehicle related information. While playing in a
competitive setting, ideally more of the PC's screen should
be used to display the car and the environment the user is
driving in. Having a display on the controller allows some
information to be transported from the PC screen to the
controller, freeing up valuable screen real-estate.
7) When the controller is parallel to the ground, the car

3
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

should move in a straight line. When the controller rotates
to a certain angle, the steering wheel inside the game
should rotate to another specific angle. The relationship
between the tilt angle detected and the angle of the steering
in the game should follow a predetermined equation. This is
to simulate the effect of having a steering rack and a
steering ratio in a real car. When the steering wheel turns X
degrees in the car, the front wheels do not turn X degrees.
Instead, the front wheels turn k*X degrees, where k is a
constant determined by the mechanical properties, and k is
usually a positive number smaller than 1.
8) When operating the accelerator or brake, the car is

expected to accelerate or brake. The percentage of
accelerator or brake being actuated is directly mapped to the
percentage of the input the user is giving. This is the same
principle as a gas or brake pedal in a real car, which ranges
from being free to being fully depressed.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our controller will consist of several sensors for getting
user input, an LCD screen for displaying key data from the
game to the user, a computation device to translate sensor
data to game controller output that is readable by a
computer program, some wireless functionality for the
communication between the PC and the controller, and a
battery system for cordless power. (See Fig. 1)
For the hardware side, our controller will be getting user

input from a range of sensors, including push buttons,
analog triggers and most importantly for us, the tilt sensor.
When the user pushes a button on the steering wheel, the
computation unit will recognize this event as a button push.
When the user depresses the analog triggers to a certain
percent of travel, the computation unit will record that
amount of actuation. When the user tilts the steering wheel
to a certain degree to simulate steering in a real car, the tilt
sensor will recognize the degree of tilt, and pass that data to
the computation unit. The computation unit will also be
responsible for deciding the content for display on the LCD
screen. A battery system will be responsible for providing
power to the sensors, the screen and the computation unit.
For the software side, a program will run on the controller

to read data from buttons and sensors and run adjustment
methods on the data to reduce inaccuracies. The program
will establish a remote connection with the PC that runs the
BeamNG.Drive game in order to send all the data from the
controller to the PC. Also, the program on the controller
should be able to read real time car information received
from the PC so the controller can display data such as RPM,
speed, and gear on the LCD screen.
The program on the PC side will also establish a remote

connection to the program running on the controller so that
it can receive the button and sensor information. After
receiving the raw information, the program on the PC is
responsible for translating the raw button information into
an input format such that the game can understand. The

translated inputs will move the car in the game. In addition,
the program on the PC will aggregate game data from the
game and send them remotely back to the controller to
display the car information on the LCD display.

The software system architecture for the final
implementation does not change much from the architecture
in the design report. Though implementation details
changed, the overall logic of data flow and communication
between controller and the PC remains the same.

fig2. Overall system.

IV. DESIGN REQUIREMENTS

Based on the user-case requirements, we will determine
the design requirements as stated below.
1) We should use a sensor capable of sensing changes in

its posture (specifically angle). It should at least have a
range of sensing of 360 degrees (+ and - 180). The angle
sensing system also needs to consider the effect of the
shaking of the user's hands. It should filter out small bursts
of changes within a certain range, so that accidental shaking
of the controller does not register as steering input. The
angle sensing unit also should provide a stable output when
the controller stays still, i.e. there should be no drift. The
angle sensing unit should also be accurate, i.e. the actual
angle of the controller and the sensed angle should be
within a margin of error. After researching some IMUs, we
think that + or - 1 degree error margin should be adequate.
2) The controller should have around 12 push buttons for

digital inputs, and 2 analog inputs. This is the same number
and types of inputs as an XBOX controller [5]. This should
provide the user with enough inputs to properly control the
game.
3) The controller should have an input latency no more

than 20ms. In this case, the input latency represents the time
it takes for the game to react once a button is pressed. Since
20ms is a time that’s negligible for users to feel the latency,
we need to find our method to transmit data within this time
range. We need a fast and well-supported communication
standard, and Bluetooth 5.0 is our choice based on the
requirements above [6].
4) For the display/dashboard, we investigated the sizes of

the displays on the steering wheels of Formula 1 race cars.
They range from 5 to 9 inches in diagonal. We chose a 5
inch HDMI display. From personal experience of using

4
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

fig3. Hardware System Block Diagram

digital dashboards (screens) when playing sim racing
games, the 5 inch size is more than adequate to display
information such as engine speed, car speed, lap times, etc.
Also, the HDMI interface makes communication with the
display easy, since a lot of devices support some sort of
HDMI.
5) Based on the requirements for user inputs,

communication protocol, and the dashboard/display, we
determine the requirements for our main processing unit. To
wire 12 buttons, they require a minimum of 8 wires (buttons
wired into a 4x4 matrix, while 2 are unused). The HDMI
display needs an HDMI-capable computer to interface with
it. There needs to be support for either I2C or SPI, since
most embedded sensors use them for communication. The
processing unit also needs to have support for analog input.
Also, ease of coding should be taken into consideration.
6) To support an 8-hour battery life, we investigated the

power consumption of a typical single board computer used
in embedded scenarios, the Raspberry Pi 4B. It has a steady
current drain of around 500mA [7]. A typical HDMI
display, with its backlight on full, consumes about 500mA
[8]. If the backlight is turned half way on, then it only
consumes 370mA. The power consumption can be

calculated by the formula
and here we calculate the𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐼 * 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒

data as . To satisfy the 8-hour870𝑚𝐴 * 8ℎ = 6960𝑚𝐴𝐻
battery life of our product, we determine that we need to use
a battery no smaller than 6960mAH.
7) The controller enclosure design should follow the

requirement that it should provide cutouts for 12 buttons, 2
analog inputs and a screen. To satisfy the 400g weight
requirement, the 3D printed enclosure should be printed
using composites, and designed in clever ways to minimize
waste.

Subsystem Use Case Design Requirements

Enclosure Digital buttons,
2 pedals, 400g

limit

12 push buttons, 2 analog
inputs, 3D print with

composites

Sensing 360 degree
rotation; Gas &
Brake pedals;
180-degree

change within 1

Angle sensing accuracy
within ±1 degree; drift
within ±1 degree in 60

seconds

5
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

second.

Software 20ms input
latency

Bluetooth

Hardware 8 hour battery
life

> 6960mAH battery

Hardware - Processing unit with I2C or
SPI, Bluetooth, HDMI

V. DESIGN TRADE STUDIES

A. Angle sensing: choice of IMUs
To satisfy the design requirement for sensing changes in

angles, we need an IMU. IMU stands for Inertial
Measurement Unit. They sense and report (changes in) an
object's posture using a combination of accelerometers,
gyroscopes, and sometimes magnetometers. We searched
for several IMUs, and also got suggestions from Prof.
Mukherjee about which IMUs to avoid. We compared the
InvenSense ICM-20948 and Hillcrest Labs BNO085. They
both provide 9-dof sensing, I2C interface, and are both in
small packages, and they offer similar levels of
performance. What eventually prompted us to choose
ICM-20948 was that it claims to be "the world’s lowest
power 9-axis MotionTracking device" [9]. On the other
hand, BNO085 offers fancy features that we do not need,
such as optimizations for AR/VR [10]. Furthermore,
SparkFun's ICM-20948 unit was cheaper than Adafruit's
BNO085 at the time of purchase, and we want to ensure our
design is much cheaper than those expensive racing
simulators.

B. Programming Language: Python over C
C programming language is known for its speed which

can contribute to our input latency design requirement to be
less than 20ms. However, our implementation still chooses
Python over C. The reason is that Python is simple to write
and has many libraries that can be imported. Python also
takes less time for debugging since the programming
language takes care of memory allocation and garbage
collection automatically. Since we only have around 7
weeks to implement after submitting the design report, we
believe that Python can better help us meet our goals on
time.

C. Gyroscope learning rate: large over small
The Madgwick filter uses gradient descent to update its

estimation of the direction of the steering wheel based on
accelerometer and magnetometer readings. The gradient
descent algorithm approaches the target value with step size
determined by the learning rate. A large learning rate allows
the system to reach the vicinity of the target faster, but it
will have overshoot problems. A smaller learning rate is

more likely to be closer to the target value, but it will take
longer time to reach the target. A comparison is shown in
the picture below for what happened after we rotate the
steering wheel for 180 degrees:

From the given picture, we can clearly see that when
𝛽=1.2, the algorithm responds to the change within 0.6
seconds, although it exhibits noticeable oscillation around
the target. In contrast, when 𝛽=0.2, the algorithm completes
the change after 3 seconds. Our use case prioritizes a quick
response to rapid changes, so we opt for a larger learning
rate. The oscillation can be filtered out during subsequent
processing.

D. User Interface: screen, buttons and encoders
The choice of the HDMI screen was fairly simple. We

searched on Adafruit and a number of screens of different
sizes came up. We settled on 5 inches as the size, explained
in the previous sections. We did have to choose between a
touch screen version and a non-touch version. We
eventually chose the non-touch version since we did not
plan to implement touch screen UI, and the extra power
consumption and complexity is not something we wanted to
deal with. For push buttons, a similar strategy is applied.
We chose 16mm momentary push buttons because, first of
all, the size is large enough for human fingers to
comfortably press; and secondly the nature of the
pushing-releasing actions on a gaming controller dictates
that we needed a momentary push button. For the analog
inputs, we referred to a simple voltage divider circuit, with
a potentiometer wired in to provide a varying voltage at the
output end. A generic 3-pin potentiometer was chosen from
Adafruit for its cheap pricing and ability to mount a knob.

E. Hardware: choice of processing unit
To handle the I/O needed for buttons, encoders and the

screen, a main processing unit must be chosen. We debated
between using a Raspberry Pi and an Arduino Uno. They
are of similar sizes, so packaging is not a concern. The
Arduino runs on C, and is faster than if we were to run
Python on a RPi. However, since we are using Bluetooth
and HDMI, and the RPi offers onboard support while the
Arduino does not, we chose the RPi. This does bring a
trade-off though. Since RPi does not have an onboard
Analog to Digital Converter, our analog input circuit has to

6
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

be connected to an external ADC, then wired to the RPi
using I2C or SPI. The higher energy consumption of the
RPi compared to the Arduino Uno is also a drawback.

VI. SYSTEM IMPLEMENTATION

A. Hardware Systems
The Raspberry Pi 4B runs Raspberry Pi OS, and provides

a platform for Python coding. The I2C function is enabled
from firmware, and one I2C bus is readily available for
communication. Originally, the IMU, the ADC and the
PiSugar Power Management module all connected to the
same I2C bus. From what we have learned, this shouldn't
pose any problems. However, due to the way PiSugar is
designed, it constantly occupies too much bandwidth of the
single I2C bus, and was causing the IMU and ADC to
intermittently drop connection. Fortunately, the RPi 4B has
hidden I2C buses that are not activated. After using separate
I2C buses (at the expense of 2 GPIO pins), the problem was
solved. SparkFun and Adafruit both provide Python
libraries for easy communication with their devices over
I2C.
The HDMI display took very long to set up. Since it was

a cheap unit, Adafruit states that it does not have a video
scaler built-in. This means that when plugged into the RPi,

the image was not full screen. Also, when first plugged in,
the screen did not display anything, unlike many other
HDMI displays, which are assumed to be plug-and-play.
Eventually a lot of firmware tweaking had to be done for
the RPi to correctly recognize the display.
The 12 push buttons were wired in a matrix

configuration. The easiest way to wire buttons is to simply
use one common GND, and one GPIO per button. However,
since we do not have the luxury of a million GPIO pins, we
chose a matrix layout. The 12 buttons are organized in a
2x6 matrix. Each row has one common wire, and each
column does too. In software, each row is set to high, while
a loop checks the input level on the column pins. If a button
is depressed, the corresponding row and column pins will
be connected. The software then figures out which buttons
are depressed.
Setting up the potentiometers was very easy. The

potentiometer has 2 pins, one for VCC, one for GND and
another for output. VCC and GND were connected to 5V
and GND on the RPi respectively, and output was
connected to one of the input channels on the ADC. The
ADC utilizes a Python library to interface through I2C, and
the voltage value at the input channels can be read in
Python.
Power delivery to the RPi is handled by the PiSugar

Power Management HAT. It supports I2C and has a Python

7
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

library for checking battery charge level. Out of the box the
PiSugar is bolted onto the back side of the RPi, making
contact with all the power related GPIO pins. However,
during final packaging, we found out that the height of the
RPi combined with PiSugar was too large. We switched to
mounting them separately, and using wires to connect them
together. Originally we only connected one 5V and one
GND wire. The RPi kept showing a low voltage warning,
but the measured voltage at the 5V terminal was over 5V. It
turned out that regardless of whether it's low on voltage or
current, the RPi will always signal a low voltage warning.
The single 5V and GND wires did not deliver enough
current to the RPi. The problem got solved when we wired
all of the RPi's power related GPIO pins to the PiSugar.
The last piece of the hardware puzzle is the enclosure

design. We borrowed inspirations from GT3 and Formula 1
racing steering wheels, and went for a rectangular shape.
The user would hold onto the 9 and 3 o'clock positions and
never let go while using the steering wheel. Since the
enclosure was going to be 3D printed, we weren't very
confident with the strength PETG material can deliver.
During design, margins were left fairly large to allow for
any errors when assembling, and to avoid potential failure
points. The screen and buttons were mounted on the top
face, while the rest of the hardware components were

mounted inside the base enclosure. The top face screws
onto the base enclosure for a full package.

B. Software Systems: Gyroscope Tuning
The goal of the gyroscope tuning algorithm is to

accurately determine the steering wheel's orientation and
filter out noise generated during the measurement and
orientation evaluation process.
The algorithm receives data from the IMU-20948 board

installed on our steering wheel, with the roll axis of the
IMU representing the axis we want to measure for the
steering wheel's rotation. The IMU provides angular rate
data from the gyroscope, indicating the rotation speed of the
device; acceleration data from the accelerometer, which
measures linear acceleration along the x, y, and z axes due
to motion and gravity; and magnetic data from the
magnetometer, which captures the strength of the magnetic
field along the x, y, and z axes of the sensor.
The gyroscope tuning algorithm employs a Madgwick

filter [11] to determine the orientation of the steering wheel.
The Madgwick filter is a popular sensor fusion algorithm
used for determining the orientation of objects in 3D
rotations by combining data from accelerometers,
gyroscopes, and magnetometers. The algorithm transforms
and combines the data from these sensors into quaternions
to calculate the 3D rotation. It uses accelerometer and
magnetometer data to apply gradient descent, minimizing
the error between the predicted orientation based on the
current quaternion and the readings from these two sensors.
Then the algorithm fuses the step from the gradient descent
with gyroscope data to compensate for gyroscope drift,
ultimately integrating the combined quaternion and

returning the normalized quaternion output. The Madgwick
filter is a complex algorithm, so we decided to use functions
from the madgwick_py library by the Cognitive Systems
Lab (CSL) of the Karlsruhe Institute of Technology [12]. To
better tune the Madgwick filter here, we need to carefully
decide the learning rate for the gradient descent here. We
choose beta = 0.8 as its learning rate, as this allows the
Madgwick filter to give quick response to rapid rotations,
while limiting the oscillation of the gradient descent results
in a reasonable range. We will describe the reason behind in
detail in the design trade-off section.
The gyroscope tuning algorithm converts normalized

quaternion values to Euler angles in the ZYX (yaw, pitch,
and roll) sequence. The design here aims to address the
gimbal lock problem of Euler angles, which occurs when
two rotational axes become aligned, leading to a loss of one
degree of freedom in the system. In our design's scenario,
the gimbal lock problem arises when the pitch angle
approaches 90 degrees, which means we place the steering
wheel's screen parallel to the ground, if we use the
commonly used XYZ (roll, pitch, yaw) sequence
quaternion-to-Euler conversion, which cannot generate
meaningful roll axis rotation readings in this case. By
adopting the ZYX sequence, the algorithm mitigates the
influence of gimbal lock and provides reliable orientation
when the steering wheel's screen is near parallel to the
ground. This is achieved by changing the sequence of
rotations performed along the axes, which, in turn, alters the
scenario in which gimbal lock occurs.
The gyroscope tuning algorithm employs a Kalman filter

to mitigate measurement and processing noises resulting
from the Madgwick filter. The Kalman filter aims to
stabilize the output from the Madgwick filter, which can
vary due to measurement errors in the IMU and oscillations
from the gradient descent step of the Madgwick filter. In
each iteration, the output from the Kalman filter is derived
by adding the filter's current state, which serves as the
orientation prediction, to the product of the filter's
uncertainty and the difference between the new
measurement and the prediction, and the uncertainty is
changed by the processing noise in each iteration. By
optimally combining predictions based on the current
orientation estimation and new measurements from the
IMU sensors after processing by the Madgwick filter, the
Kalman filter reduces its uncertainty and iteratively refines
the state estimates.
The gyroscope tuning algorithm linearly maps the filtered

angle readings in degrees to analog readings, simulating the
analog output of joysticks within a range of +/- 32,000. This
range represents the joystick's movement from the leftmost
to the rightmost side. Additionally, the output of the gas and
brake knobs is mapped from a range of 0 to 255 that
satisfies the 0.5% accuracy design requirement to a range of
0 to 1, which is required by the joystick's triggers as their
inputs. A deadzone is applied for gas and brake knobs’
readings that are less than 10 or greater than 245, setting the

8
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

readings to 0 or 255, respectively. This design choice
accommodates users who may not be able to fully press the
throttle or brake, ensuring that they can effectively control
the input.

C. Software Systems: Communication & Data Flow
To establish the connection between RPi and PC, a client

and server model with Python Socket is used. In our
implementation, RPi acts as the server and PC acts as the
client. The protocol used to achieve Bluetooth
communication is RFCOMM protocol which supports
simple and reliable communication between two devices.
The protocol is supported by the Socket library. In order to
connect the two devices, RPi creates a socket object, binds
itself with RPi’s Bluetooth Address and listens on port 1.
Then, the PC creates another socket object, connects to
RPi’s Bluetooth Address on port 1, and starts receiving and
sending packets.
In the actual implementation, as shown in the software

block diagram, two servers are created on RPi and two
clients are created on the PC. The server and client
connected via port 1 is used for communicating input
information and controlling the game. The second server
and client connected via port 2 is used for sending car
information back to RPi from the PC. The reason for this
separation is to ensure that our controller inputs can be sent
to the PC and control the game with as least interference as
possible. The flow of sending car data and updating the
dashboard therefore can be separated and run independently
on another client and server process.
The packet format sent between RPi and PC is JSON.

The button and sensor information are first stored in a
Python dictionary which is then changed into JSON format
on RPi. The RPi then sends the packet to the PC which
decodes the data back into a Python dictionary to read the
raw inputs. The car information sent from PC to RPi is in
the same format. The RPi converts the JSON information
from the PC into a Python dictionary to access gear, speed,
and RPM information.
To establish connection between the main Python

program running on PC and the game running on PC itself,
outgauge mode is enabled on the game. The outgauge mode
allows the game to act as a server to listen for connection on
localhost, port 4444. Our helper program on the PC
connects to the game on port 4444 at localhost to
continuously read and write car information into a file
without blocking. This allows our main program to only
need to read the most current car information from the file
and send it to RPi without contacting the game that takes
extra time. Through this implementation, we are able to
separate the data sending to RPi logic and the game data
reading logic on the PC.
To establish connection between main Python program

and the frontend dashboard implemented in HTML, CSS,
and Javascript, with its source code from Codepen [13], on
RPi, a NodeJS simple backend framework Express is used
to act as a middleman that can handle POST request of most
recent car information from the main Python program and
GET request from the frontend Javascript that wants to

update the HTML on the car dashboard. Once the main
Python program on RPi receives the JSON car data from
the PC, the main program makes a POST request to the
Express backend running on localhost port 3000 and
continues to listen for the next car information without
taking extra time to communicate with the frontend. Once
the car data is updated in the Express backend, the frontend
Javascript running separately on the browser makes a GET
request to the backend at localhost port 3000 to update the
data. Since Express supports handling concurrent requests
and updates, we are able to separate the data receiving and
dashboard updating logic on the RPi.

D. Software Systems: Key Mappings & Game Control

To control the game on the PC, the program uses
vgamepad (Virtual Gamepad) library that can emulate an
XBOX360 controller [14]. The library provides function
calls that allow users to specify which button is pressed or
released and in what direction have the joysticks moved by
entering 0 or 1 for button pressing and x and y coordinates
for joystick movements. In order to translate raw inputs that
correspond to XBOX360 configurations provided by the
library, the program maps the raw button values to the
button and joystick values corresponding to the XBOX360
specified by the library. Once the raw inputs are mapped,
then the program calls the button and joystick update
methods provided by the library to control the game. Each
update is done once a JSON packet of raw inputs are
received from RPi on the PC. Once the updates are done,
the main program then goes to the next loop and listens for
the next JSON packet for updates. Since the loops are run in
an expected input latency, there are frequent update method
calls within a second just as if a gaming controller is
actually controlling the game.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for Gyroscope Drift
Gyroscope drift is a common problem with orientation

estimation based on angular velocity from gyroscopes. We
can measure the gyroscope drift by placing the steering
wheel on a flat surface, and then check the output of the
gyroscope tuning algorithm for over 60 seconds. To pass the
test we need the algorithm output to change within the
range of +/-1 degree after 60 seconds.

9
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

From the graph we can see that after 60 seconds, the
reading changed by 0.3 degrees, which is smaller than our 1
degree goal. Throughout the 60 seconds period, the
distribution of the filtered output is within the +/-1 degree
range of goal. The noise from raw measurements limits us
from exceeding our target, since the large learning rate
makes the Madgwick filter overshoots and cannot give us a
stable measurement.

B. Results for Gyroscope Accuracy
We measured the gyroscope accuracy by placing the
controller in various predefined orientations. We chose roll
angles of 0 degrees, 90 degrees, and -90 degrees. These
positions were checked by referencing the Measure app in
iOS. In each of the positions, we hold the controller for 60
seconds and check the smallest and largest output. The
values can be seen in the table below with degree as the
unit:

Real angle Smallest output Largest output

0 -1.2 1.1

90 91.0 89.2

-90 -90.0 -88.9

The controller was able to output values in the
neighborhood of the desired values. Though it does not
meet the requirements for difference within ±1 degree, the
project is still able to limit the range within ±1.2 degrees.
This is limited by the oscillation of Madgwick filter output
due to its high learning rate to achieve a fast response for
rotations.

C. Results for Input Latency
Input latency is measured by measuring the time it takes

to run one loop on the main Python program that handles
input reading and communication on the RPi. The total loop
time is equal to the sum of button and gyro input processing
time and message round trip time (RTT) which represents
the time it takes to receive an acknowledgement from the
PC after sending a packet to the PC from RPi as shown in
the equation below

𝐿𝑜𝑜𝑝 𝑇𝑖𝑚𝑒 = 𝐼𝑛𝑝𝑢𝑡 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑅𝑇𝑇
Since the RTT includes the time for the RPi to handle the
acknowledgement sent from the PC, we approximate the
input latency by dividing the loop time by 2 such that

𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ≅ 𝐿𝑜𝑜𝑝 𝑇𝑖𝑚𝑒 / 2
We measured the average of 1000 loop time for each
distance at 0.5m, 1m, 1.5m, and 2m between the 2 devices
to simulate different gaming environment settings. Based on
the results, the average loop time at each distance is lower
than 40ms, indicating that our approximate input latency is
less than 20ms, as shown in the figure below.

D. Results for Final Product Layout
Based on the final product layout, we achieved the goal

by incorporating 12 buttons through a 2 x 6 button matrix in
the middle of the controller and two analog knobs for
acceleration and brake. The case is 3D printed as specified.

E. Results for Weight
The weight for the controller is measured on a scale. The

total weight is 660g which exceeds the specification of
400g. One main contributor to the weight is the 3D printed
enclosing. We have measured that if the enclosing is printed
with thinner walls and tighter packing of hardware, there
will be 150g less enclosing weight contributing to the total
weight. If we have enough time, we can also reduce the
weight by using PCB instead of breadboard and wiring
connections.

F. Results for Battery Life
The battery life we calculated is around 4.6 hours. Using

a multimeter at the battery terminals, we measured the
steady power draw of our system to be around 4 Watts. Our
battery is 5000 mAh, or 18.5 Wh at the rated voltage. This
gives us roughly 4.6 hours of battery life. This does not
meet our design goal. We originally had a design
requirement of a battery with size > 6960 mAh. However,
during parts ordering and implementation, we found out
that, firstly, the PiSugar does not come with a battery larger
than 5000 mAh. Then we considered using an alternate
battery and doing some custom wiring. This was not
implemented because the extra weight a heavier battery
would bring is too much for our system. We want to
prioritize the comfort of our users. The
shorter-than-designed battery life is one of our unfortunate
trade offs. In the future, however, instead of using a bigger
battery, we can look into how to lower the power
consumption of our system. Maybe a screen with a slower
hardware refresh rate, a processing unit with more
dedicated features (less bulky than RPi), or some software
tricks to put unused hardware to sleep.

G. Results for Response Time of Rotation
Our use case requires the project to be able to reflect a

180-degree rotation within 1 second. To test this, the
steering wheel is placed at -180 degrees on the table, and
the tester rotates it as quickly as possible. We then examine

10
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

the log of the gyroscope output to determine if it reflects the
change within 1 second. The plotted result is shown below:

From the plot we can clearly see that the reading changes
180 degrees in around 0.8 second, which is within the 1
second goal. The oscillation due to the high learning rate of
the Madgwick filter stops us from performing better, since
if we increase the learning rate larger it will give us a higher
oscillation and makes our noise filter work harder.

VIII. PROJECT MANAGEMENT

A. Schedule
Please see the attached Project Schedule.

B. Team Member Responsibilities
Xiao Jin was responsible for building the hardware

system. He researched and purchased the hardware
components. He soldered the wiring for the components
with the RPi. He also designed and 3D printed an enclosing
shell for the controller and packed all the components
inside.
Qiaoan Shen was responsible for handling sensors such

as gyroscopes and analog pedals. He conducted research on
orientation estimation and rotation representation. He
implemented algorithms to process sensor readings and
fine-tuned the results for our use cases.

Yuxuan Zhu was responsible for implementing the
communication program between RPi and PC, PC Python
program and game, and RPi Python program and frontend
dashboard code. He modified the code for the dashboard
and implemented a NodeJS backend to handle car data from
the Python program.

C. Bill of Materials and Budget
Please see the table Bill of Materials at the end.

D. Risk Management
1) The biggest risk factor in our project is the tuning of the
gyroscope output. We previously have had no experience
with a gyroscope, and having to use an algorithm to
consolidate potentially all 9 channels of data could be very
challenging. In the event that a complicated algorithm does
not work as expected, or if we run out of time, we will
consider making compromises on the performance of the

controller, for example, downgrade from sensing 3-axis
movement to only sensing 1-axis movement.
2) Bluetooth communication is another risk factor in our
project. Though there is a well-known package called
Pybluez for Bluetooth communication in Python, the
package is now currently maintained and does not support
the newest Python versions. Initially there was a lot of
trouble installing Pybluez and importing the package in
code as system errors appeared frequently. Before finding
the less documented Bluetooth socket currently used in the
project, the mitigation strategy was to use USB cable
instead of Bluetooth. If a basic communication couldn’t be
established between the two devices, we wouldn't do further
testing and our project would fail.
3) Loss of code on the hardware is another risk factor. If the
code developed is not backed up in time and there is a
hardware issue that removes all the codes, then all the
progress will be lost. To ensure that codes are available, we
pushed all our code to Github regularly. We also created
separate branches for programs related to communication
and programs related to hardware and gyro tuning so that
we can all make progress separately without constantly
causing merge conflicts.
4) Hardware itself is another risk factor. The RPi might
break, the sensor might be broken, and the screen might be
smashed. In order to have a second layer of security, we
borrowed another RPi4 from the ECE Department and
bought another LCD screen. Not only additional hardware
components provide prompt replacements when things fail,
they also allow a second member to develop using the
hardware simultaneously.

IX. ETHICAL ISSUES
Since our project is a gaming controller, there are

naturally concerns towards misuse or addiction to games.
First of all, our intended use is for users who love driving

with a physical steering wheel while playing car driving
games without worrying about buying a bulky and
expensive steering wheel set connected to a PC through
wires. However, the worst case scenario relates to users
who spend so much time that they cannot differentiate a real
steering wheel from our mobile steering wheel.
A specific scenario could be that the user remotely

connects the steering wheel to a PC and starts playing. The
game the user is playing is a racing game that has a global
ranking online and the user wants to rank No.1. In order to
achieve this goal, the user plays day and night without
going out of his home. When the user starts to drive a real
car to buy some groceries after days of lockdown, the user
still feels like driving a mobile steering wheel. However,
when turning, the user only rotates the wheel to an angle
that can turn a car in the game but not in real life, so the
user hits the other cars and is fatally injured.
Second of all, people who may easily get addicted to the

game will be vulnerable to our product. If someone plays
the game too much with our controller and doesn't drive in

11
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

the real world frequently, they may get too tired physically,
but cannot realize that mentally because they are highly
excited. Long term, this can cause health concerns that can
potentially lead to horrible outcomes such as death.

X. RELATED WORK

Our whole idea stems from the experience of using
smartphones to play racing games. Racing games on
smartphones often utilize the gyroscopic data to translate
tilting of the phone to steering the cars.

XI. SUMMARY

A. Future work
We have two main plans for the future. As we realize a

smartphone has all the hardware components we have, we
can possibly incorporate it into our design. We also want to
redesign the shell of the steering wheel to be more
ergonomic.

B. Lessons Learned
The final product turned out to be more complex than we

initially envisioned. Most of the technologies were new to
us, but through learning, we managed to grasp them.
Integration proved to be the most challenging aspect, and
we should always allocate ample time for integration and
testing in future projects. For future students who wish to
continue working on this project, we would like to
recommend focusing on the gyroscope tuning section,
which is the core of the project. The steering wheel relies on
the potentially unstable results of this section to control the
car in the game, and hence it’s the most difficult part of the
project.

GLOSSARY OF ACRONYMS

IMU - Inertial Measurement Unit
ADC - Analog-to-Digital Converter
PC - Personal Computer
RPi - Raspberry Pi

REFERENCES

[1] FORMULA, “The fastest lap in F1 history - Lewis Hamilton’s pole
lap | 2020 Italian grand prix | pirelli,” 05-Sep-2020. [Online].
Available: https://www.youtube.com/watch?v=2f1PtJV0vIs.
[Accessed: 06-May-2023].

[2] J. Baldwin, “Drivers Eye At Spa Francorchamps In A McLaren 720s
GT3,” 16-Sep-2022. [Online]. Available:
https://www.youtube.com/watch?v=B4JAEGYEqQo. [Accessed:
06-May-2023].

[3] Frame Counting, “PS5 DualSense vs Xbox series X/S controller
input lag test - just the controllers,” 26-Dec-2021. [Online].
Available: https://www.youtube.com/watch?v=UXS_0tub_Jk.
[Accessed: 06-May-2023].

[4] “Smartphones weight ranking - comparison list,” Techrankup.
[Online]. Available:
https://www.techrankup.com/en/smartphones-weight-ranking/.
[Accessed: 06-May-2023].

[5] C. Hoffman, “Bluetooth 5.0: What’s Different, and Why it Matters,”
How-To Geek, 27-Feb-2018. [Online]. Available:
https://www.howtogeek.com/343718/whats-different-in-bluetooth-5.0
/. [Accessed: 06-May-2023].

[6] “How much power does the Pi4B use? Power Measurements,”
RasPi.TV, 25-Jun-2019. [Online]. Available:
https://raspi.tv/2019/how-much-power-does-the-pi4b-use-power-mea
surements. [Accessed: 06-May-2023].

[7] Adafruit Industries, “HDMI 5" Display Backpack - Without Touch,”
Adafruit.com. [Online]. Available:
https://www.adafruit.com/product/2232. [Accessed: 06-May-2023].

[8] “Xbox Wireless Controller,” Xbox.com. [Online]. Available:
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-c
ontroller. [Accessed: 06-May-2023].

[9] GENERAL DESCRIPTION, “World’s lowest power 9-axis MEMS
MotionTrackingTM device,” Sparkfun.com. [Online]. Available:
https://cdn.sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.
3.pdf. [Accessed: 06-May-2023].

[10] Datasheets.com. [Online]. Available:
https://www.datasheets.com/en/part-details/bno085-ceva--inc-405190
273. [Accessed: 06-May-2023].

[11] S. O. H. Madgwick, A. J. L. Harrison and R. Vaidyanathan,
"Estimation of IMU and MARG orientation using a gradient descent
algorithm," 2011 IEEE International Conference on Rehabilitation
Robotics, Zurich, Switzerland, 2011, pp. 1-7, doi:
10.1109/ICORR.2011.5975346.

[12] J. Böer, “madgwick_py: A Python implementation of Madgwick's
IMU and AHRS algorithm.” Accessed on May 5, 2023, [Online].
Available: https://github.com/morgil/madgwick_py

[13] Chmood, “Car speedometers with engine sound,” Codepen.io.
Accessed on May 5, 2023. [Online]. Available:
https://codepen.io/Chmood/pen/MaBZdM.

[14] Y. Bouteiller, vgamepad: Virtual XBox360 and DualShock4
gamepads in python.

12
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

fig. Team Schedule

13
18-500 Final Project Report: Team B3 Mobile Steering Wheel 05/05/2023

