
1
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

Mobile Steering Wheel
Xiao Jin, Yuxuan Zhu, Qiaoan Shen

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Our design is a wireless video game controller
system capable of detecting gyroscopic input, dedicated to
function with BeamNG.Drive. For driving simulation games such
as BeamNG.Drive, having a steering wheel controller helps
tremendously with the level of immersion users can get. However,
such steering wheel controllers tend to cost more than 10 times
the cost of a generic gaming controller. Our wireless steering
wheel controller is designed to expand on the abilities of generic
controllers, by adding 360 degree angle sensing to simulate
turning a steering wheel, a 5 inch LCD display for vehicle
information, and a 3D printed enclosure that resembles real
steering wheels in race cars. The whole package weighs around
400 grams, around the average of what smart phones weigh
nowadays.

Index Terms—Design, controller, driving, gaming, racing
simulator, steering wheel, wireless

I. INTRODUCTION

SIMULATED Racing, or simply Sim Racing, is a form of
entertainment involving the simulation of driving or racing
cars on computer games. Over the years, enthusiasts have
evolved from using keyboard control, to dedicated game
controllers, and now to full custom-made cockpits with 1:1
replication of real cockpits. Such sim racing cockpits often
cost more than a few thousand USD, making it an extremely
high bar of entry, and for this reason sim racing has been a
very niche hobby. However, during the COVID-19 lockdown,
an influx of newcomers surprised the sim racing community.
As active members of this community, we were thrilled to see
so many people interested in joining sim racing. It was
unfortunate, however, for enthusiasts to learn that many
people were turned away by the high cost of controller devices
such as steering wheels and pedal sets. There simply isn't a
controller on the market that combines the affordability of
generic game controllers, and the immersive experience from
an enthusiast-grade custom sim racing cockpit.

There is a void in the market for a cheap sim racing
controller with immersive gaming experience, and our project
is going to fill this void. As users of sim racing controllers
ourselves, we brainstormed some use cases for such a product.
The product will be used to control one of the most popular
sim racing games, called BeamNG.Drive. It will resemble a
steering wheel in a Formula One race car to introduce some
level of immersion. It must be portable, in the sense that users
can just stuff it in their backpack and take it on a trip. This
means that such a product will not have force-feedback
functionality, one of the reasons why some steering wheel

controllers are very expensive. For people who are just trying
out sim racing, however, force-feedback is not a necessity.
This means that our product can be a free-floating, steering
wheel shaped controller. Accurate steering input, on the other
hand, is vital to sim racing. Traditionally when casually
playing racing games, people simply use the arrow keys on
keyboards to control acceleration, braking and turning. In
order to achieve a high level of immersion in sim racing,
controllers need to have analog acceleration, braking and
steering inputs. Our product will have analog steering angle
sensing capabilities, to simulate the effect of turning a steering
wheel, even though there is no fixed axle the wheel should be
attached to (steering column). Our controller will also support
wireless connection to PCs, making it an ultimate package for
maximizing portability.

Although portability is one of the biggest features of our
controller, it is still important to retain some level of
immersion. After all, it was the "simulated" aspect of sim
racing that attracted people who used to play arcade style
racing games. Compared with the XBOX Wireless Controller,
which has a joystick for analog steering input, our product
adds a more intuitive way of sensing the degree of tilt, making
users' hand movement similar to turning the steering wheel in
a real car. Our controller will also have a small form factor
LCD display facing the user, so the user can choose to display
some vital information about the car they are driving, just like
how a real car's instrument cluster works. Compared with a
more hardcore steering wheel controller such as the
Thrustmaster T300RS, a very popular steering wheel
controller setup amongst enthusiasts, our controller eliminates
the accelerator and brake pedals, while still offering analog
triggers for the same function. Our controller also does not
have a heavy base that needs to be clamped onto a desk, unlike
the Thrustmaster T300RS, and that means the complicated
force-feedback function is also gone.

Overall, our controller eliminates some high-end features of
existing steering wheel controllers, while retaining the core
functionalities without breaking the bank, in a portable
package that users can carry around in a backpack. The goal is
to significantly lower the level of commitment, both in terms
of money and space, required to get started with sim racing,
and to attract more people into the wonderful world of sim
racing.

II. USE-CASE REQUIREMENTS

1) The controller should be able to detect the controller tilt
angle in 360 degrees when users rotate the controller. 2) The
controller should be able to last for 8 hours in order to create a
smooth gameplay without having users to charge frequently.
3) The controller should have 14 buttons and 2 analog inputs
to function similarly like XBOX and PS5 controllers on the
market. The buttons on the controller can be programmed to
simulate various functionalities on a real steering wheel. 4)
The delay between the time when the user presses a button or
makes a rotation on the controller and the time when the car
moves should be less than 20ms. Similar controllers also have



2
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

Fig. 1. System Architecture Block Diagram

input delay under this metric because otherwise the game will
lag too much and won’t be playable. 5) The weight of the
controller should be less than 400g. A controller that weighs
more than 400g will cause strain on the user's arms and hands
as they hold it for a long time in the air. Many popular game
controllers also weigh less than 400g. 6) An LCD display is
required to present car information such as speed and
acceleration on the controller. The delay between the time the
game outputs the data and the time the controller receives the
data should be less than 20ms. 7) When the controller is
parallel to the ground, the car should move in a straight line.
When the controller rotates to a certain angle, the steering
wheel inside the game should also rotate to a specific angle.
The relationship between the tilt angle detected and the angle
of the steering in the game should follow a predetermined
equation. 8) When pressing the accelerator analog button, the
car is expected to accelerate at a speed predetermined by the
car type. When pressing the brake analog trigger, the car in the
game is expected to apply brake proportional to the amount of
trigger being depressed. The exact time is also dependent on
the car type used in the game.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our controller will consist of several sensors for getting
user input, an LCD screen for displaying key data from the
game to the user, a computation device to translate sensor data
to game controller output that is readable by a computer
program, some wireless functionality for the communication
between the PC and the controller, and a battery system for
cordless power. (See Fig. 1)

For the hardware side, our controller will be getting user

input from a range of sensors, including push buttons, analog
triggers and most importantly for us, the tilt sensor. When the
user pushes a button on the steering wheel, the computation
unit will recognize this event as a button push. When the user
depresses the analog triggers to a certain percent of travel, the
computation unit will record that amount of actuation. When
the user tilts the steering wheel to a certain degree to simulate
steering in a real car, the tilt sensor will recognize the degree
of tilt, and pass that data to the computation unit. The
computation unit will also be responsible for deciding the
content for display on the LCD screen. A battery system will
be responsible for providing power to the sensors, the screen
and the computation unit.

For the software side, a program will run on the controller to
consolidate all of the data from buttons and sensors. The
program will establish a remote connection with the PC that
runs the BeamNG.Drive game in order to send all the data
from the controller to the PC. Also, the program on the
controller should be able to interpret the car information
received from the PC so that it can control the LCD to display
car information such as speed and acceleration. The program
on the PC side will also establish a remote connection to the
program running on the controller so that it can receive the
button and sensor information. After receiving the raw
information, the program on the PC is responsible for
translating the raw button information into an input format
such that the game can understand. After the input is
successfully translated, there will be responses in the game. In
addition, the program on the PC will also aggregate game data
from the game in order to send them remotely back to the
controller for LCD display.



3
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

IV. DESIGN REQUIREMENTS

Based on the user-case requirements, we will determine the
design requirements as stated below.

The shell design should follow the requirement that it
should provide 14 buttons, 2 analog inputs and a screen to
provide functions similar to XBOX and PS5 controllers. We
need to design holes with radius no more than 5mm on our
shell to place those buttons on the shell. To satisfy the 400g
weight limit, the 3D printing shell should have no more than
10% infill to minimize weight.

The sensing system should allow users to perform 360
rotation on our steering wheel, and also be sensitive enough to
detect any change more than 0.1 degree. The gyroscope should
also be capable of processing a rapid tilting over 360 degrees
within half a second. The gyroscope system also needs to
consider the effect of the shaking of the user's hands, it should

Fig. 2. Hardware Implementation Block Diagram

filter out changes within 2.5 degrees in less than 50ms so that
the game will not be affected. The Accelerator and brake pedal
should also be included in the sensing system that should read
the user input from 0% to 100% pushed, with accuracy at
0.1%.

The software system has two requirements about data

transmission rate and latency. The latency should be no more
than 20ms since it’s a time that’s negligible for users to feel
the latency, hence we need to find our method to transmit data
within this time range. We need a fast and well-supported
communication standard, and Bluetooth is our choice based on
the requirements above. The software system also should not
transmit data more than 125kB/s so the communication will
not be blocked by too large packages. Our software system
should design a package format for transmitting data.

The hardware system should be able to connect all the
components and make sure the microcontroller reads the
correct data from sensors and be able to send packages to the
computer. It should also use the RPi to control a LCD screen
that has no more than 20ms latency so the effect of the latency
is negligible to user’s experience. To support an 8-hour battery
life, we investigated the power consumption of RPi. RPi 4B,

the RPi type we choose, usually drains the battery with a
current around 600mA. The power consumption can be
calculated by the formula 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝐼 * 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒  
and here we calculate the data as

. To satisfy the 8-hour battery600𝑚𝐴 *  8ℎ =  4800𝑚𝐴𝐻
life of our product, we determine that we need to use a battery
no smaller than 5000mAH.



4
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

Subsyste
m

Use Case Target Design requirements

Shell
Design

14 buttons and 2
pedals; 400g
weight limit

Holes radius less than
5mm and 10% infill for

printed parts

Sensing
system

360 degree
rotation,

acceleration and
brake pedals

Gyroscope accuracy at
0.1 degree change, noise

filter for less than 2.5
degrees change, pedals

accuracy at 0.1%

Software
System

20ms latency;
Data rate limit

Bluetooth;
< 125kB/s

Hardware
System

8 hour battery life > 5000mAH battery

V. SYSTEM IMPLEMENTATION

A. Hardware Systems
See Fig. 2 for a detailed block diagram. We will be using a

Raspberry Pi 4B as the computing device on the controller. All
the sensors will communicate with the RPi, and the RPi will
handle display output and Bluetooth communication as well.
The IMU-20948 board will be responsible for sensing 3-axis
gyroscope data, and communicating with RPi through I2C
protocol on address 0x69 as specified in the datasheet. The
analog trigger will consist of a 10K Ohm potentiometer and a
ADS1115 16-bit ADC. The ADC is extremely important here,
since RPi does not have a dedicated analog input, and is
notorious for poor handling of analog signals. the ADC will
communicate with RPi using I2C on address 0x48. Python
library smbus2 will be used to read data from I2C registers.
There will be 16 momentary push buttons wired in a 4x4
matrix. The 4 rows will each connect to GPIO pins 17, 27, 22
and 10, while the 4 columns will connect to pins 9, 11, 23 and
24. The Python package RPi.GPIO will be used to read button
matrix pin states, and update the buttons being pressed. An
HDMI 5'' LCD display will be connected to the RPi through
HDMI port and USB cable for 5V power. For power supply
for the whole system, we chose Pisugar 2 Plus Power
Management board. It connects to the back of the RPi via
metal contacts, and does not occupy any GPIO pins. With that
said, it does offer I2C communication capabilities, if we
decide to implement that. With I2C, Pisugar will be able to
communicate with RPi regarding low power sleep state,
automatic power on, and so on.

B. Software Systems
See Fig. 3 for a detailed block diagram. There will be three

main programs developed for this game controller system. The
first two programs will run on RPi and the second program
will run on PC. All programs will run in the Python
programming language and the code will be stored on Github
for version control.

The program to tune sensors will transform data from analog
output of pedals and gyroscopes to a more user-friendly output
to send to the PC. Its main focus will be filtering out the noise
from users’ hand shaking and changing sensitivity to a more
user friendly way. For the first target, a Gaussian filter will be
applied on the input gyroscope readings based on the changes
less than 2.5 degrees within 50ms.

Except for the filtering part, the tilt sensor will also treat user
inputs at two different speeds. If the user turns the steering
wheel rapidly over 90 degrees, the system should identify the
user as making a sharp turn and will provide a faster response
that jumps the output directly to the user’s target angle. For
example, if the user suddenly rotates the steering wheel to a
place close to +180 degrees, it’s very likely the user wants to
turn right as much as possible, at this time the output will be
set to +180 degrees immediately. On the other hand, if the user
is slowly changing the degree in a long period of time, the
steering wheel should consider the case that these changes
may not be intended by the user and are due to the user's body
movement. In this case, the transformed gyroscope output will
be determined by the average angle in the past 50 ms to slow
down the change.

One last part of the sensing work is to transform the output
from analog pedals. When a user pushes the pedal over 95%,
will tune the data output to 100% to smooth the user
experience since the user is very likely just pushing the pedal
with large enough force.

To establish Bluetooth communication between RPi and PC,
Pybluez package will be used. The package provides useful
functions for devices to find service and devices. Just like the
traditional server and client communication program in socket,
the package allows the program to act as a server and advertise
itself to other devices. Other devices can act as clients such
that they can discover the advertised devices. The initial plan
is to set PC as the server and RPi as the client. Once the
connection is established in two programs, the two will send
and receive data in a while loop. The while loop in each
program contains a series of sequential logistics that handles
data reading from game or sensors and interpreting data.

On the RPi side, the logistics in the while loop will handle 3
core functionalities. The first will focus on reading data from
RPi buttons and sensors. In this part, the program will use the
Pigpio package which provides functionalities to read data
from GPIO pins and communicate with devices through
UART and I2C protocols. This part will mostly focus on
reading all the required data without doing processing and
interpretation. The second part will focus on transmission of
data using the Pybluez package as mentioned above. It will
first call a function that writes the button and sensor data
remotely to the PC. Then it will call a function that reads the
data from the PC which is the car data in the game. The third



5
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

Fig. 3. Software Implementation Block Diagram

part will be reading the car data and output necessary
information to the LCD display. This process also involves the
Pigpio package which supports UART and I2C
communication. Before outputting the information, the
program will also do some processing and formatting of the
data so that the data on the LCD display is readable.

On the PC side, the logistics in the while loop also handles 3
core functionalities. The first will focus on reading data from
the game. This step involves setting the game to outgauge
mode and binding the socket to port 4444 such that the
program can receive the game data. The second part will focus
on transmitting game data to the RPi side using Pybluez
package. After sending data to the RPi, this part will read data
from RPi to obtain the raw button and sensor data. The third
will focus on decoding the data from RPi. It will implement a
logic such that all of the inputs can be matched to Xbox input
in order for the game to understand. In order to achieve this,

PYXInput package which can simulate an Xbox controller
connected to a Windows PC. The decoded inputs will be
eventually called by functions in the package to control the
game.

VI. TEST, VERIFICATION AND VALIDATION

The project can be measured by two different perspectives,
including hardware and software perspectives.

Testing on hardware systems aims to make sure the product
has all its components connected properly. We need everything
in the hardware field like sensors to work as expected to
generate correct input and output. In addition to this, hardware
systems should also pay attention to limits like cost and
weight that are defined by our use case requirements for a
cheap and portable mobile device, though this usually means
some trade-offs on performance.

Testing on software systems aims to make sure the software
meets the requirements from the user experience perspective.
The software system should design an algorithm to tune the
data from pedals and gyroscope to allow a smooth user



6
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

experience and a working communication protocol to transmit
data from the controller to the computer inside the given time
limit.

A. Tests for Hardware I/O
We will perform tests on I/O accuracy when hardware

components are assembled. We will manipulate the steering
wheel to a certain angle to simulate the user input to our
device, and then check the readings from the gyroscope on the
microcontroller to see if the result matches the correct user
input. We will also send a sample package using the bluetooth
part to the computer to see if that works as expected.

B. Tests for Hardware Connectivity
After receiving the manufactured PCB board, we will move

all components from the breadboard and check if all
components are working properly on our PCB board. We will
check if all sensors are connected by pushing buttons and tilt
the steering wheel to see if we receive output from sensors as
expected.

C. Tests for Software Latency
We will use a slow motion camera to check the input

latency by counting the frames for the game to react after the
user pushes a button.We can calculate the latency in
milliseconds by the formula:

Latency = # of frames * 1000ms/fps
To pass the test, we need the latency to be less than 20ms so

that the latency will be negligible to the user.

D. Tests for Gyroscope Tuning
The gyroscope should be tuned to provide a better user

experience so that it should not be too sensitive to the shaking
of the user’s hand. We will shake the steering wheel by
changing the direction less than 2.5 degrees multiple times in
both directions within 50ms and the gyroscope should filter
out these inputs as noise. To pass the test, we should not see
any change on tuned gyroscope output after we perform the
shake above.

E. Tests for Data Rate
We will measure the data rate transmitted to make sure it’s

under the hardware limit to ensure the performance. We will
write a program to calculate the total size of data sent by the
controller and received by the computer per second, and the
test requires the transmitted data rate to be less than 125 kB/s.

F. Tests for Battery Life
We will fully charge the battery of the steering wheel. Then

we connect the controller with the game and measure the time
it runs out of the power as the controller continuously
communicates with the game. The battery should last more
than 8 hours to pass the test.

G. Tests for Weight
We will measure the total weight of our steering wheel by

an electronic scale. To pass the test the controller should be
less than 400g so the user will not feel tired holding it in their

hands.

VII. PROJECT MANAGEMENT

A. Schedule
The detailed schedule is shown on Fig. 4.

B. Team Member Responsibilities
Xiao Jin will be responsible for building the hardware

system. He will connect components with the RPi
microcontroller with a PCB board designed by himself.

Qiaoan Shen will be responsible for building the shell of the
steering wheel and deal with sensors like gyroscope and
analog pedals. He will build a 3D model for the product and
create algorithms to tune sensors.

Yuxuan Zhu will be responsible for the communication with
the PC game. He will focus on utilizing the API of the game
and create fast and reliable connection between the controller
and the game.

C. Bill of Materials and Budget
See Table I at the end of this report.

D. Risk Mitigation Plans
The biggest risk factor in our project is the tuning of the

gyroscope output. We previously have had no experience with
a gyroscope, and having to use an algorithm to consolidate
potentially all 9 channels of data could be very challenging. In
the event that a complicated algorithm does not work as
expected, or if we run out of time, we will consider making
compromises on the performance of the controller, for
example, downgrade from sensing 3-axis movement to only
sensing 1-axis movement.

VIII. RELATED WORK

There have been enthusiasts designing custom steering
wheels for sim racing systems. Their design works like a
detachable "button box", with only changes made to the style
of the steering wheel and the layout of the buttons on the
wheel. The wheel base, which offers the steering angle sensing
and force-feedback system, remains untouched. These custom
wheels, while not functioning the same way as our controller,
offer great inspiration when designing our own.

There are game controllers with built-in gyroscope control
on the market. However, none of them are tailored towards
racing games, in the sense that they do not feel like a "steering
wheel", and that they offer significantly worse immersive
experience than dedicated steering wheel controllers. Their
implementation, however, gave us the idea that integrating
gyroscope control into a portable game controller is feasible,
and that the level of accuracy, with the state-of-the-art
technology, is high enough for good performance.



7
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

IX. SUMMARY

Our design details our goal of implementing a wireless
video game controller system capable of detecting gyroscopic
input, dedicated to function with BeamNG.Drive. The
hardware on the RPi will be capable of sensing button presses
from the user and gyroscope data. The software will be able to
transmit these data to the PC side via bluetooth to control the
game running on it.

The design will significantly benefit the people who are
looking for a mobile controller that can have all the core
functionalities that an expensive game steering wheel has
without worrying about carrying the bulky steering wheel
around. The targeted users will be familiar with the buttons on
the mobile steering wheel as we adopt a design from the
expensive game steering wheel as well as generic game
controllers. For example, the screen that displays the car
information is a popular feature on game steering wheels
while the analog buttons that mimic accelerator and brakes are
common in generic game controllers. The users will find using
our mobile steering wheel with familiarity and ease since they
now can carry the controller around.

The most challenging part of meeting the requirements will
be bluetooth communication latency and gyroscope accuracy.
A slow communication can result in user input not reflecting
on the game on time. An inaccurate gyroscope reading will
cause the car to be not controllable as the car might move even
when the users are holding the steering wheel horizontally.

GLOSSARY OF ACRONYMS

RPi – Raspberry Pi



8
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023

Fig. 4. Schedule example with milestones and team responsibilities



9
18-500 Design Project Report: Team B3 Mobile Steering Wheel 03/02/2023


