
Mobile Steering Wheel
Team B3: Qiaoan Shen, Yuxuan Zhu, Xiao Jin

18-500 Capstone Design, Spring 2023
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Do you play racing games (RAC) to feel the thrill of Fast and
Furious? Do you envy the professional-grade racing
simulators? Come try out our Mobile Steering Wheel! Instead
of pushing buttons and sticks, you turn the car by turning our
controller! It is intuitive and precise, providing the ultimate
level of immersion, as well as every edge in competitive
scenarios.

System Description

System Evaluation

Conclusions & Additional Information

The hardware system (picture above) consists of all off the
shelf components, with custom wiring.

The final product is more complete than we first envisioned.
Most of the tech were new to us, but through learning we got
the hang of them. Integration is definitely the most difficult part,
and we should always leave ample time for integration and
testing in future projects.

We have two main plans for the future. As we
realize a smartphone has all hardware components
we have, we can possibly incorporate it into our
design. We also want to redesign the shell of the
steering wheel to be more ergonomic.

Controller data is transmitted through Bluetooth to PC to control
the game. Game data is sent back from PC to Pi to display car
information on dashboard.

Metrics Testing Approach Result
Weight Put controller on a scale 660g > 400g (goal).

Gyroscope Place controller on a flat
surface. Read raw Roll
angle and the converted
analog axis value

Drifting within 0.8 degree
after 60 seconds (goal: 1
degree). Oscillating within
range of +/-0.5 degree (goal:
0.5 degree).

Battery
Life

Measure the RPi's
power consumption and
calculate

4.6h > 4h (goal). 18.5Wh
(battery capacity)/4W
(power) = 4.6h.

Input
Latency

Use time.time() to
measure avg round trip
time/2

Avg round trip time ~= 33 ms
Input latency <= 20ms (goal).

RPi
Controller Overview (Left) & Component View (Right)

Display

IMU & ADC ButtonsBattery

PiSugar

Encoder

GasBrake

Buttons

Software
- Bluetooth communication is achieved using RFCOMM

protocol with Socket library through JSON packets
- A NodeJS backend is implemented for Python program to

post car data and for frontend to fetch the data concurrently

Gyroscope
- Use Madgwick filter to calculate orientation from IMU data
- Use ZYX sequence to transform from quaternion to euler to

mitigate gimbal lock
- Use Kalman filter to reduce noise and achieve smooth control

Hardware
- Button Matrix to achieve efficient wiring
- Encoder with ADC for analog input
- HDMI Display as game dashboard
- PiSugar HAT for power management

