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Abstract—A system capable of providing occupancy
and availability of gym cardio machines in real-time.
This system is specifically designed for stationary bikes
and treadmills. It aims to reduce the time wasted in the
gym as well as help students plan cardio workout ses-
sions in a time efficient manner. Incorporating sensors
and wireless communications, this system will reflect
this data via a web application available to students
and staff.
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1 INTRODUCTION

The life of a CMU student is busy to say the least. As
a result, time management is a big priority for many stu-
dents. However, there are some spaces of their day-to-day
lives they cannot really control. One of theses spaces is
the gym. Often times gym machines are occupied and a
lot of time can be wasted waiting around for machines to
become available. Can U Cardio? is a system that helps
students optimize the use of their time in the gym by pro-
viding real-time occupancy and availability of gym cardio
machines. The system employs proximity sensors to detect
occupancy which is reflected on a web application available
to students. This app could be used on-site during busy
gym times, or outside the gym prior to a workout. Thus,
our system aids students in planning out their workouts in
a time efficient manner that maximizes productivity.

Many occupancy solutions have been developed in the
past. However, none of the past projects tackle gym occu-
pancy. They focused on different spaces like dining loca-
tions and study areas, among others. Therefore our project
provides students occupancy data and information about
another specific space. In addition, many projects have
used computer vision as the method of occupancy detec-
tion. Can U Cardio? utilizes different technologies like
physical distance and proximity sensors to ensure a greater
degree of accuracy and speed than computer vision tech-
niques. Other solutions have used physical sensors with
good results. From what we’ve gathered, many of these
aimed for 1 minute detection latency and over 70% detec-
tion accuracy. Thus, we designed our system with the goal
of surpassing these metrics and successfully improved upon
existing solutions. Overall, Can U Cardio? is a viable and
useful tool for busy students and fitness enthusiasts.

2 USE-CASE REQUIREMENTS

With our use case in mind, we established requirements
that ensured our system is reliable and efficient for our
users. The first requirement is detection accuracy. A sys-
tem that does not reflect the true occupancy of a gym is
not useful. Thus, we set out to have an overall detection
accuracy greater than or equal to 90%. First, we needed to
properly and consistently identify a single machine as occu-
pied. Therefore, we wanted to fulfill a detection accuracy
metric on a per machine basis. In order to fit the overall
accuracy, this metric needed to be greater than or equal to
90%. Another component of overall accuracy is the accu-
racy of the mapping/layout. Our system must be able to
display the correct amount of machines available and occu-
pied as well as the correct mapping of each machine based
on the gym layout. Thus once more this metric required an
accuracy greater than or equal to 90% to satisfy the overall
goal.

The second use-case requirement is detection delay.
Since this is a real-time system, we must minimize the time
it takes to inform a user that a machine is currently occu-
pied. As a result, to justify the on-site use of our system,
the time it takes from detecting to updating the occupancy
information must be less than or equal to 30 seconds, since
this is typically the minimum amount of time it would take
a user in a busy gym to roughly scope out the layout and
determine which machines are available.

The third use-case pertains to usage time. The Uni-
versity Center gym is open from 6:30am to 11:00pm on
weekdays and from 10:00am to 9:00pm on weekends. This
means that our system must work continuously for at least
16.5 hours. Ideally, it would also function every day for
the specified amount of time with as little intervention as
possible. Yet the minimum requirement remains the time
the gym is open during the day.

The fourth requirement deals with the invasiveness of
the system. Users want no sort of interference throughout
their workouts. This interference can take different forms
depending on the method for occupancy detection that is
employed. Gym members do not want anything interfering
with their movements while using the machines. In addi-
tion, a gym that is cluttered with wires, possibly affecting
walkways and common areas, is not appealing or conve-
nient. Hence our solution needed to be small and compact
or employ methods that are not physically invasive on or
around the machines. However, with these alternate meth-
ods (like cameras), the issue of privacy also comes into play.
So, overall our solution needed to be minimally invasive,
small, compact, and private.
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3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

With our use case and use case requirements as center-
pieces, we proceeded to design our system with accuracy,
speed, durability, and comfortableness for the user as our
priorities. As a result, we wanted to have a system that
was simple yet efficient to accomplish our goals. For this
reason we opted to divide the architecture into two main
components: the sensor module, and the software frame-
work.

3.1 Sensor Module

The main question that shaped our design was centered
around which method we would use to detect occupancy of
the machines. In order to prioritize speed and accuracy
our team opted to go for physical distance and proxim-
ity sensors mounted on individual machines. Specifically
we decided to use a range detection IR sensor that pro-
vides reliable and easily manipulable readings to send to
a software framework. The chosen sensor was the Sharp
GP2Y0A02YK0F IR distance measuring sensor unit with
an analog output. Since our sensor is a range detector, it
works around the principle of outputting a range of volt-
ages depending on the distance between the sensor and an
object within its line of sight.

Now came the question of how to interpret and trans-
late the output of the sensor into data that could be sent
and communicated to our user. Since our sensor is analog
and outputs a range of voltages, we realized we needed a
programmable microcontroller that could process and ma-
nipulate this data before sending and transmitting it. We
also had to consider which communication protocol we were
going to use. We decided to utilize existing frameworks and
communicate this data via Wi-Fi in order to simplify the
process. Thus, we needed a microcontroller with analog
compatibility and Wi-Fi capabilities. As a result, we de-
cided to use the NodeMCU ESP8266 which has an analog
port and a built-in Wi-Fi module. This piece is also in-
credibly cheap and easy to program since it is completely
compatible with the Arduino IDE and its libraries, which
have a variety of applications and uses. The NMCU is also
open source which is convenient if we encounter problems
or roadblocks as this would allow us to obtain technical
support and customize and modify its operation to meet
our requirements and operational metrics.

The final component of our sensor module was the
power supply. Both the IR sensor and the NMCU work
at similar voltage ranges. Nonetheless, the deciding com-
ponent for our power supply is the IR sensor which has
a more restricted range of voltages it operates under than
the NMCU. The sensor operates anywhere between 4.5V
to 5.5V. Thus, we decided that a 5V power supply is best
in this case. With modularity and size in mind, we decided
to draw power from batteries. We opted to utilized high
capacity rechargeable Ni-MH batteries.

3.2 Software Stack

With the architecture of sensor module in place, we
shifted our focus on developing a way to receive the data
via Wi-Fi, store it, and display it for the users. Therefore
we needed some form of database framework to sort out
the data from each sensor module. In addition we needed
an appealing visual display on the front end to display the
occupancy data.

So, we conceptualized a software stack that would fit
these needs. The stack is comprised of an AWS EC2 in-
stance running a Django web application using Python and
ReactJS, as well as MySQL.

The web application is a Django web application cre-
ated with Python hosted on an Apache web server using
EC2. Django provides a secure framework for creating web
applications, and EC2 is a secure and highly configurable
method of deploying the Django web app. The front-end of
the web app is designed using ReactJS, and AJAX is used
in order to automatically update the web page to display
up-to-date information.

In order to receive information, the web application re-
ceives a JSON from the sensor module via a POST re-
quest. The JSON contains information about which equip-
ment the POST request is coming from, such as an ID,
whether the equipment is free or busy, the time the request
is sent, and a way to determine that the post request was
indeed made by one of the sensors. Once the data is re-
ceived and verified, the web application is updated and the
data is stored in the MySQL database. Although the de-
fault Django database of SQLite works with EC2, MySQL
is more scalable under load and provides more robustness
compared to SQLite.

Figure 1: The Software Stack, consisting of an EC2 in-
stance hosting the Django web app and MySQL

4 DESIGN REQUIREMENTS

Given the architecture of our system and the chosen
mechanism for occupancy detection, a couple design con-
siderations come into play. It was required to establish
requirements for our sensor module as well as the overall
system including the web app and AWS framework.

In terms of the sensor module, based on the machines
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Figure 2: Block diagram depicting connections and data flow of the system.

currently in use at the UC gym, we know that the farthest
detection range we will be dealing with comes from tread-
mills. In other words the largest distance between sensor
mounting points on the control panel of the machine and
the user will be on the treadmills. It has a track with a to-
tal running length of 5ft. Given that its dashboard console
is directly above the starting point of this track, it is safe
to assume that our users will be running anywhere from 1ft
to 5ft from our module. Thus, our sensor must have a de-
tection range between 0.5ft (= 6” ≈ 15cm) to 5ft (= 60” ≈
152cm). The upper bound of this range was instrumental
for the detection accuracy on treadmills, since we did not
want to mark the machine as occupied if someone passed
in front of it farther than 5ft from the control panel where
the sensor will be mounted.

With detection accuracy in mind, we needed a pro-
grammable microcontroller that allowed us to manipulate
the sensor data and fine tune it based on the type of equip-
ment the sensor module is installed on. This is especially
important when detecting occupancy in stationary bicy-
cles. Given that our sensor will have a maximum range of
5ft, more detailed and meticulous control will be needed
when working with bike sensor modules since the bike it-
self is no longer than 105cm (≈ 41.5” ≈ 3.5ft) according
to the manufacturer (LifeFitness). The distance between
the control panel of the bike or the handles (which are all
possible mounting points for the module) and where a user
will typically be seated is anywhere between 0.5ft to 2ft
from the sensor module mounting points. As a result, we
needed to establish a specific range within the one our sen-
sor provides in order to avoid the same problem described
above in the case of the treadmill. We did not want mark
a bike as occupied unless someone is actually sitting on it

rather than passing by.

The detection delay use case requirement translates into
a latency requirement for our system. As a result, our over-
all system needed to have a latency of less than 30 seconds.
This overall latency is composed by sensor latency, NMCU
latency, and AWS-MySQL-web app latency. Given that
the latency for our chosen sensor is around the millisecond
scale, the overall latency was primarily influenced by the
efficiency of the wireless (Wi-Fi) communication between
the modules and the server as well as the efficiency of the
data sorting program within the web application.

Opting for batteries reduced the invasiveness of our sen-
sor module reducing wires and connections, making it easily
mountable to the gym machines selected. With this design
choice, we also factored in the usage time use-case require-
ment. In consequence, we determined that our sensor mod-
ule composed of the IR sensor and the NMCU needed to
have a battery life of at least 16.5 hours to last through
the a whole day of gym operation. From inspecting the
documentation on each component we used, we knew that
the IR Sensor can take between 4.5 V to 5.5V of sup-
ply voltage and was expected to operate at 33mA. The
NMCU can take anywhere from 4.5V up to 10V with a
recommended operating voltage of 5V and was expected to
operate at around 80mA. The combined current drawn is
113mA. Therefore, we needed a 5V battery with a capacity
of roughly 1,864.5mAh (113mA times 16.5 hours).

5 DESIGN TRADE STUDIES

While envisioning our system, we identified two key ar-
eas that influenced our design and decided to perform some
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research in order to determine which approach and which
technologies would best fulfil our requirements.

5.1 Method of Detecting Occupancy

There are a variety of methods utilized to detect oc-
cupancy. Based on our detection accuracy requirement of
90% and our detection delay requirement of 30 seconds or
less, we explored two main options of detecting whether the
gym machines were being used or not.

5.1.1 Computer Vision

Our initial thought was to use cameras, paired with
computer vision algorithms to detect occupancy. Nonethe-
less, we noted significant concerns with this approach. One
of them is the accuracy of the readings. With a single cam-
era, depth, perspective, and resolution become issues. The
more muddled the picture becomes, especially during peak
hours of gym usage, the lower the accuracy of the readings
would be, which in turn would defeat the whole purpose
of our system. These concerns paired with the fact that,
depending on the size of the gym, there might not be an
optimal position for a single camera to record the whole
room in a single frame, indicated that multiple cameras
were needed to implement our system. As a result, we
were facing an added a layer of cost and complexity that
in our view was avoidable.

In addition, this also brings up the issue of the privacy
of the users. Many gym members might not be comfortable
with more cameras recording their workouts aside from the
ones already employed by the establishment for security
purposes. While it would be ideal to access these existing
feeds, its safe to say that the process is complicated and
the gym owners/managers might not be content with shar-
ing recordings, which makes the task of retrofitting existing
cameras in the gym quite bothersome and unclear. For this
reason we decided to explore other simpler, more accurate,
less invasive, yet easily scalable options.

5.1.2 Physical Proximity Sensors

Our other line of thought was to use proximity sensors
in order to detect occupancy. This approach certainly ad-
dressed the issue of privacy, keeping the user anonymous in
terms of occupancy metrics. These sensors allowed for con-
tactless sensing, making the system relatively non-invasive.
When it comes to accuracy, such sensors allowed for more
accurate readings given that the idea was to individually
mount them on each cardio machine. However, the mech-
anism and working principle of such sensor was also some-
thing to be considered and analyzed. For the scope of our
application we considered two types of proximity sensors.

• Ultrasonic Sensor: This type of sensor has advan-
tages like low current consumption which is good for
battery life. In addition, the object detection is not
affected by color or transparency. Nonetheless, when

detecting objects that are soft or have extreme tex-
tures this sensor is not suitable. The sensor’s readings
are sensitive to sound, which could be an issue in a
crowded and busy gym. Another aspect to consider
is the range, which in this case exceeds our require-
ments by a great margin (typical max of 400cm ≈
13.2ft). A lower detection range helps with detec-
tion accuracy since the sensor itself has a detection
limit closer to our standard. In addition, ultrasonic
sensors usually have wide angles of detection, which
is not ideal for spaces like our gym. Given that the
machines are placed consecutively besides each other,
dealing with a sensor that has wide angle of detection
is cumbersome and could lower detection accuracy.

• IR Sensor: This sensor draws more current which re-
duces battery life. In addition, it is more sensitive
to its environment and object detection is affected by
color and transparency. However, the UC gym is well
lit at night and not too bright by day so light sensi-
tivity is not a concern. In addition, IR sensors detect
a larger variety of textures with ease. Both IR and
ultrasonic sensors are usually distance sensors. How-
ever, IR sensors have less accurate distance readings
than ultrasonic ones. Nonetheless, our system does
not necessitate an accurate and precise distance mea-
surement. We merely need to detect if something is
there or not, which IR sensors are more than ade-
quate to do. Moreover, due to the physical principle
that drives IR sensors (light vs sound), IR sensors
are faster than ultrasonic ones, which is good for our
detection delay. IR sensor outputs are easily con-
densed to a single output voltage pin, which is easier
to manipulate than the 2 output trig and echo pins
typically associated with ultrasonic sensors.

Given the information compiled and its subsequent
analysis, we decided to utilize IR proximity sensors since,
despite some drawbacks like cost and power consumption,
the levels of detection accuracy and reliability they pro-
vide justify its selection over ultrasonic sensors and most
definitely over computer vision occupancy detection mech-
anisms.

5.2 Hosting Web Server

5.2.1 Raspberry Pi 4B

Initially, we envisioned using a Raspberry Pi 4B to host
the web application. The main benefit of using an RPi
is the lower cost due to not having to pay recurring fees
for AWS. However, hosting the web application on an RPi
would mean we would need access to CMU’s router in or-
der to allow port-forwarding. Additionally, the RPi is more
vulnerable to attacks such as DDoS, as well as physical at-
tacks that could damage the RPi. Finally, a single RPi is
not too scalable, as the more requests the RPi would re-
ceive, the more it would slow down. Clearly, this is not a
viable option.
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5.2.2 Amazon EC2

Instead, hosting was done with an Apache web server
utilizing Amazon EC2. The main benefits of EC2 com-
pared to hosting on the RPi are security and accessibility.
In terms of security, EC2 is far more secure than hosting
on an RPi given that AWS has various different security
tools compared to an out-of-the-box RPi. Furthermore,
unlike EC2, the RPi is prone to being physically damaged
or suffering from a power outage, which would shut down
the website. On the other hand, EC2 is far less likely to
experience these risks and therefore much more reliable.
Additionally, the aforementioned cost for EC2 is mitigated
due to use of the free tier, which allows 750 monthly hours
of a t2.micro instance which is sufficient for this project.
Therefore, the use-case requirement of usage time is met
as this system will continuously run as opposed to the RPi
which is more likely to experience interruptions.

6 SYSTEM IMPLEMENTATION

6.1 Sensor Module

The main component of our sensor module is, of
course, the IR sensor. The chosen sensor is the Sharp
GP2Y0A02YK0F IR distance measuring sensor unit. It
has three connecting wires: a wire for Vcc or supply volt-
age, one for GND or ground, and one for Vo or the output
voltage. The next component of the module is the NMCU.
We are using the NMCU 1.0 version. This board comes
with an ESP8266 Wi-Fi microchip, a CP2102 serial chip,
and is programmable using the Arduino IDE. To setup the
NMCU we downloaded some drivers to detect the port con-
nection of the board (CP2102 serial chip) to a computer
via MicroUSB and installed the ESP8266 board manager
in order to upload our programming to the board.

Recall that our sensor is analog, so we connected its out-
put to the A0 analog pin of the NMCU. Once connected
to the NMCU, this input is processed by a built-in 10-bit
resolution analog to digital converter. The converter trans-
forms our input into an ADC reading with a resolution of
5V/1024 or 4.88mV. In other words, the ADC outputs a
number from 0 to 1024 that is linear to the voltage from
the IR sensor, where 5V is the maximum voltage corre-
sponding to the max ADC reading. Using this number, we
manipulated our NMCU loop to set detection thresholds
based on voltage, ADC reading, and distance. While the
relationship between voltage and ADC is linear, the rela-
tionship between voltage and distance was more complex
and obtained from a manufacturer supplied graph in the
IR sensor datasheet. So the data flow is distance → volt-
age → ADC reading, and that last one is use to calibrate
detection depending on the machine (bike or treadmill).

Figure 3: Output Voltage vs Distance graph from Sharp
IR GP2Y0A02YK0F datasheet

Figure 4: Sensor, NMCU, and battery wiring diagram

Given our battery life and modularity requirement from
section 4, we opted to power the whole module using
rechargeable high capacity Ni-MH AA batteries in a 4-cell
switchable battery holder that supplies both the NMCU
and the sensor. The chosen batteries are manufactured by
Hi-Quick and each supply 1.2V and carry 2,800mAh. Thus
we utilized 4 batteries per module totaling 4.8V which is in
the range of operation of both components The IR sensor
and the NMCU. Each module has a total of approximately
11,200mAh, meaning that a single module will most likely
be operational for 6 days if interrupted (turned off at the
end of the 16.5 hour schedule of the gym) or 4 days unin-
terrupted. All these components are wired and soldered to
a small breadboard PCB. In parallel to the battery back
and the IR sensor a 100µF capacitor was added to sta-
bilize the power supply line coming into the sensor. The
fully assembled module is housed inside a 3D-printed en-
casing that was designed using Solidworks, exported as an
STL file, and printed utilizing the UltiMaker Cura software
compatible with the Creality Ender-3 printers available at
the Techspark spaces on campus. The 3D printer utilizes
standard PLA for fused deposition molding set with a layer
height of 0.2mm and an infill density of 20%.
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Figure 5: A single sensor module

Figure 6: Treadmill sensor module encasing

Figure 7: Bike sensor module encasing

Figure 8: Machine dashboards with highlighted sensor
module mounting positions

Even though the same 3D template was used for all
modules, specific changes were made depending on whether
the sensor was intended to be mounted on a bike or a tread-
mill. The bike module encasing is lifted up at an angle (ap-
proximately 35.6◦ with respect to the inclined bike dash-
board and around 25◦ with respect to ground level) to ac-
count for the fact that the dashboard mounting position is
directly in front and lower than the bike handlebars. Thus
we needed to raise the sensor to a range over the handlebar
to detect a user.

This alteration also helped with detection accuracy
since the angle was suitable enough to detect shorter users
and it reduced the error that would be present in a com-
pletely level (parallel to ground) measurement. These en-
cased modules are placed on top of the gym equipment
dashboard parallel and below the central console of the ma-
chine. Given that the people in charge of gym operations
would need to access the battery pack, we decided to not
fix the module in place and make it removable, essentially
sacrificing the safety of the module in order to obtain bet-
ter readings and make recharging more convenient. Thus
our mounting mechanism is not efficient nor realistically
sustainable. A proper solution would require more secure
fasteners that would directly tamper with the dashboard
and console, but we are not allowed to do this. The opti-
mal solution is to have the sensor powered by the machine
and integrated into the console so that we eliminate the
recharging hassle and reduce the risk of people tampering
with the sensor while also ensuring its continual use.

6.2 Software Stack

The Software Stack contains the EC2 instance that the
web application and MySQL is running on, the Django web
application (Python, React), and MySQL.

First, the Django web app follows the MVC (Model,
View, Controller) convention. The Models are in mod-
els.py and contain the data stored in the database. In our
case, the primary model we will be using is an Equipment
model, where each equipment would have once instance of
the model stored in the MySQL database. The fields of
this model include:

• status: The equipment’s current status, which can be
”free”, ”busy”, or ”down”

• machine: The type of equipment the machine is, ”bi-
cycle” or ”treadmill”. Defaults to ”treadmill”. This
field can be changed on the admin page.

• mac addr: The MAC address of the nodeMCU that
was used to register the device

• id: Django’s built-in, automatic field which serves as
the primary key

• internal id: An identifier used for mapping equipment
on the home page. This can be changed on the admin
page.
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Other models include Django’s built-in User model,
which is used to log in to the admin page, and an Hour
model, which is used to compute the average occupancy
per hour.

Next, the View is comprised of the static HTML tem-
plates presented. The View is what the user sees displayed
on their device when visiting the web application. More-
over, the View is updated by the Controller to display up-
dated information.

Finally, the Controller processes each request made to
the web application. For instance, Django’s urls.py speci-
fies which action in views.py to display given the url visited,
which is how www.canucardio.com/home knows how to dis-
play the home page and www.canucardio.com/info knows
how to display the information page. Django’s aforemen-
tioned views.py specifies which template to render. Actions
in views.py, when directed from urls.py, are passed in the
request made, so different actions can be done depending
on if a ”GET” or ”POST” request has been made. Addi-
tionally, the Controller is responsible for any calculations
or processing required, such as calculating the average oc-
cupancy per hour.

Therefore, our Django web app implements the follow-
ing:

• urls.py – Specifies which action to run depending on
the URL a request is made to

• views.py – Contains the actions that render the static
HTML web pages with the render() function, provid-
ing a context dictionary

• models.py – Contains the model objects used to map
to database (MySQL) via Object Relational Mapping
(ORM)

• Static HTML files – static HTML files contain what
is actually displayed to the user

• Static JS files – the JavaScript files will be required to
implement both the front-end with ReactJS as well as
AJAX to allow for automatic refreshing of the data

Next, the Software Stack runs on an Apache web server
on an EC2 instance. For this project, the t2.micro is being
used as it is part of the free tier and provides 750 hours of
monthly use, which we have determined to be enough for
our use case.

Finally, the way the Sensor Module contacts the web
application is via a POST request made. There are two
phases for the microcontroller - ”setup” and ”update”. In
the setup phase, the NodeMCU makes a POST request to
’http://canucardio.com/register’, sending a JSON with the
following information:

• key: A secret token used to verify that the POST re-
quest is coming from the nodeMCU and not an out-
side source

• mac addr: The NodeMCU’s MAC address

The ‘register‘ endpoint checks if the supplied key is
valid. If not, a 404 Response is returned. If the key is
valid, the web app checks if there is an existing Equipment
object with the supplied MAC address. If so, the response
encodes the existing object’s id as a JSON. If not, the web
app creates a new instance of the Equipment object, and
the response encodes the new object’s id as a JSON.

AJAX is used to asynchronously update the data pre-
sented on the home page. If a machine’s status is updated,
the web app will automatically reflect the change without
the user needing to refresh the page.

The ‘home‘ page illustrates a map of the Cohon Uni-
versity Center’s gym, with icons indicating whether a given
machine is free or busy. The ‘info‘ page presents the av-
erage occupancy per hour at the gym in order for users to
determine when the optimal time to go to the gym may
be. The ‘report‘ page allows users to report a machine
as down or broken, which is reflected on the main page.
Finally, the ‘admin‘ page allows a gym administrator to
edit machines’ internal ids, which allows them to edit the
machines’ locations on the home page, switch a machine
between ‘treadmill‘ and ‘bicycle‘, and delete machines.

Figure 9: The home page for the Can U Cardio? website

Figure 10: The info page, which displays average occupancy
per hour
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Figure 11: The report page, where users can click a machine
and submit a report that marks the machine as ”down”

Figure 12: The login page for admin

Figure 13: The admin page, where the administrator can
click on machines for advanced options

Figure 14: Admin’s advanced machine settings

7 TEST & VALIDATION

To test and validate our design we created separate test-
ing phases for each subsystem. Each phase aims to verify
and validate our 4 use-case and design requirements: de-
tection accuracy, detection delay, battery life, and invasive-
ness.

7.1 Results for IR Sensor Thresholds

Before thinking about our requirements we first had to
verify that our chosen components worked as intended. As
a result, the first set of test and trials we performed were
centered around the IR sensor. Our aim with this phase
was to understand how the sensor behaved and verify if the
manufacturer’s claims about distance versus output volt-
age were true, which would in turn determine if these were
viable options for our design. Thus we first tested the sen-
sors in the lab before integrating them with the NMCU.
The setup for the initial round of testing was informal
and mostly qualitative. We powered our sensor with a DC
power supply set to 4.8V and connected a 100µF capacitor
in parallel to stabilize the power supply line. We connected
an LED to the output voltage and ground, and observed
the voltage drop across it with a voltmeter. The sensor
was functional as evidenced by the fluctuating voltage as
we varied the distance as well as by the dimming of the
LED.

Knowing that our sensor was qualitatively behaving as
intended, we proceeded with the next phase and gathered
quantitative data. For this round, the setup was a circuit
very similar to the one depicted in Figure 4, with the ex-
ception that a lab power supply set at 4.8V was used rather
than a battery pack. In addition, we connected a voltmeter
in parallel between Vo (and A0 pin) and ground (GND) to
record the output voltage of the sensor. On the NMCU
front, a very simple Arduino script was developed using
the built-in ADC function to obtain a converted number
from the output voltage and display it in the serial moni-
tor and plotter from the IDE. For each trial, we stood at
a specific distance from the sensor according to a measur-
ing tape we had configured on the floor. We tabulated the
distance, the output voltage observed on the meter, and
the ADC reading displayed by the monitor to produce the
graphs depicted in Figures 15-17. Due to reading fluctua-
tions, we recorded the highest and lowest bound of voltage
and ADC that was observed.

Although not identical, the graph we produced from
our measurements is very similar to the one provided by
the manufacturer. The shape is the same yet the numbers
varied quite a bit. Regardless, we were happy with our re-
sults since the ADC provided sufficient granularity for the
purpose of our application. In addition, we correlated the
ADC reading to the voltage and saw that it behaved pretty
much linearly which was also something that we expected.
Thus, this phase of testing served as the basis for our de-
tection scheme and our results were used throughout the
calibration process of the sensor module.
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Figure 15: Output Voltage (V) vs Distance(cm) from IR
Testing

Figure 16: ADC Reading vs Distance(cm) from IR Testing

Figure 17: ADC Reading vs Output Voltage (V)) from IR
Testing

7.2 Results for Detection Accuracy

With our gathered sensor data and after we were able
to create a mobile module like the one depicted in Figure 5,
we went to the gym and started our next phase of testing
which was divided into two parts. First, we wanted to see
if the module was working properly independent of the web

app. So we tweaked our IR sensor testing script to employ
the built-in LED of the NMCU as a visual reference for
detection. With our measurements at hand we set initial
ADC thresholds based on the physical dimensions of the
gym equipment. Thus, this set of trails consisted of using
the LED as a detection and occupancy indicator. The mod-
ules were placed in the mounting spots shown in Figure 8
and the testing outcomes were very simple: if the person
was within range then the LED would light up, if not the
LED would stay off. From this first part we tweaked the
ADC thresholds and calibrated our sensor.

The next set of testing involved a fully integrated sys-
tem with module and web-app both working. We took the
script from the previous phase and modified it to incorpo-
rate the communication protocol between the NMCU and
the web-app. This time we ran rigorous trials with a final
product in mind. Here, passing test results were observed
when the built-in LED lit up as expected and the same was
reflected in the web-app. So, the first set of tests involved
on-range usage of the machines. We wanted to validate
that the a person using the machine was actually detected
and the occupancy matched it on the web-app. The second
set of trials was out of range stand ins but within the line of
sight of our sensor. Here, we wanted to simulate a person
standing in front of the machine but not actually using it.
The third set, involved pass-bys out of range of the ma-
chine that mimicked people walking by through the main
corridors and walkways of the floor plan. The fourth and
final set of test involved standing in between machines and
its surroundings to see if there was no wide angle detection.

Each set consisted of 10 roughly minute long trials. So,
in total we ran 160 trials: 4 of each type with each of our
4 sensor modules. We utilize the data from these trials to
determine the accuracy of each sensor and furthermore of
the entire system. The first set of trials was successful in
all modules. We observed detection in all cases we anted
to observe.

For the second set of trials, we only saw a failed case
(false positive) for a single bike module. This failure could
be explained by the fact that we were standing quite close
to what we considered to be the detection boundary near
the seat of the bike. Contrary to the treadmill, people
can stand at this boundary where as in a treadmill the
boundary is much more defined by the actual physical ar-
chitecture of the machine. In the treadmill the boundary is
quite literally a line, whereas in the bike you could stand at
the boundary but still lean in causing the sensor to detect
you. However we must acknowledge that some boundary
tests we performed were unrealistic or at least very uncom-
mon postures or usages of the bikes. We leaned back on
the bike at unreasonable usage angles since we wanted to
see how much overlap between a leaned user and an out
of range stand-in there was. There was indeed overlap.
However based on the common use of gym machines no-
body typically stands in so close to the machine as we did,
while almost nobody leans back as far as we did. Hence
the testing was not ideal at boundary condition, but still
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acceptable for the purpose of our system.

For the third set, we saw no problem with pass-bys
across all sensors. However, much like with the previous
set, unreasonable pass-bys were conducted very close if not
nearly on top of the machines near the boundary and some
tests were faulty. Nonetheless, once again with reasonable
usage in mind, pass-bys were also a success since we did not
detect users when we did not wanted to (no false positives).
For the fourth case, treadmills were not an issue due to the
handles they have at each side. It was practically impossi-
ble to be detected at a wide angle if you were not standing
on the running surface. Thus, standing and passing in be-
tween machines revealed no false positives. Once again, in
the case of the bike reasonable stand-ins and pass-bys at
a wide angle produced no false positives. We did however
push the boundary, yet we observed that you needed to be
directly in the line of sight (unreasonably leaning in from
the side) in order to be detected. Thus this set of trials
were also successful and also validated our design choice
for IR sensors on the basis of its narrow detection angle.

After individual module trials, we tested different con-
figurations of busy and free across sensors and saw that
thanks to our initial setup, the web-app marked the proper
icon in the layout based on the sensors that was detecting
a user. In other word our detection mapping was successful
and behaved as configured with maximum accuracy.

Thus with the results tabulated, we calculated that sen-
sors 1 and 2 (treadmill sensors) displayed a detection ac-
curacy of 100% each while sensors 3 and 4 (bike sensors)
were 97.5% accurate. Overall our 4 module system ended
up with a detection accuracy of 98.8% which exceeded our
detection accuracy requirement of an accuracy larger than
90%

7.3 Results for Detection Delay

The delay we set out to test in this phase was the overall
system delay. which is simply the delay from when the sen-
sor detects a user to when the updated data is displayed on
the website. For these trials, we utilized the built-in LED
of the NMCU and manually timed how long each update
took. In other words, we measured the time from light up
of the LED to light up of the icon in the web-app.

For each of the sensor modules, we tested setting the
sensor from ”free” to ”busy” and recorded the time it took
the web app to reflect the updated status. Next, we did
the same, except setting the sensor from ”busy” to ”free”.
The ”overall” column is simply an average of the ”Free to
Busy” column and the ”Busy to Free” column. 10 trials
were run on each sensor module for this test, for a total of
40 trials.

The max average detection delay for one sensor was
3.62 seconds. The max single delay recorded by one of the
sensors was 6.75 seconds. Taking the average of all these
delays we would calculated that typical and overall delay
is 3.19 seconds. Given that our use-case requirement was
less than 30 seconds, these results met our expectations.

Figure 18: Detection Accuracy Results

Figure 19: Detection Delay Results

7.4 Results for Battery Life

For this portion of our testing, no extensive and pro-
longed trials observing battery life were conducted due to
how inconvenient they were in terms of schedule and logis-
tics. Given these circumstances we wrote down measure-
ments from which we estimated our battery life. These
measurements were obtained in the lab using our compo-
nents including IR sensor, NMCU, and battery pack wired
in the manner depicted in Figure 4. Nonetheless, given
that we needed to measure the current drawn by each com-
ponent, we utilized a breadboard that would allow us to
connect an ammeter in series with our components and ma-
nipulate the circuit layout. With a fully soldered module,
connecting in series was not really possible.

As a result, we used spare components for this. Before
measuring we validated that the components were working
as intended runnning similar tetst as the ones described in
previous sections while. Thus, we calibrated the modules
in the same way our mobile modules were. With this out
of the way, we measured the current drawn by the IR sen-
sor to be quite stable at 27mA. In the case of the NMCU,
we saw 80mA drawn while booting up. However, during
operation the reading fluctuated from 25mA to 80mA with
occasional readings of 40mA. In light of this, we decided
to calculate our battery life based on the worse case sce-
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nario measurements. So, given that our components are
connected in parallel effectively dividing the current drawn
from the battery pack, the total current consumption of
our module is the sum of the individual currents. Hence
the total consumption is 107mA.

Each cell in our battery pack has a capacity of
2,800mAh, so the whole pack contains 11,200mAh. Di-
viding the overall capacity by the current drawn by our
module we obtain around 104.67 hours of use which trans-
lates to approximately 4 days, 8 hours, and 40 minutes of
use. This calculation assumes that the sensor is constantly
drawing current, meaning that it is operating continuously.
However, our battery pack has a switch that allows you to
turn off the module. Thus, if the module was turned off
during off hours then we could extend the battery life of
the module. The UC gym operating periods are typically
16.5 hours long during weekdays. If we round this up to
17 hours to account for opening and closing times, we have
that 107mA drawn for 17 hours equates to a consumption
of 1,819mAh per day. In consequence, if we divide our to-
tal capacity by the per day usage which we assume is the
same for every day (despite this not being the case on the
weekends) we get that our module could be operational
for 6.157 days or approximately 6 days, 3 hours, and 46
minutes. Thus our battery life surpasses our requirement
of 16.5 hours of use, yet we believe it would have been a
great milestone to reach 7 days of continuous use without
recharge to eliminate as much hassle as we can for the ad-
ministrative staff. Nonetheless, our results exceeded what
we planned and designed for

8 PROJECT MANAGEMENT

8.1 Schedule

In terms of the schedule, Ian Brito was responsible for
the software stack, while Ian Falcon and Nataniel were
responsible for the sensor module. The main changes in
schedule arose from not having planned enough tasks orig-
inally. Comparing the original schedule from early in the
semester to the final schedule, each individual has double
the tasks that we originally envisioned. Additionally, there
was a design shift from using a Raspberry Pi to EC2, which
shifted the schedule. We experienced delivery delays with
the IR sensor, which pushed our schedule back. Finally, cer-
tain tasks simply took longer than expected, such as work
on the front end of the web application. The schedule is
shown in Fig. 21.

8.2 Team Member Responsibilities

Ian Brito worked on the software stack, so his primary
responsibilities were everything involving the web app por-
tion of the project. Responsibilities included creating the
Django web app, working on both the frontend (visuals to
display map of UC gym) and backend (store models, re-
ceive data from nodeMCU), creating the EC2 instance and

deploying Apache web server. Ian Falcon and Nat worked
on the sensor module. Ian Falcon worked with the signal
and sensor portion of the sensor module, such as connecting
the sensor to the microcontroller, writing code to test the
sensor’s distance, power consumption, and encasing for the
sensor module. Nat worked on the nodeMCU code to send
POST requests from the sensor module to the web app.

8.3 Bill of Materials and Budget

Please refer to Table 1 to obtained a detailed breakdown
of parts and costs.

8.4 Risk Management

First, our initial plan was to upgrade from the t2.micro
EC2 instance to a paid tier if the free tier did not meet
our needs for the web app. Fortunately, we did not need
to use this, but we had space allocated in our budget if
needed. Another alternative was Heroku, but EC2 deploy-
ment worked fine. Next, we had researched other sensors
in case our desired Sharp IR sensors did not ship in time.
Although they were back ordered for a while, we eventu-
ally received them without needing to use our backup plan.
Thankfully, everything went according to plan, but in the
event that something went astray, we had backup plans.

9 ETHICAL ISSUES

In terms of physical harm, our system does not really
pose a threat or risk since the main physically accessible
part to our users is the sensor module, which we envision
will not be invasive and will be small in size. On the other
hand, the main vulnerabilities of our system are of a virtual
kind (communication between sensor module and network,
general safety risks of the internet, among others).

If somebody can get access to at least one of the
nodeMCU that will be connected to the gym’s WiFi, they
could potentially get the credentials of that WiFi. From
there, they could perform malicious actions while connected
to the WiFi network that they could not perform other-
wise without the credentials taken from our product. Sup-
pose the gym has a private WiFi only for staff, which the
nodeMCU are also connected on. A malicious actor can
gain access to this WiFi by stealing the nodeMCU and
performing nefarious activities that they are not meant to.

As mentioned above, if a malicious agent were to gain
access to a network they’re not supposed to have access
to, a worse scenario could unfold if the gym facilities use
a single Wi-Fi network throughout. Thus the perpetrator
could obtain data from the gym and the staff as well as
gain access to the customers’ devices that are connected
to said network, essentially creating vulnerabilities akin to
those you encounter with public Wi-Fi networks.

The person who gets harmed in this worst case scenario
would have to be the individual user. While no physical
harm is done, a malicious agent getting access to a user’s
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Table 1: Bill of materials (* denotes items added since Design Report)

Description Model # Manufacturer Quantity Cost @ Total
AA Rechargable Batteries HQAA2800 HiQuick 16 (one 16-pack) $2.31 $36.99
* Quarter-Sized Breadboard PCB Adafruit 6 (two 3-packs) $4.00 $23.98
NodeMCU Board 1.0 ESP8266 NodeMCU 6 (two 3-packs) $4.56 $27.36
* 4-cell AA Battery Holder with Switch 4AA-Switch-2P-A LAMPVPATH 4 (two 2-packs) $3.75 $15.00
Infared Proximity Sensor GP2Y0A02YK0F Sharp 4 (two 2-packs) $9.44 $37.76
* 16-Bay AA Ni-MH Battery Charger MY-C006 Bonai 1 $30.99 $30.99
* 140 piece Jumper Wire Kit WK1 QSU 1 $6.49 $6.49
* AWS Credits (out-of-pocket) Amazon 1 $13.00 $13.00

$191.57

personal devices can lead to breaches that compromise the
mobile devices themselves as well as personal data like login
credentials and other sensitive data. This could potentially
result in serious consequences ranging from identity theft
to users losing access to other critical personal resources
like bank accounts, among other such sensitive things.

In reality, anyone that uses our system and has devices
(capable of connecting to the internet) with connections to
personal information is at risk in this case. Thus, there
is not a particular kind of person that is vulnerable above
any other since basically all individual users/customers are
vulnerable as well as the gym facilities and staff.

The ethical concepts of privacy and trust would abso-
lutely be violated in the above scenario. Users losing access
to their personal data would absolutely be a breach of pri-
vacy. Knowing that this loss of personal data came from
our web app would feel like a breach of trust in addition to
this. In addition, the responsibility of making the system
secure and impervious to different scenarios would fall on
us and many people would hold us accountable for damages
like the ones we described above.

10 RELATED WORK

There have been many occupancy projects in the past
for a variety of spaces. Even during this semester a fellow
section B team is developing a version that calculates wait
times in queues for food establishments. Past projects in-
clude one from 2020 that detected occupancy in a library
using cameras. It aimed for a usage time of of 72 hours (3
days) and an object detection accuracy of 76.5%. Another
project from 2022 attempted to use cameras as well to de-
tect occupancy in study spaces. This project aimed for 45
seconds detection delay and a margin of error of 20%.

A third project from 2021 is similar to our approach.
It utilized chair sensor modules to detect occupancy at the
library. This project achieved between 17.6 and 27 seconds
of delay and over 4.2 days of battery life with continuous
use as well as possibly 1.5 months with sleep mode config-
urations.

Thus our project in some ways is better than others
but lacks in other areas. For instance, in terms of detec-
tion accuracy and latency, we surpassed the figures of pre-

vious projects utilizing computer vision and was quite on
par with the 2021 project. However, our implementation
was lacking in terms of battery life compared to the max
achieved by the 2021 project. The project that used com-
puter vision did not have to worry about battery life and
the 2020 projects battery life was on-par with ours.

Thus for usage time our implementation is not the most
ideal yet for accuracy and delay it works much better than
computer vision, which validates the thought process we
went through while designing the system.

11 SUMMARY

Overall, our system met our expectations based on the
minimum viable product we wished to deliver of 4 sensor
modules and a web app, and the use-case requirements we
determined. Detection accuracy and delay requirements
were met with over 90% accuracy and less than 30 sec-
onds of delay. When it comes to usage and battery life
our requirements were conservative yet met. We recognize
that although the 16.5 hour requirement was met, a solu-
tion that allows for a full week or even longer of continuous
operation would be ideal and optimal. More so, an imple-
mentation that does not require charging would be stellar.

In terms of the invasiveness of the system it is fairly
noninvasive, yet our mounting spots and encasings could
be a bit cumbersome for some users since they occupy some
dashboard space that is used by gym goers for other pur-
poses like holding their phones or other belongings. As
mentioned in section 6.1, our module is not fixed and se-
curely mounted on the gym equipment. Thus, are module
is not safe from tampering, theft, damage, and other con-
sequences stemming from human interactions. Moreover,
this can have serious repercussions for our design since a
stolen, broken, poorly positioned, or missing sensor module
greatly diminishes the effectiveness, accuracy, and usability
of our system.

In consequence our mounting mechanism is not efficient
nor realistically sustainable. A proper solution would re-
quire secure fasteners. The optimal solution is to have the
sensor powered by the machine and integrated into the con-
sole so that we eliminate the recharging hassle and reduce
the risk of people tampering with the sensor while also en-
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suring its continual use.
So, a future project could incorporate a better and more

secure mounting mechanism that reduces dashboard space
used and increases module stability or could be developed
around a completely different implementation that elimi-
nates this problem. With this in mind, further expansions
could also be done to include more and other machines in
the UC gym, such as other cardio machines and weight ma-
chines on the first floor. Aside from the mounting problem,
another key point to focus on and improve is battery life.

Glossary of Acronyms

• ADC - Analog to Digital Converter

• AWS - Amazon Web Services

• DDoS - Distributed Denial-of-Service

• EC2 - Amazon Elastic Compute Cloud

• GND - Ground

• HTML - HyperText Markup Language

• IDE - Integrated Development Environment

• IoT - Internet of Things

• IR - Infrared

• JSON - JavaScript Object Notation

• JS - JavaScript

• LED - Light Emitting Diode

• NMCU - Node Microcontroller Unit

• RPi - Raspberry Pi

• SQL - Search Query Language

• UC - University Center
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