
18-500 Design Review Report - March 3, 2022 Page 1 of 8

Can U Cardio?
Authors: Ian Brito, Nataniel Arocho-Nieves, Ian Falcon

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of providing occupancy
and availability of gym cardio machines in real-time.
This system is specifically designed for stationary bikes
and treadmills. It aims to reduce the time wasted in the
gym as well as help students plan cardio workout ses-
sions in a time efficient manner. Incorporating sensors
and wireless communications, this system will reflect
this data via a web application available to students
and staff.

Index Terms—Django, IoT, MySQL, NodeMMCU,
Occupancy, ReactJS, Sensors, Web Application, Wi-Fi

1 INTRODUCTION

The life of a CMU student is busy to say the least. As
a result, time management is a big priority for many stu-
dents. However, there are some spaces of their day-to-day
lives they cannot really control. One of theses spaces is the
gym. Often times gym machines are occupied and a lot
of time can be wasted waiting around for machines to be-
come available. Can U Cardio? is a system that will help
students optimize the use of their time in the gym by pro-
viding real-time occupancy and availability of gym cardio
machines. The system will use proximity sensors to detect
occupancy which is reflected on a web application available
to students. This app could be used on-site during busy
gym times, or outside the gym prior to a workout. Thus,
our system will aid students in planning out their workouts
in a time efficient manner that maximizes productivity.

Many occupancy solutions have been developed in the
past. However, none of the past projects tackle gym oc-
cupancy. They focused on different spaces like dining lo-
cations and study areas, among others. Therefore our
project will provide students occupancy data and infor-
mation about another specific space. In addition, many
projects have used computer vision as the method of oc-
cupancy detection. Can U Cardio? aims to utilize differ-
ent technologies like physical proximity sensors to ensure
a greater degree of accuracy and speed than computer vi-
sion techniques. Other solutions have used physical sen-
sors with good results. From what we’ve gathered, many
of these aimed for 1 minute detection latency and over 70%
detection accuracy. Thus our goal is to surpass these met-
rics in order to improve upon existing solutions and make
Can U Cardio? a viable and useful tool for busy students
and fitness enthusiasts.

2 USE-CASE REQUIREMENTS

With our use case in mind, we have created require-
ments that will ensure our system is reliable and efficient
for our users. The first requirement is detection accuracy.
A system that does not reflect the true occupancy of a
gym is not useful. Thus, we want to have an overall de-
tection accuracy greater than or equal to 90%. There are
two factors that will determine this metric. First, we must
properly and consistently identify a single machine as oc-
cupied. Therefore, we can establish that we must fulfill a
detection accuracy metric on a per machine basis. In order
to fit the overall accuracy, this metric needs to be greater
than or equal to 90%. Another component of overall ac-
curacy is the accuracy of the mapping/layout. Our system
must be able to display the correct amount of machines
available and occupied as well as the correct mapping of
each machine based on the gym layout. Thus once more
this metric must be greater than or equal to 90% to satisfy
the overall goal.

The second use-case requirement is detection delay.
Since this is a real-time system, we must minimize the time
it takes to inform a user that a machine is currently occu-
pied. As a result, to justify the on-site use of our system,
the time it takes from detecting to updating the occupancy
information should be less than or equal to 30 seconds, since
this is typically the minimum amount of time it would take
a user in a busy gym to roughly scope out the layout and
determine which machines are available.

The third use-case pertains to usage time. The Uni-
versity Center gym is open from 6:30am to 11:00pm on
weekdays and from 10:00am to 9:00pm on weekends. This
means that our system must work continuously for at least
16.5 hours. Ideally, it would also function every day for
the specified amount of time with as little intervention as
possible. Yet the minimum requirement remains the time
the gym is open during the day.

The fourth requirement deals with how invasive the sys-
tem should be. Users want as little of any sort of interfer-
ence as possible throughout their workouts. This interfer-
ence can take different forms depending on the method for
occupancy detection that is employed. Gym members do
not want anything interfering with their movements while
using the machines. In addition, a gym that is cluttered
with wires, possibly affecting walkways and common areas,
is not appealing or convenient. Hence our solution should
be small and compact or employ methods that are not phys-
ically invasive on or around the machines. However, with
these alternate methods (like cameras), the issue of pri-
vacy also comes into play. So, overall our solution should
be minimally invasive, small, compact, and private.

18-500 Design Review Report - March 3, 2022 Page 2 of 8

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

With our use case and use case requirements as center-
pieces, we proceeded to design our system with accuracy,
speed, durability, and comfortableness for the user as our
priorities. As a result, we wanted to have a system that
was simple yet efficient to accomplish our goals. For this
reason we opted to divide the architecture into two main
components: the sensor module, and the software frame-
work.

3.1 Sensor Module

The main question that shaped our design was centered
around which method we would use to detect occupancy of
the machines. In order to prioritize speed and accuracy our
team opted to go for physical proximity sensors mounted
on individual machines. Specifically we decided to use a
range detection IR sensor that provides reliable and eas-
ily manipulable readings to send to a software framework.
The chosen sensor was the Sharp GP2Y0A02YK0F dis-
tance measuring sensor unit with an analog output. Since
our sensor is a range detector, it works around the principle
of outputting a range of voltages depending on the distance
between the sensor and an object within its line of sight.

Now came the question of how to interpret and trans-
late the output of the sensor into data that could be sent
and communicated to our user. Since our sensor is ana-
log and outputs a range of voltages, we realized we needed
a programmable microcontroller that could interpret and
manipulate this data before sending and transmitting it.
We also had to consider which communication protocol we
were going to use. We decided to utilize existing frame-
works and communicate this data via Wi-Fi in order to
simplify the process. Thus, we needed a microcontroller
with analog compatibility and Wi-Fi capabilities. As a re-
sult, we decided to use the NodeMCU ESP8266 which has
an analog port and a built-in Wi-Fi module. This piece is
also incredibly cheap and easy to program since it is com-
pletely compatible with Arduino code and libraries that
have variety of applications and uses. The NMCU is also
open source which is convenient if we encounter problems
or roadblocks as this would allow us to customize and mod-
ify its operation to meet our requirements and operational
metrics.

The final component of our sensor module was the
power supply. Given that both the IR sensor and the
NMCU work at similar voltage ranges, a 5V power sup-
ply is best in this case. With modularity and size in mind,
we decided to draw power from batteries. The type and
capacity of these batteries was not decided at this stage. It
needs to be carefully considered. The design requirements
will aid this decision and more details will be provided in
the System Implementation portion of this report.

3.2 Software Stack

With our sensor module already deigned, we shifted our
focus on developing a way to receive the data via Wi-Fi,
store it, and display it for the users. Therefore we needed
some form of database framework to sort out the data from
each sensor module. In addition we needed an appealing
visual display on the front end to display the occupancy
data.

So, we conceptualized a software stack that would fit
these needs. The stack is comprised of an AWS EC2 in-
stance running a Django web application using Python and
ReactJS, as well as MySQL.

First, the web application is a Django web application
created with Python hosted on an Apache web server using
EC2. Django provides a secure framework for creating web
applications, and EC2 is a secure and highly configurable
method of deploying the Django web app. The front-end of
the web app is designed using ReactJS, and AJAX is used
in order to automatically update the web page to display
up-to-date information.

In order to receive information, the web application re-
ceives a JSON from the sensor module via a POST request.
The JSON will need to contain information about which
equipment the POST request is coming from, such as an
id, whether the equipment is free or busy, the time the re-
quest is sent, and a way to determine that the post request
was indeed made by one of the sensors. Once the data is
received and verified, the web application will be updated
and the data will be stored in the MySQL database. Al-
though the default Django database of SQLite would work
with EC2, MySQL is more scalable under load and provides
more robustness compared to SQLite.

Figure 1: The Software Stack, consisting of an EC2 in-
stance hosting the Django web app and MySQL

4 DESIGN REQUIREMENTS

Given the architecture of our system and the chosen
mechanism for occupancy detection, a couple design con-
siderations come into play. We must establish requirements
for our sensor module as well as the overall system includ-
ing the web app and AWS framework.

In terms of the sensor module, based on the documen-

18-500 Design Review Report - March 3, 2022 Page 3 of 8

Figure 2: Block diagram depicting connections and data flow of the system.

tation for the machines we will base our design on, we know
that the farthest detection range we will be dealing with is
the treadmill. In other words the largest distance between
sensor mounting points on the control panel of the machine
and the user will be on the treadmills. It has a track with
total running length of 5ft. Given that its dashboard con-
sole is directly above the starting point of this track, it
is safe to assume that our users will be running anywhere
from 1ft to 5ft from our module. Thus, our sensor must
have a detection range between 1ft (= 12” ≈ 31cm) to 5ft
(= 60” ≈ 152cm). The upper bound on this range will help
with the detection accuracy on treadmills, since we do not
want to mark the machine as occupied if someone passes
in front of it farther than 5ft from the control panel where
the sensor will be mounted.

With detection accuracy in mind, we will need a pro-
grammable microcontroller that allows us to manipulate
the sensor data and fine tune it based on the type of equip-
ment the sensor module is installed on. This is especially
important when detecting occupancy in stationary bicycles.
Given that our sensor will have a maximum range of 5ft,
more detailed and meticulous control will be needed when
working with bike sensor modules since the bike itself is no
longer than 105cm (≈ 41.5” ≈ 3.5ft). The distance between
the control panel of the bike or the handles (which are all
possible mounting points for the module) and where a user
will typically be seated is anywhere between 1ft to 2ft from
the sensor module mounting points. As a result, we need
to be able to establish an artificial range within the one
our sensor provides in order to avoid the same problem de-
scribed above in the case of the treadmill. We do not want
mark a bike as occupied unless someone is actually sitting
on it rather than passing along.

The detection delay use case requirement translates into
a latency requirement for our system. As a result, we want
our overall system to have a latency of less than 30 sec-
onds. This overall latency will be affected by sensor latency,
NMCU latency, and AWS-MySQL-web app latency. Given
that the latency for our chosen sensor is around the millisec-
ond scale, the overall latency will be primarily influenced

by the efficiency of the wireless (Wi-Fi) communication be-
tween the modules and the server as well as the efficiency
of the data sorting program within the web application.

Opting for batteries will reduce the invasiveness of our
sensor module and make it and easily mountable to the
gym machines selected. With this design choice we must
also factor in the usage time use-case requirement. Ee have
determined that our sensor module composed of the IR sen-
sor and the NMCU needs to have a battery life of at least
16.5 hours to last through the whole day. From inspecting
the documentation on each component we plan on using,
we know that the IR Sensor can take between 4.5 V to 5.5V
of supply voltage and operates at 33mA. The NMCU can
take anywhere from 4.5V to 5.5V and typically operates
at around 80mA. The combined current drawn is 113mA.
Therefore, we need a 5V battery with a capacity of roughly
1,864.5mAh.

5 DESIGN TRADE STUDIES

While envisioning our system, we identified three key
areas our design will be centered around and decided to per-
form some research in order to determine which approach
and which technologies would best fulfil our requirements.

5.1 Method of Detecting Occupancy

There are a variety of methods utilized to detect occu-
pancy. With our detection accuracy requirement of 90% in
mind, we explored two main options of detecting whether
the gym machines were being used or not.

5.1.1 Computer Vision

Our initial thought was to use cameras, paired with
computer vision algorithms to detect occupancy. Nonethe-
less, we noted significant concerns with this approach. One
of them is the accuracy of the readings. With a single cam-
era, depth, perspective, and resolution become issues. The
more muddled the picture becomes, especially during peak

18-500 Design Review Report - March 3, 2022 Page 4 of 8

hours of gym usage, the lower the accuracy of the readings
would be, which in turn would defeat the whole purpose
of our system. These concerns paired with the fact that,
depending on the size of the gym, there might not be an
optimal position for a single camera to record the whole
room in a single frame, indicated that multiple cameras
are needed to implement our system. However, this adds a
layer of cost and complexity that is avoidable.

In addition, this also brings up the issue of the privacy
of the users. Many gym members might not be comfortable
with more cameras recording their workouts aside from the
ones already employed by the establishment for security
purposes. While it would be ideal to access these existing
feeds, its safe to say that the process is complicated and
the gym owners/managers might not be content with shar-
ing recordings, which makes the task of retrofitting existing
cameras in the gym quite bothersome and unclear. For this
reason we decided to explore other simpler, more accurate,
less invasive, yet easily scalable options.

5.1.2 Physical Proximity Sensors

Our other line of thought was to use proximity sensors
in order to detect occupancy. This approach certainly ad-
dresses the issue of privacy, keeping the user anonymous in
terms of occupancy metrics. These sensors allow for con-
tactless sensing, making the system relatively non-invasive.
When it comes to accuracy, such sensors allow for more ac-
curate readings given that the idea is to individually mount
them on each cardio machine. However, the mechanism and
working principle of such sensor was also something to be
considered and analyzed. For the scope of our application
we considered two types of proximity sensors.

• Ultrasonic Sensor: This type of sensor has advantages
like low current consumption. In addition, the ob-
ject detection is not affected by color or transparency.
Nonetheless, when detecting objects that are soft or
have extreme textures this sensor is not suitable. An-
other aspect to consider is the range, which in this
case exceeds our requirements. In addition its robust-
ness to vibration is low which is a concern given that
these sensors will be physically mounted on treadmills
and bicycles under use, hence the sensors will have to
deal with an element of vibration and minor motion.

• IR Sensor: Although this sensor is more sensitive to
its environment and object detection is affected by
color and transparency, given the nature of our ap-
plication, these factors are not a hindrance The tem-
perature and conditions inside a gym are stable which
eliminates the need for a sensor that works in harsh
environments. The people typically using the ma-
chines wear clothing with a range of colors therefore
we expect some variation in sensing, yet it will not be
an issue since users will typically be within 4ft or less
of the sensor, compensating for this color sensitivity.
As discussed, this sensor’s range is smaller and more

suitable for our needs and its robustness for vibra-
tion suggests that it will provide stable readings even
when the machines are in use.

Given the information compiled and its subsequent
analysis, we decided to utilize IR proximity sensors since,
despite some drawbacks compared to ultrasonic sensors like
cost and power consumption, the levels of accuracy and
reliability they provide justify its selection over ultrasonic
sensors and most definitely over computer vision occupancy
detection mechanisms.

5.2 Hosting Web Server

5.2.1 Raspberry Pi 4B

Initially, we envisioned using a Raspberry Pi 4B to host
the web application. The main benefit of using an RPi
is the lower cost due to not having to pay recurring fees
for AWS. However, hosting the web application on an RPi
would mean we would need access to CMU’s router in or-
der to allow port-forwarding. Additionally, the RPi is more
vulnerable to attacks such as DDOS, as well as physical at-
tacks that could damage the RPi. Finally, a single RPi is
not too scalable, as it would slow down withmany requests.
Clearly, this is not a viable option.

5.2.2 Amazon EC2

Instead, hosting will be done with an Apache web server
utilizing Amazon EC2. The main benefits of EC2 com-
pared to hosting on the RPi are security and accessibility.
In terms of security, EC2 is far more secure than hosting
on an RPi given that AWS has various different security
tools compared to an out-of-the-box RPi. Furthermore,
unlike EC2, the RPi is prone to being physically damaged
or suffering from a power outage, which would shut down
the website. On the other hand, EC2 is far less likely to
experience these risks and therefore much more reliable.
Additionally, the aforementioned cost for EC2 is mitigated
due to use of the free tier, which allows 750 monthly hours
of a t2.micro instance which is sufficient for this project.
Therefore, the use-case requirement of usage time is met
as this system will continuously run as opposed to the RPi
which is more likely to experience interruptions.

6 SYSTEM IMPLEMENTATION

6.1 Sensor Module

The main component of our sensor module is, of
course, the IR sensor. The chosen sensor is the Sharp
GP2Y0A02YK0F IR distance measuring sensor unit. It
only has 3 three connecting wires: a wire for Vcc or supply
voltage, one for GND, and one for Vo or the output voltage.
Recall that this sensor is analog so we will be using ADC
pin of the NMCU to connect it. The NMCU has internal
regulator circuitry that will process this input in order to

18-500 Design Review Report - March 3, 2022 Page 5 of 8

interpret it and program the microcontroller to send the
data.

Given our battery life and modularity requirement from
section 4, we opted to power the whole module using
rechargeable AA batteries in a 6V battery holder (4 battery
spaces) that will supply both the NMCU and the sensor.
The chosen batteries are manufactured by Hi-Quick and
each supply 1.2V and carry 2,800mAh. Thus we intend to
use 4 batteries per module totaling 4.8V which is in the
range of operation of both components. Each module will
have a total of approximately 11,200mAh, meaning that a
single module will most likely be operational for 5 to 6 days
if interrupted (turned off at the end of the 16.5 hour sched-
ule of the gym) or approximately 4 days uninterrupted.

All these components will be housed inside a house-
fabricated (3D-printed or handcrafted) encasing that can
be attached to the dashboard panel or other points of the
gym equipment. Possible mounting points for this module
will be determined based on the results of our testing. An-
other factor in deciding this will also be the comfort element
for the gym user since we want invasivness and interference
to remain low. Nonetheless, initial design considerations
suggest that our case should be adaptable and fit multiple
mounting mechanisms like, clips, Velcro, or straps since we
will be monitoring two types of equipment (bikes and tread-
mills). As a result, separate studies with each machine will
be conducted on each type of equipment to determine the
distance and orientation that is most optimal to safely se-
cure the module in a manner that provides accurate and
consistent readings.

6.2 Software Stack

The Software Stack contains the EC2 instance that the
web application and MySQL will be running on, the Django
web application (Python, React), and MySQL.

First, the Django web app follows the MVC (Model,
View, Controller) convention. The Models are in mod-
els.py and contain the data stored in the database. In our
case, the primary model we will be using is an Equipment
model, where each equipment would have once instance of
the model stored in the MySQL database. The fields of
this model would specify the type of equipment (bicycle
or treadmill) in the form of a string, the equipment id in
the form of an integer to serve as an identifier, the status
of the equipment in the form of a string ”free” or ”busy”.
Moreover, models can be used to store the times the POST
requests are made, such as a change from ”free” to ”busy”
and vice-versa, so that the average use time can be calcu-
lated and displayed on the web-app.

Next, the View is comprised of the static HTML tem-
plates presented. The View is what the user sees displayed
on their device when visiting the web application. More-
over, the View is updated by the Controller to display up-
dated information.

Finally, the Controller processes each request made to
the web application. For instance, Django’s urls.py speci-
fies which action in views.py to display given the url visited,

which is how www.canucardio.com/home knows how to dis-
play the home page and www.canucardio.com/info knows
how to display the information page. Django’s aforemen-
tioned views.py specifies which template to render. Actions
in views.py, when directed from urls.py, are passed in the
request made, so different actions can be done depending on
if a ”GET” or ”POST” request has been made. Addition-
ally, the Controller is responsible for any calculations or
processing required, such as determining the average time
per machine or typical business per hour.

Therefore, our Django web app implements the follow-
ing:

• urls.py – Specifies which action to run depending on
the URL a request is made to

• views.py – Contains the actions that render the static
HTML web pages with the render() function, provid-
ing a context dictionary

• models.py – Contains the model objects used to map
to database (MySQL) via Object Relational Mapping
(ORM)

• Static HTML files – static HTML files contain what
is actually displayed to the user

• Static JS files – the JavaScript files will be required to
implement both the front-end with ReactJS as well as
AJAX to allow for automatic refreshing of the data

Next, the Software Stack runs on an Apache web server
on an EC2 instance. For this project, the t2.micro is being
used as it is part of the free tier and provides 750 hours of
monthly use, which we have determined to be enough for
our use case. However, if the t2.micro is not suitable for our
needs, we have space allocated in our budget to purchase
credits for a stronger instance.

Finally, the way the Sensor Module contacts the web
application is via a POST request made. The microcon-
troller would send a POST request to the web application
in the form of a JSON, which would contain the following
information:

• id: an integer identifier that corresponds to each ma-
chine. This allows us to identify which machine is
sending the request.

• key: a UUID (32 chars) that is hidden to public in
order to allow us to verify that the POST request is
coming from the machine and not a malicious actor.
The key would be checked in views.py to a list of pre-
set keys, and if key /∈ keys, the web app will not be
updated.

• time: the time the POST request was sent, used in
order to calculate average times and busiest hours.

• status: an integer identifier ∈ [0, 1] that determines
whether the equipment is busy (status = 1) or busy
(status = 0)

18-500 Design Review Report - March 3, 2022 Page 6 of 8

Once the POST request is received, views.py verifies
that it was sent from one of the sensor modules by ver-
ifying the key. Next, it would update the corresponding
equipment model with its new status, and incorporate the
new use time into the average use time. Then, the next
time a GET request is made to the web app, the updated
information will be shown.

Figure 3: The web application’s map, which displays a map
of the UC Gym with equipment marked as free or busy

Figure 4: The web application’s info tab, which displays
how number of equipment is currently in use and average
business per hour

Figure 5: The MVC view of the Django web application

7 TEST & VALIDATION

With modularity in mind we have developed a series
of tests that can were specifically designed and divided by
subsystem. As a we have mentioned before the overall solu-
tion consists of two susbsytems: the sensor module and the
software stack Thus we have testing plans for each seperate
component.

7.1 Tests for Sensor module

As discussed before there are 3 elements for our sensor
module: the IR sensor, the NMCU, and the power supply
(batteries). Thus some tests will be done individually while
others will be performed with assembled components.

The first thing we wanted to test was the operational
metrics of our sensor. We want to obtain local performance
of this component and cross-check it with the documenta-
tion from the manufacturer. This way we can adjust our
system based on practical measurements. To do this we
want to measure inputs and outputs of our IR sensor in
terms of voltage and current. We must meet a 0V to 3V
output measurement depending on the distance to ensure
that our sensor does not damage the NMCU and to validate
the manufacturer’s claims and specifications.

To accomplish this we will utilize the ECE lab and its
resources to wire up the sensor with a local power source
and experiment with different orientations, colors, and ma-
terials and observe how the sensor behaves via a voltmeter
and ammeter probes attached to the sensor or breadboard
testing equipment. The main focus with this test will be
distance and color sensitivity while the secondary yet quite
important priority is determining the detection angle to
understand how to best orient our sensor with detection
accuracy in mind. With this test we will verify the design
requirement of range and contribute data that can be used
as a starting point to validate the use-case requirement of
accuracy, effectively ensuring that the chosen sensor is the
proper one for the application.

After local testing for the sensor we will focus on pow-
ering the NMCU and interfacing it with the development

18-500 Design Review Report - March 3, 2022 Page 7 of 8

environment in order to program it. Once we establish this
local connection we can move on to hook up the IR senor
to the NCMU and start senidng data and see how it needs
to be dealt with. All of this will be done with local power
supply adjusted to the expected voltage from our batteries.
Nonetheless for the purposes of local testing we need stable
environment to ensure our component works as intended.

After this we will focus on power consumption and per-
form timed studies of power consumption with our batter-
ies. We plan on measuring the consumption over 16.5 hours
with nothing in front of the sensor (to mimic an idle voltage
output) and alternatively with something directly in front
of it (to mimic constant measurement). Our aim is to have
the module last the full 16.5 hours even with constant mea-
surement and transfer in order to ensure that in real-world
scenarios of idle and measuring times the module will last
the full day. From this data we should validate the use-
case and verify and design requirements of 16.5 hours of
usage time and battery life. However, we want to extend
the testing to the 4 to 6 days mentioned in the System Im-
plementation section if possible to see how the module be-
haves, with aims of exceeding our requirements for battery
life making the overall system more usable and convenient
for the administrative staff of the gym.

With these tests out of the way, the aim will shift to the
module encasing and the method of mounting the module
onto the gym machines. We will iterate with different de-
signs and study these by testing their durability via stress
tests involving vibration and other typical motions related
to the usage of the machines. Given that the UC gym
will most likely not be available for testing, we must repli-
cate the dashboard configuration of each machine or get
our hands on similar models that allow us to do this lo-
cal testing. For this test our measure of success is unin-
terrupted and continuous reflection of occupancy on our
software stack.

7.2 Tests for Software Stack

The first test for the Software Stack is to check that
the Django app is successfully deployed on EC2. Next, we
need to test that transmitting data from the sensor to the
web app via the POST request works. To do this, we will
simply test sending sample POST requests as described in
Section 6.2, and checking if they are successfully received
by the web app.

Both of these tests can be verified, or confirmed to meet
design requirements, if there is a latency of less than 30
seconds as described in Section 4. Both of these tests can be
validated, or confirmed to meet the use-case requirements,
if the detection delay is subsequently less than 30 seconds,
because our use-case requirement is that users want real-
time data as to when an equipment is used.

Additionally, we want to test the following:

• Accurate data is displayed – we would test this by
sending test JSONs and verifying that the correct
data is being displayed on the web application.

• Filters – Given that our web application allows users
to filter between treadmills and bicycles, we want to
make sure that this filtering option is correct

• Fluidity – We want to determine that sending many
requests at once still results in accurately displayed
information. This test would pass if all the data is
accurately displayed given we send 50 simultaneous
POST requests with different ids.

These tests would all satisfy our accuracy use-case require-
ment (validation), as we aim for detection accuracy ≥ 90%.

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule is split up into three general areas: the
Software Stack, the microcontroller, and the IR sensor. Ian
Brito will work on the Software Stack, Nataniel Arocho-
Nieves will work with the NodeMCU, and Ian Falcon will
work with the IR Sensor.The schedule is shown in Fig. 7.

8.2 Team Member Responsibilities

Ian Brito: Software Stack Nataniel Arocho-Nieves:
NodeMCU Ian Falcon: IR Sensor All: Slack, Integration,
Testing

8.3 Bill of Materials and Budget

Table 1 lists the Bill of Materials for our project. Most
of our costs incurred will be on the components for our sen-
sor modules with one item for AWS credits to facilitate our
web application. The total cost for the materials in our
project is $101.35. However, more costs could be added
based on testing and any redesign. Note that our bill of
material covers our minimum viable product of 3 working
modules, since adapting a solution for the entirety of the
UC gym cardio floor would exceed our budget. In addition
we wanted to save a significant portion of the budget in
case of any major roadblocks or inconveniences that might
happen along the way. Furthermore, we might decide to
upgrade from the free tier of EC2.

8.4 Risk Mitigation Plans

If the t2.micro EC2 instance is not powerful enough for
the Django web app, one risk mitigation plan is to allocate
our budget to pay for an upgraded tier. Next, if for some
reason EC2 deployment does not work, Heroku would be
the next option to deploy the Django web app.

18-500 Design Review Report - March 3, 2022 Page 8 of 8

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
AA Rechargable Batteries HiQuick 16 (16-pack) $2.31 $36.99
AA 6V Battery Holder QTEATAK 4 (4-pack) $1.61 $6.44
NodeMCU ESP8266 NodeMCU 3-pack $5.46 $13.68
Infared Proximity Sensor GP2Y0A02YK0F Sharp 4 $11.06 $44.24

$101.35

9 RELATED WORK

10 SUMMARY

Glossary of Acronyms

• AWS - Amazon Web Services

• EC2 - Amazon Elastic Compute Cloud

• GND - Ground

• HTML - HyperText Markup Language

• IoT - Internet of Things

• IR - Infrared

• JSON - JavaScript Object Notation

• NMCU - NodeMCU (Microcontroller Unit)

18-500 Design Review Report - March 3, 2022 Page 9 of 8

F
ig
u
re

6:
A

fu
ll
-p
a
g
e
v
er
si
o
n
o
f
th
e
sa
m
e
sy
st
em

b
lo
ck

d
ia
g
ra
m

a
s
d
ep
ic
te
d
ea
rl
ie
r.

18-500 Design Review Report - March 3, 2022 Page 10 of 8

F
ig
u
re

7
:
G
a
n
tt

C
h
a
rt

