
RotoCam

Team B2: Ian Brito, Nataniel Arocho-Nieves, Ian Falcon

Use Case

- Rotoscoping is a tedious process in which VFX artists painstakingly mask out layers of objects, often frame by frame.
- With the RotoCam attachment, filmmakers are able to record directly rotoscoped footage from their camera.
- They can import it to video editing platforms without having to manually rotoscope the footage.
- RotoCam aims to save filmmakers time, money, and allow for an alternative to green screens
- Areas: Software, Hardware, Signals & Systems

Use Case Requirements

Cost	Less than \$200	
Battery Life	12h	Allows for a full day of shooting
Weight	Less than 3 lbs.	Reference camera (Panasonic G7) is 0.9 lbs
Dimensions	Less than 8 x 6 x 6 inches	Reference camera is 4.92 x 3.03 x 3.39 inches
Subject Distance	At least 5 feet away from camera	Allows for full body mapping

Use Case Requirements

Accuracy	100% of subject to be in rotoscoped footage, 97% background removed
Quality	1920x1080 Resolution
Framerate	24 FPS
Time to Rotoscope	10 seconds to allow for real-time feedback

Technical Challenges

- Maintaining portability for the hardware
 - Fitting both FPGA and battery into a device that will not restrict camera movement
- Having battery supply power for 12 hours
 - Want to ensure that we can power device for a full day of film shooting

Technical Challenges

- Maintaining desired footage resolution and framerate (1080p, 24FPS)
 - Do not want to compromise video quality while processing
 - 24FPS is a standard in filmmaking we want to maintain
- KEY: We want 100% of the subject to be rotoscoped
 - If the background appears in the rotoscoped footage, it can be manually rotoscoped out, but if the subject is accidentally rotoscoped out, it cannot be edited back in
- KEY: We want at least 97% of background to be removed
 - 97% gives room to make sure the subject is not accidentally edited out

Solution Approach

- Output camera footage via mini-HDMI to FPGA
- Process video on FPGA (i.e. rotoscope)
- FPGA will be reprogrammed to video processing hardware written in Verilog
- Output video to laptop from FPGA

Solution Approach

- Use Python OpenCV to help with rotoscoping footage
- Display footage on laptop, where rotoscoped footage is stored and ready to be used in video editing software such as After Effects

Testing, Verification, and Metrics

- Test battery life while using device to ensure it can last 12 hours of shooting
- Weigh and measure device to ensure portability for the user

Testing, Verification, and Metrics

- Ensure footage is at 1080p and 24 FPS

- Will meet use-case requirements if footage is at desired quality for filmmakers
- Ensure rotoscoped footage is displayed within 10 seconds of filming
 - Allows users to get feedback on their shots and allow for adjustments
- Ensure the subject is completely in the rotoscoped footage, while most (>= 97%) of background is edited out
 - Test this by manually inspecting the raw footage and comparing it to the rotoscoped footage
 - Will meet use-case requirements if users have to do no (or minimal) manual rotoscoping while not having to reshoot scenes due to having the subject cut out

Tasks and Division of Labor

- Signal Processing Ian F.
 - Pre processing the image
 - Determine power consumption
 - Implement algorithm to detect background and remove it
- Hardware Nat
 - Convert software algorithm to digital logic design
 - Implement and verify design on FPGA
 - Implement communication protocols between FPGA and CPU
- Software Ian B.
 - Python, OpenCV to help process image
 - Store and record footage on laptop

Schedule

RotoCam														
Tasks	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
	16-Jan	23-Jan	30-Jan	6-Feb	13-Feb	20-Feb	27-Feb	6-Mar	13-Mar	20-Mar	27-Mar	3-Apr	10-Apr	17-Apr
Setting up visual/recording interface														
Obtain necessary equipment														
Setup FPGA developing environment														
Setup OpenCV and Software environments														
Design software algortihm for background detection		÷												5 S
Optimize algorithm														
Programming FPGA and CPU FPGA connection		1												<u>[</u>]
Implementation of FPGA														
Determine power consumption											•			
Timed testing														
Integration of FPGA														
UI interface														
Storage and file type conversion														5
Integration														
Slack														