
Use Case 

With our system, it is possible to play 
card games over the internet with 
physical cards.

1



Use Case Requirements

▰ Play with physical cards
▰ Plays the games such as Go Fish, Euchre, and 

Rummy
▰ Multiplayer support up to 5 players per game
▰ Be able to input any card for game logic
▰ Ability to have concurrent games

2



Quantitative Design Requirements

▰ A 18” x 24” playing/vision area
▰ Playing/vision area updates are done at least once per 

second
▰ When dealing cards are emitted at least once every 2 

seconds
▰ The full physical device is smaller than a shoebox (14 in x 

10 in x 5 in) and lighter than 10lbs

3



Solution Approach

▰ Vision Device 
▻ Hardware: Raspberry Pi Camera 

Module
▻ Software: Open CV, Tensorflow, YOLO 

algorithm 
▰ Input Device

▻ 10 key keyboard
▰ Output Device

▻ 40x4 character LCD screen 
▻ Thermal Receipt Printer

4

4

Your turn!

Playing 
Board

LCD + Keyboard

Thermal PrinterRPi + Camera



System Block Diagram

5



YOLO Architecture

6



Device Block Diagram

7



Implementation Plan

8

Device Purpose Implementation Actions/Software

Thermal Printer Card dealing device Custom driver for their TTL interface using 
RPi’s TX/RX pins

Raspberry Pi Camera 
Module

CV/scan cards Picamera2 library, YOLO for object 
detection, implemented in TensorFlow

LCD Screen Game state display Custom driver for their custom protocol 
using GPIO pins

Keyboard Bets/card requests RaspbianOS keyboard driver



Complete Solution

Thermal printing the cards 9

Keyboard and LCD Screen

https://www.youtube.com/shorts/QY7dcOeAv5c
https://youtube.com/shorts/oRzByX-_1rY?feature=share


Unit Testing, Verification, Validation

1. Thermal printer: Be able to print 3.25” x 2.25” cards with 
corresponding suit and number in a maximum of 1.5 seconds 

2. Camera/Computer Vision: Properly identifies card(s) in <35 ms
3. Small keyboard: Inputs are properly received and buffered in <10 ms. 
4. LCD Screen: Displays text, then special characters like suits in <1 ms
5. Implementing game logic for different games: Go fish, Euchre, Rummy
6. EC2/Networking: Concurrency and logic tests.

10



Integration Testing, Verification, Validation

1. Software device-level supervisor: Services interrupt from peripherals in 
a timely manner without dropping any signals.

2. Keyboard/Screen Coupling: Keypresses appear on screen within our 
latency targets.

3. Server/device Network Protocol: The device supervisor is able to send 
game state update messages to the server in a timely manner, and 
the server can reconstruct a matching local game state. The reverse 
is also true, the server can send commands to the device, which are 
serviced in a timely manner. 

11



Testing through Mocking

Performance testing the device through writing a 
program that mocks the game server.

12



Testing through Mocking

13

Test File Purpose

numpad_allkeys.test Checks all keys 

print_10_clubs.test Prints the 10 of clubs

print_king_hearts.test Prints the king of hearts

print_multiple_cards.test Prints multiple cards in rapid succession

print_then_detect.test Prints a card, then detects it

print_then_detect2.test Prints two cards, then detects them

screen_basic.test Writes “Hello World” to the lcd screen

screen_suits.test Writes the suits to the lcd screen



Performance

14

Performance Metric Goal Measured

Card printing speed 1.5 sec 4-7 sec

Keyboard/LCD latency No visual lag (40ms) No visual lag

Detection latency 35ms ~23ms

Detection accuracy 85% 97%



Trade-offs

15

▰ Single Card Detection vs Multi Card Detection:
▻ Single: Faster to train, higher accuracy, would not align with the 

user requirements of our game 
▻ Multi Card: Takes a lot more data, more time to train, more 

epochs and batches to achieve high accuracy, aligns with the 
game requirements as originally planned

▰ Card designs vs. Printing speed
▻ More authentic playing experience tradeoff with the time it takes 

to print full bitmaps



Project Management- Updated Schedule

Division of Labor: 16

ML Track: Rachel
Hardware Track: Mason & Miya
Software Track: Mason & Miya (& Rachel)



Lessons Learned

17

▰ Complications with the ordered parts (camera module)
▰ Working with new programming languages
▰ Getting the individual components to work in order to finish 

integration


