With our system, it is possible to play
card games over the internet with
physical cards.

Use Case Requirements

Play with physical cards

Plays the games such as Go Fish, Euchre, and
Rummy

Multiplayer support up to 5 players per game
Be able to input any card for game logic
Ability to have concurrent games

Quantitative Design Requirements

= A 18" x 24" playing/vision area

= Playing/vision area updates are done at least once per
second

= When dealing cards are emitted at least once every 2
seconds

= The full physical device is smaller than a shoebox (14 in x
10 in x 51in) and lighter than 10lbs

Solution Approach

Vision Device RPi + Camera .
Hardware: Raspberry Pi Camera Playing — Thermal Printer
Module Board 5&"\\0 ol AR
Software: Open CV, Tensorflow, YOLO
algorithm / m— =T

Input Device P GO00
10 key keyboard Cng LCD + Keyboard

Output Device
40x4 character LCD screen
Thermal Receipt Printer

System Block Diagram

.
Vision
Device

<

Input

Device

®
Display Dealing
Device Device

mazg
EC2

Vision
Device

Input
Device

n

— ®
Display Dealing
Device Device

S ——

y—

YOLO Architecture

g9 o 4
\“‘ggvff»
L} b

s

Input image

“a

Image

resized to 416 x 416 x 3

416 x 416

208 x 208 x 64

104 x 104 x 128| 52 x 52 x 256

Scale 2:
small
Scale 2: objects
medium
objects
26x26x512 | 13%13x1024

32 Conv (3 x 3)
64 Conv (3 x 3),
s=2

32Conv(1x1)
64 Conv (3 x 3)
128 Res (3 x 3),
§=2

64 Conv (1x1)
128 Conv (3 x 3)
256 Res (3 x 3),
s=2

128 Conv (1 x 1)
256 Conv (3 x 3)
512 Res (3 x 3),
s=2

256 Conv (1 x1)
512 Conv (3 x3)
1024 Res (3 x 3),
s=2

Scale 1:
big
objects

Device Block Diagram

~ .

< » Keyboard
uUsSB

Raspberry Pi

WiFi .
< rececreseeseeq | RaspbianOS

A
/

Keyboard Driver Screen

Protocol
Power Handler Screen Driver

[Printer Driver < Printer
ML UART
Model [Camera Driver

< ' Camera
RPi Video Bus

12 GPIO

A
v

A
A

Diagram Key

. Custom Software
. Raspbian Software
. Hardware Peripheral

y—

Implementation Plan

Device

Purpose

Implementation Actions/Software

Thermal Printer

Card dealing device

Custom driver for their TTL interface using
RPi’'s TX/RX pins

Raspberry Pi Camera
Module

CV/scan cards

Picamera2 library, YOLO for object
detection, implemented in TensorFlow

LCD Screen Game state display Custom driver for their custom protocol
using GPIO pins
Keyboard Bets/card requests RaspbianOS keyboard driver

y—

Complete Solution

Thermal printing the cards

https://www.youtube.com/shorts/QY7dcOeAv5c
https://youtube.com/shorts/oRzByX-_1rY?feature=share

Unit Testing, Verification, Validation

S A W

Thermal printer: Be able to print 3.25" x 2.25" cards with
corresponding suit and number in a maximum of 1.5 seconds
Camera/Computer Vision: Properly identifies card(s) in <35 ms

Small keyboard: Inputs are properly received and buffered in <10 ms.
LCD Screen: Displays text, then special characters like suits in <1 ms
Implementing game logic for different games: Go fish, Euchre, Rummy
EC2/Networking: Concurrency and logic tests.

Integration Testing, Verification, Validation

1. Software device-level supervisor: Services interrupt from peripherals in
a timely manner without dropping any signals.

2. Keyboard/Screen Coupling: Keypresses appear on screen within our
latency targets.

3. Server/device Network Protocol: The device supervisor is able to send
game state update messages to the server in a timely manner, and
the server can reconstruct a matching local game state. The reverse
is also true, the server can send commands to the device, which are
serviced in a timely manner.

Testing through Mocking

Performance testing the device through writing a
program that mocks the game server.

1 2. Sends Command(s) (

-l
-

Device Mock Server

4. Verifies Response(s)

1. Reads Command(s)

J 3. Sends Response(s) (

Test File

Testing through Mocking

Test File Purpose

numpad_allkeys.test Checks all keys

print_10_clubs.test Prints the 10 of clubs
print_king_hearts.test Prints the king of hearts
print_multiple_cards.test Prints multiple cards in rapid succession
print_then_detect.test Prints a card, then detects it
print_then_detect2.test Prints two cards, then detects them
screen_basic.test Writes “Hello World” to the Icd screen
screen_suits.test Writes the suits to the lcd screen

Performance

Performance Metric Goal Measured
Card printing speed 1.5 sec 4-7 sec
Keyboard/LCD latency No visual lag (40ms) No visual lag
Detection latency 35ms ~23ms
Detection accuracy 85% 97%

.

Trade-offs

Single Card Detection vs Multi Card Detection:
Single: Faster to train, higher accuracy, would not align with the
user requirements of our game
Multi Card: Takes a lot more data, more time to train, more
epochs and batches to achieve high accuracy, aligns with the
game requirements as originally planned

Card designs vs. Printing speed
More authentic playing experience tradeoff with the time it takes
to print full bitmaps

Project Management- Updated Schedule

Name

29 Jan 23 5 Feb 23 12 Feb 23 19 Feb 23 26 Feb 23 5 Mar 23 12 Mar 23 19 Mar 23 26 Mar 23 2 Apr 23 9 Apr 23 16 Apr 23 2§
SMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTEFSS

2 Read Docs/Papers

3 Test/Compare models . 1

4 Local CV

5 Define Protocol (N

6 TDD port CV \

7 Build "mock server" :'—v

8 CV debug dashboard \:—

9 Peripheral debug das... —] v

10 TDD keyboard = 7]

11 TDD printer

12 TDD LCD screen [E— N

13 | TDD camera :|

14 Card design/bitmaps [1

15 Build "mock device" h... “;—1 N

16 Test suite: Go Fish :

17 TDD Go Fish ‘:)—‘

18 Integrate Go Fish :]
19 Optimize ==

Division of Labor:

ML Track: Rachel
Hardware Track: Mason & Miya
Software Track: Mason & Miya (& Rachel)

Lessons Learned

Complications with the ordered parts (camera module)
Working with new programming languages

Getting the individual components to work in order to finish
integration

