
1
18-500 Design Project Report: Team A7 02/25/2023

Jack of All Trades
Miya Higuchi, Mason Loyet, and Rachel Ratnam

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system that facilitates remote gameplay with
physical cards. For those who wish to play card games with
friends and family in separate locations, the current alternatives
available are online websites and video game software. Unlike
these applications, our system aims to make card games such as
Go Fish, Rummy, and Euchre possible to play remotely while
retaining the authentic feeling of holding physical cards. By
utilizing computer vision and machine learning, players are now
able to manually place cards on the table and draw from a deck
to progress a remote game.

Index Terms— computer vision, LCD screen, machine
learning, peripherals, Raspberry Pi, TCP socket, thermal printer,
tty, YOLO algorithm

I. INTRODUCTION

PLAYING cards is a fun activity to spend with family

members and friends, but it is difficult to do when separated
by great distances. The current alternatives for remote
gameplay are purely virtual, consisting of online sites and
applications that lose the authentic feeling of holding and
placing cards. Inspired by the nostalgia of playing with
physical cards, with our system, remote gameplay using
physical cards is now possible.

As the main appeal of our system is its tangibility, our
approach aims to emulate the in-person playing experience
while preserving simple gameplay progression. Specifically,
players can manually draw and place cards by hand as their
“move” as opposed to having to strictly interact with software.
In addition to the primary focus on physical cards, our system
aims to have multiplayer backing, game logic for specific card
games, and support for concurrent games. For a deck of cards
to be referenced by players in separate locations, our system
will also include card dealing and card recognition to ensure
that inconsistencies such as card duplicates will not occur.

For the actual implementation, the physical components of
our system can be organized into input, output, and dealing
devices. The keyboard will help progress the game where user
input is needed. For example, during a game of Go Fish,
players will need to input to the system which card rank they
are requesting. The server needs to be able to know what the
request is, in order to relay the information to the opponent
and progress the game state. The camera module input device
will act as the “eyes” of our system. It will capture the cards
the user “plays” and upload the information to the server,
updating the gamestate. The output device is our LCD screen,
which displays the current gamestate and items of action to the
user. For instance, the screen may indicate the move the

opponent has just made. Lastly, for the scope of this project,
the dealing device will be a thermal printer instead of a
mechanical sorting machine. The thermal printer, connected to
the Raspberry Pi, will print out the cards as a means of
dealing. Cards will be printed out on receipt paper and
supplemented with cardstock.

II. USE-CASE REQUIREMENTS

The specifications for our system mainly aim to satisfy user
experience during gameplay and mitigate any inconveniences
that might arise due to the remote limitations.

One specification for our project includes the minimum
playing space that needs to be allocated for card recognition.
The user will want sufficient enough space to play cards but
will not want to have to provide an unreasonable amount
either. Most popular board games are between 15” by 15”
(Scrabble) and 20” by 30” (Risk). For the scope of this project,
the area will be approximately 18” by 24” of table top space,
such that it is within the limits of convenience for the player.
This space will account for the area of all our physical
devices, as well as the area necessary for the camera to
recognize cards being played.

Furthermore, since the system will be requiring connectivity
to the server during gameplay, the user should be able to join
the lobby as long as they have access to WiFi as well as an
outlet to sufficiently power the devices. Once setup is
completed, connecting and initializing a game between players
must take no longer than 10 seconds. This metric is derived
from the amount of time consumers are usually willing to
spend for websites or video games to load.

Due to our system using a thermal printer to deal cards, , we
want cards to be dealt at a rate of at least one card every two
seconds. This is so the player doesn’t have to be idle for too
long during the beginning phases of the game, such as when
players are being dealt their preliminary hands. Since the
players will not have to wait for their opponent’s card to be
dealt with the same device, this frequency is more closely
modeled to the speed of casual gameplay.

Additionally, for card legibility, the fonts used should be at
least 16 pixels (size of 12 point font). Most printing media use
and recommend a 12 point font, so this metric was decided in
order for the cards to be readable for a broader range of
players. Also, the physical card sizes must be at least 3” by 2”.
Standard playing cards used by casinos and professional
settings are typically 3.5” by 2.5”, but for our project, the
cards will be 3” by 2” (slightly larger than standard mini sized
cards).

For specific games that will be implemented, our minimum
viable product will be to have a fully functional remote game
of Go Fish.

2
18-500 Design Project Report: Team A7 02/25/2023

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. Mockup illustration of the device setup

The physical set up of our system is illustrated in Figure 1.
The player will be sitting adjacent to the devices which will
be connected to the Raspberry Pi.

To initiate and join a game, participating players must join a
game lobby. For a given game lobby there exists a server
(which may be hosting several game lobbies concurrently) and
a set of 2-5 devices. Each device system allows exactly one
person to interface with the game, and can be located
anywhere as long as it is connected to power and wifi. Devices
do not communicate point-to-point with each other. Instead,
each device system has a single TCP socket connection to the
server over which all communication occurs. The Raspberry
Pi serves as the central hub that connects to our peripheral
devices, relaying the inputs and actions from the player to the
server. Using the Raspberry Pi, information in the form of
JSON objects will be sent to the server to be interpreted as
commands and responses.

Fig. 2. Device Block Diagram

Fig. 3. System Block Diagram

The specific configurations of each device to the Raspberry
Pi are shown in Figure 2. The keyboard will be connected to
the Raspberry Pi via the USB port, LCD screen will connect
to the GPIO pins, the printer is connected via UART wires,
and the Raspberry Pi Camera module’s ribbon connector will
be secured to the Raspberry Pi Camera Serial Interface (CSI)
port.

RaspianOS will take care of the device drivers necessary to
communicate with the keyboard and camera. For the LCD
screen and printer, they will be interfaced separately.

3
18-500 Design Project Report: Team A7 02/25/2023

IV. DESIGN REQUIREMENTS

The most noticeable aspect of playing a card game is the
cards. Our use case requirements state that we need to be able
to play with physical cards, but in order to play with physical
cards in an acceptable way, we need to set some quantitative
requirements.

The cards need to be printed accurately. We expect for the
printer to be able to flawlessly print an entire deck of cards
such that both a human and the camera is able to detect every
card. In order to meet this requirement, the design must be
resistant to misprints. The suit and number will be at least
double redundant in the bottom left and upper right corners.

Also, the cards need to be printed quickly. In a game of
cards using a real deck and human dealer, the dealer will
shuffle the deck a few times before dealing out the cards. If
the shuffling takes about 5 seconds and 4 cards are dealt a
second, it would take 10 seconds for a human dealer to deal 5
cards to 4 people. Since we do not have to shuffle the cards
and we can deal all the cards in parallel, our design
requirement is to deal 1 card every 2 seconds to match this
real world benchmark.

When coupling a keyboard and a screen it is critically
important that there is virtually no latency between typing and
having the text appear on the screen in order for the system to
feel responsive. Studies3 show that there is a 40 ms window to
show the result of an input, but there are conflicting studies, so
we will require a 20 ms update latency for our LCD screen.

When playing a card game in person, you are visually able
to see your opponents move almost instantly. In order to
accurately emulate the gameplay experience, we must have the
latency from card play to card reporting be sufficiently small.
Human reaction time is about a quarter of a second2, so the
total latency between the time that a player plays a card and
the card play being reported on all other devices must be less
than 0.25 seconds.

This classification latency leads to the strictest subsystem
requirements for almost all components. The allocation of
time is as follows: first, we want the classification time to be
around 25 ms. Then, the camera image capture time must be
less than 100 ms. The network needs to also be less than 100
ms including encoding and decoding. Finally, as before, the
LCD screen write latency should be less than 20 ms.

Another important aspect of playing cards is the amount of
space where cards can be placed. For example, it would be
very uncomfortable to play cards on an airplane tray table. We
decided that a sufficient amount of space to hold the cards in a
playing area with 5 people is 18 inches by 24 inches. This
requirement means that our camera must be able to capture
this region with enough accuracy to identify the cards. Since
our receipts have precision of about 100 dpi, the image
captured must be at least 2400x1800 pixels.

Finally, when not using the device it must be easy to store in
a game cabinet. Our target shape is smaller than a shoebox (14
in x 10 in x 5 in) and lighter than 10lbs.

V. DESIGN TRADE STUDIES

In order to derive our final design decisions, we had to
compare a lot of tradeoffs between various options and
determine which one best satisfies our design requirements.
Overall, we essentially had to choose the best ML algorithm,
card dispensing device, camera module, and microcontroller.

A. Real Time Object Detection Algorithm
In terms of picking the best real time object detection

algorithm, we were deciding between the Deformable Parts
Model (DPM), Region-Based Convolutional Neural Network
(R-CNN), and the You Only Look Once (YOLO) algorithms.
In terms of picking the best algorithm, we first looked at what
design requirements we needed to satisfy. Our goal for our
system to be able to detect cards and be able to return its suit
and rank was around 25 milliseconds. The DPM used a sliding
window approach with multiple connected networks.
However, because of these multiple networks it is slower and
it uses static features causing it to also be less accurate. The
second approach of R-CNN uses certain regions of the video
to perform detections. However, this can lead to multiple
detections of the same object and detecting the same card
multiple times can lead to logic issues in a lot of our games.
Additionally, each image can take more than 40 seconds to
detect which does not align with our specifications for the
design. The YOLO algorithm utilizes a single network, a grid,
and feature recognition within each box of the grid which
proves to be over 1000 times faster than the R-CNN and it
tends to make approximately 50% of the errors that the
optimized version of R-CNN (Fast R-CNN) makes. Due to
this speed, we have decided to work with the YOLO algorithm
for our project. The only setback for this algorithm is that it
does not properly identify groups of very small times when
they are close to larger items. However, this will not be an
issue for us, since our camera will only be used on cards
against a constant black background.

B. Card Dispensing Device
The next decision we had to make was how we wanted to

actually deal the cards. When making this decision, we had
two options. The first option was a mechatronic device that
would have one set of standard playing cards in it. It would
then contain a rotary device that would sort through the cards
and then eject the card that is necessary at that moment. This
first option has a lot of moving parts such as a rotating device
that would be able to understand how much to rotate and how
much to spin. It would then have to be able to eject one card.
It would also have to be able to take in a card and place it in
the rotating mechanism in the right order according to the
card’s rank and suit so that it can be properly found the next
time around. The second option was to purchase a mini
thermal printer. This printer would essentially serve the
purpose of printing out disposable versions of the card as
needed. So the shuffling of the cards would occur within the
software and according to the game logic, certain cards will be
assigned to a user. As a result of that, the printer would

4
18-500 Design Project Report: Team A7 02/25/2023

proceed to print those cards out. To make it feel more like a
card, the user can attach the printed receipt cards onto a piece
of cardstock with a clip. At this point, we decided that both of
these designs achieve our need to give cards to the user.
Although, it more environmentally friendly to use the first
option, due to the scope and time constraints of this project, it
made more sense use the second option because no one on our
team specializes in mechatronics or robotics so building this
contraption would be out of scope and instead designing and
coding cards to be printed from our thermal printer made more
sense.

C. Camera Module
In terms of the camera we were going to use, the only

specification we were looking for is easily integrable with our
raspberry pi and computer vision model so that detection of
cards was as efficient as possible. When looking for cameras
that fit these specifications, it made the most sense to use one
that was compatible with the raspberry pi since it has a camera
driver. Therefore, we decided to use the raspberry pi camera
module version 1 that works well with the raspberry pi. It also
has a still resolution of 5 megapixels and sensor resolution of
2592 x 1944 pixels which was a high enough resolution and
quality for our machine learning model to perform well.
Another aspect of the camera module was its field of view
because as mentioned by the design requirements, the camera
will be propped up in a way such that it is overlooking the
vision area, so the camera must have sufficient vertical and
horizontal fields of view so that it is able to cover the entire
area. With a horizontal field of view of 53.50 +/- 0.13 degrees
and a vertical field of view of 41.41 +/- 0.11 degrees.
Therefore, with these, it was sufficient to see the whole vision
field and easily integrable with our chosen

D. Microcontroller
For the microcontroller of this project, it came down to two

options. The first option was the STM32 microcontroller and
the second was the Raspberry Pi 3. Both microcontrollers had
their pros and cons. The STM32 was integrated with wireless
wifi and it is a much smaller and cheaper device than the
Raspberry Pi. However, the Raspberry Pi 3 has software that is
meant to drive a lot of the components of our project. For
example, we can utilize the camera driver and the keyboard
driver provided by the Raspberry Pi and we can integrate it
with an operating system that we develop. Therefore, due to
these properties and advantages of the Raspberry Pi 3, we
decided to go with that.

VI. SYSTEM IMPLEMENTATION

As outlined in the architecture, the network topography
forms a star with the server in at the hub and devices as
peripherals. The server’s software manages the connections to
the peripheral devices and holds the consensus of the game
state by authority. We emphasize this centralized state
philosophy as much as possible by designing the devices to

hold little to no state about the game. While connected to the
server, they simply relay their I/O through messages.

The device itself runs the Raspberry Pi OS and attempts to
follow Unix best practices to be as simple and infallible as
possible. Specifically it interfaces with the camera, the receipt
printer, the LCD screen and the keyboard through sysfs. The
implementation of these file interfaces are explained in more
detail in their respective sections.

A. Server
The server is an amazon EC2 instance running RHEL (Red

Hat Enterprise Linux). We use RHEL as opposed to Amazon
Linux because RHEL is more widely used, documented, and
supported. On top of that, Amazon Linux could tie us to
Amazon as our cloud provider since Amazon Linux only runs
on EC2 instances. Our team also has experience using RHEL
in the past.

The software running on the server will be written in Rust
to allow for easier concurrency and greater static guarantees of
memory safety. The architecture will be fairly simple. There
will be a single acceptor thread that handles requests to
connect to the server by either creating a new game lobby or
adding the client to an existing lobby.

A lobby consists of a unique name supplied by the creator, a
game type, and an expected number of players. The lobbies
are associated with threads which will be taken from an idle
thread pool by the acceptor thread. This model lends itself to
the 3 states of threads depicted in Fig. 2. All threads begin idle
before a lobby is attached. Then once the thread is given a
lobby by the acceptor it is in the waiting state until the game is
started. Then, once the expected number of players attach to
the lobby and the game starts, the thread is put in the active
state for as long as the game is being played. When the game
ends, the lobby is disbanded and the thread returns to the idle
state. If a game lobby is abandoned before it starts, the thread
may return to the idle state without a game starting. This may
also happen if the lobby sits unfilled for a long period of time.
These considerations are important as to not exhaust our
thread pool waiting for games that will never start.

Once a game starts, a game state object will be created to
accompany the lobby object. Every game has a different game
state object to reflect the rules of the game. While a game is
being played, it will be in the game loop. At any given time

Fig. 4. Thread Pool Diagram

5
18-500 Design Project Report: Team A7 02/25/2023

it is exactly one player’s turn. This player is called the active
player. A turn consists of two stages: the play stage where the
active player does their move, and the reconciling stage where
the active player’s action is reconciled with all other players in
the game.

During the play stage, the game state object will dictate
what messages to send to the active player. The active player
will then apply some input to the device which will be visible
in the form of messages received on the server. All messages
from the active player will be passed to the game state. The
game state will indicate if the messages received have
completed the active player’s turn. For example, in Go Fish,
the active player would be prompted to input a player and a
suit to request. When the server receives messages that the
player typed something into the keyboard, the server passes
these messages to the game state to be verified. It may be the
case that the game state needs to send more messages to the
player if they give illegal or unexpected inputs.

After the play stage is complete, the reconciling stage
begins. The game state will dictate what messages to send to
all players. This time, all messages from all players will be
sent to the game state object. Again, the game state object will
indicate when the reconciling stage is complete. In the go fish
example, this would include sending a message to the
requested player to give up the cards of a certain suit. The
player would place all such cards in the vision area. At the
same time, the device can send a message to the active player
to dispense the newly gained cards.

After the reconciling stage, the game may either be over, or
play could continue with the next player's turn, starting at the
play stage.

B. Server-Device Communication
The server-device communication is done point-to-point

over TCP sockets. All messages are sent encoded as JSON
objects. Encoding and decoding from objects is done by a Rust
crate called serde. There is no device-device communication.

The protocol is designed to reflect the stateless nature of the
devices. For example, lines could be buffered by the device,
but are instead sent immediately to be buffered on the server
side. Similarly, the server is responsible for tracking what
cards were detected in the last scan, the device sends all cards
detected.

The strings received in Line messages are exactly as
expected except that the suit keys are encoded. The mapping is
+, -, /, * to spade, club, heart, diamond. These keys will be
repainted on the actual keyboard.

The LCD screen messages are fairly straightforward. Text
strings are sent in the print messages. There are some
embedded special characters in the string that will represent
the suit characters. To be consistent, these special characters
are the same as the characters sent by the keyboard. (+,-,/,*).
There is also a command to clear the LCD screen. If text is
sent that would overflow the LCD screen, the text will scroll
down.

TABLE I. PROTOCOL MESSAGES

Source
Message

Name Description

Server

Clear Clear the LCD Screen

Deal(card) Dispense card

Print(s) Print s to LCD Screen

Scan Scan the playing area for
cards

Device
Line(s) The keyboard received the

line s

Detect(cards) The camera detected cards

The Deal message works exactly like expected. Given a
card to print, the device will send a message to the printer to
dispense the card.

In order to make the device detect cards, a Scan request
must be sent. Then, the device will take a snapshot of the
board, run it through the detection model, and send the
matched cards over the connection in a Detected message.
Every scan will result in exactly one Detected message. It is
undefined behavior to send two Scan messages before
receiving a Detected message. Observing the time elapsed
between a Scan message and Detected message is a tangible
target metric for the overall card detection latency.

C. Device Supervisor
On the raspberry pi there will be a user space program

called the device supervisor. This program establishes the
network connection to the server and sends and receives all
messages.

On the raspberry pi’s boot, this process will start. It is
responsible for running ensuring that all the peripherals exist
and are initialized and any associated processes are started. In
accordance with Unix principles, we will attempt as best as
possible to have all peripherals represented as files. See the
peripheral subsystem sections to see how this is done.

This program prompts the user to enter the lobby and game
information before any connection to the server is established.

Once the server connection is established, it will
communicate with the 4 peripherals in order to send and
receive messages as described in the protocol.

D. Printer
The receipt printer has a very simple interface in terms of

communication. It uses a form of ASCII UART with a baud
rate of 19200. General-purpose computers typically have very
good support for serial ASCII interfaces through tty devices
and the Raspberry Pi is no exception. With some configuration
of the Raspberry Pi OS, it is possible to connect the GPIO
UART pins directly to tty files. In our case we connect the
printer to the /dev/ttyAMA0 serial device.

This means that in software, sending messages to the printer
simply consists of opening the tty file and appending text to it.

That being said, there is a more complicated protocol built
on top of the ASCII UART channel. In this protocol, basic text
is printed directly to the printer, but through the use of escape

6
18-500 Design Project Report: Team A7 02/25/2023

sequences it is also possible to instruct the printer to modify
text properties, print barcodes and QR codes, and even display
generic bitmaps. We intend to use the generic bitmaps in order
to put the suits on our cards.

E. Keyboard
Since we are using an off the shelf USB keyboard, we are

able to use Raspberry Pi OS’s USB keyboard drivers and
configuration. Similar to the receipt printer, the keyboard will
appear as a tty device in the file /dev/ttyUSB0.

In order to read continuously from the keyboard, we’ll
simply have a thread with the file open listening continuously
and sending the lines that it reads back to the Device
Supervisor for transmission.

F. Camera
The Raspberry Pi camera is the most complicated device by

far, but has the best driver support. Raspberry Pi OS has a
kernel module called bcm2835-v4l2 which allows us to set up
several capture modes with a daemonized process. The capture
mode that we will use is periodic capture to file. Once we start
the daemon, whenever we want the up to date image, we just
read from the file we specified in the process launch.

G. YOLO

Fig. 5. YOLO Architecture

The YOLO algorithm will be applied on the real time video
received from the Raspberry Pi camera module. The algorithm
has a base network speed of 45 frames per second and when it
is optimized, it can reach up to 150 frames per second. With
real time streaming, the video can be processed with a latency
of under 25 milliseconds. This algorithm takes the images
from the video, resizes it to be smaller, and then splits it into
an nxn grid which make up the bounding boxes. This
algorithm then utilizes a single network to perform the actual
detection. Within each box, our algorithm will determine if the
center of the object is in the grid cell. If that is true, then that
specific grid cell will work on detecting what the object is.
The actual network will have 24 convolutional layers, 2 fully
connected layers. a 1x1 reduction layer, followed by a 3x3
convolutional layer [1]. We will be utilizing linear activation
functions within the layers and using the sum of squared errors
to perform the computations within the layers.

H. LCD Screen
The LCD screen has a pretty complicated interface. It is a

11-pin GPIO bus. On top of 8 pins for data transmission, there
is also a r/w pin and register select pin. The last pin is used for

an operation-enable signal to tell the device to interpret the
bus as a command.

The interface I have described is the interface to the ST7066
chip. Internally this chip interprets the 11-pin bus and actually
lights up the pixels in the LCD screen. This chip has the same
interface as a much more popular chip called the Hitachi
HD44780, which has become the standard for LCD interface.

There are a number of open source kernel modules that
work with the HD44780 interface. One which looks promising
is called lcdi2c. This would allow us to operate the device
through the file /sys/class/alphalcd/lcdi2c.

VII. TEST, VERIFICATION AND VALIDATION

When testing our design implementation, we will be
employing a mix of both unit and integration testing,
verification. and validation. We chose to split up the testing as
such because it is important to test each of the individual
components as we go to make sure that they all work as
expected, and we also need to make sure that when they are
connected, all the various integrations perform as expected.

A. Unit Testing, Verification, Validation
The first unit that we will be testing is the thermal printer.

As described by our design requirements, we will be testing to
ensure that our printer can print out 3.25” x 2.25” cards with
the accurate corresponding suit and number in a maximum of
1.5 seconds. We will have the code for each card
predetermined, so when we send a certain card to the printer
system, it should be able to output the exact card with the
given specifications under the specific time restraints. The
reason for these values is because the width of the printer is
2.25” and we need to fit the cardstock, so the length of 3.25”
will be slightly shorter than that. The frequency of the thermal
printer is approximately 2.35”/second, so it can print
approximately one card every 1.5 seconds. The next test will
focus on the camera with the connected computer vision ML
model. Because the selected YOLO algorithm has a
processing latency of under 25 milliseconds and a video
detection of about 10 FPS for a non GPU device, we created a
high estimate of approximately 35 milliseconds and hope that
when a new card is placed in the vision area, the system
should be able to know what the suit and rank of the card is
under those 35 milliseconds. Next, the keyboard will also be
tested to ensure that when the user enters in an input, it is
properly received and buffer in under 10 milliseconds. This
metric is the minimum value such that the human user does
not experience any lag from their point of view which would
be an inconvenience, so the testing will ensure that the latency
is at peak performance so that users do not have to wait for
their inputs to show up on the screen. Likewise, testing for the
LCD screen will include measuring how long it takes for the
screen to display text and special characters like suits. We
hope to be able to display the text in under 0.1 milliseconds.
This is because for the particular screen we have selected, the
frequency of reading data from the RAM is approximately 37
microseconds and the frequency of writing data to the RAM is

7
18-500 Design Project Report: Team A7 02/25/2023

also approximately 37 microseconds. Together, this will be
approximately 74 microseconds, so an estimate of 1
millisecond will account for these 74 microseconds with a lag
and also meet our design latency requirements of game state
update speeds and requirements. Another unit test is the
testing of the implementation of the game logic and rules for
the three games we have selected to implement: Go Fish,
Euchre, and Rummy. This testing will be more logic based and
can contain user testing and the user of our test suites to
ensure that all of the rules are properly implemented within
the system and it understands all of the smaller protocols such
as how many cards to pass out, how turns work, what inputs to
take, and more. Finally, the last unit test will be in regards to
EC2 and networking. We plan on implementing concurrency
and logic tests for our EC2 instance and ensuring that we can
send multiple signals to our EC2 from the various games
without having any signal issues.

B. Integration Testing, Verification, Validation
Next, we will also be focusing on testing the integration of

all of our individual devices. The first integration test will be
in regards to the software device-level supervisor. Because of
our use-case requirements of multiplayer support for up to 5
players per game and the ability to have concurrent games
going on at the same time, it is crucial that our servers are able
to properly interrupt signals from peripherals in a timely
manner without dropping or disrupting any of them. This is
important, because we need to make sure that we have all of
the necessary and relevant information for each of the games,
and this can lead to logic problems if any of the signals are
dropped or taken from other games going on at the same time.
The next integration test is with the keyboard and screen
latency. As mentioned in the design requirements, due to the
latency necessity of humans to process visual information with
no lag, we are aiming for a latency of approximately 20
milliseconds. So for testing, we will ensure that keypresses
performed by the user on the 10 key keyboard show up on the
screen within the expected 20 milliseconds, which according
to the latency requirements from our unit testing for the
individual components is very reasonable because it accounts
for the time in between to send the data from the keyboard to
the LCD screen. Finally, the last integration test we will be
performing is testing the network protocol between the server
and device. The device supervisor should be able to send game
state update messages to the server in a timely manner and the
server can reconstruct a matching local game state. The
reverse is also true here and the server can send commands to
the device which are again serviced in a timely manner. This is
to ensure that the communication between the devices is
efficient and can keep up with the flow of the game.

VIII. PROJECT MANAGEMENT

In order to manage this project efficiently, we have created a
project schedule for the entire semester with goals, tasks, and
deadlines so that we can stay accountable and ensure that the

project is completed in a timely manner. Based on the skills of
the three individual team members, we have also split up this
project into various tasks and then assigned them to the
appropriate member based on their specialties. Finally, we
have also created a bill of materials with budget and risk
mitigation plans to ensure that we are able to feasibly build
this project and have a working end result at the end of the
allocated time period.

A. Schedule
The projected schedule for our project’s milestones and

deadlines is displayed in Fig. 3. The overall project has
essentially been split up into different tasks with three distinct
paths allocated on the schedule for the three members. The
schedule goes up until the middle of April when the project is
due. Each of the 23 tasks has at least one person working on it
and is organized in such a way that tasks that depend on others
are scheduled so that all dependencies are met prior to starting
it.

B. Team Member Responsibilities
As shown on the schedule, there are three main paths for the

team members to take on. The first path focuses on the
machine learning model with reading papers, comparing
models, locally creating the computer vision, and writing the
test driven development for the computer vision. Rachel will
have the primary responsibility of handling the machine
learning model and hooking up the computer vision to the
device for this project because of her minor in machine
learning and particular interest in the field. Her secondary
responsibility will be helping the software track as necessary
when the other members are running into problems or if she
completes her parts early. The second path described in the
schedule consists of more hardware components which will
include defining a protocol, building a mock server, a CV
debug dashboard, a peripheral dashboard, and performing test
driven development on the keyboard, camera, LCD screen,
and the thermal printer. This role will be the primary
responsibility of Miya, who is concentrating in hardware in
her degree. Her secondary responsibility will be helping
Mason with the software path which is described next. The
final path will include defining the protocol, building a mock
device, writing test suites for Go Fish, Rummy, and Euchre,
and performing test driven development on all three games.
Mason’s primary responsibility will be this due to his
concentration in software and specialties in systems. His
secondary responsibilities will include helping Miya with the
hardware track as needed. All three members will then come
together to work together and integrate all three of the games
once the rest of the work is done and then will also work on
optimizing the system as time permits.

8
18-500 Design Project Report: Team A7 02/25/2023

.

Fig. 6. Schedule with milestones and team responsibilities

C. Bill of Materials and Budget
The forecasted bill of materials and budget can be seen at

the end of the report on Table II.

D. Risk Mitigation Plans
A potential risk we have here is that no one in the team has

ever worked on a real time object detection. However, image
detection with pictures has been performed before with simple
computer vision. Although this is unknown, the YOLO
algorithm is very well documented so should be simple
enough to implement. However, if this does end up being a
problem, a way to mitigate this risk is just actively taking
individual screenshot images every couple of seconds, and
then treating that as an image and feeding that into our
network alternatively.

IX. RELATED WORK

Our product is unique in many ways. One similar idea is
that there are multiple online card game platforms. These offer
a multitude of various games that people can play with their
friends online but none offer a way to play with physical cards
remotely. Additionally, there is a patent out there for a system
that plays card games remotely that performs a very similar
functionality as our but uses mechatronics instead of a thermal
printer. This patent has been used multiple times for various
card dispensers, blackjack and poker apparatuses, and more.
However, our work differs from these because we focus on
three games that have not been implemented yet: Rummy,
GoFish, and Euchre.

X. SUMMARY

Overall, our system allows for people to play cards with
their friends and family remotely while still maintaining the
feeling of playing physical cards. This will continue to bring
people together even when separated by great distances. The
thermal printer provides any card to the user and the design of
the keyboard and LCD allows for the users to easily and
efficiently input whatever they need to and witness it appear
on the LCD screen. Additionally, the implementation of the
various game logics, allows for the users to play a variety of
games similar to how they would play them in real life. We
will be facing multiple upcoming challenges in our
implementation and in meeting the use-case and design
requirements. Our next steps in the schedule include
implementing the computer vision locally as well as
performing test driven development on the various
components such as the keyboard, camera, LCD screen, and
printer. Additionally, we will need to be building the test suites
for the various games. These will all be challenging, especially
integrating the various pieces together. However, as long as
our design is aligned with our implementation, this should not
be a problem and soon people will be able to play cards
remotely.

GLOSSARY OF ACRONYMS

YOLO – You Only Look Once

9
18-500 Design Project Report: Team A7 02/25/2023

REFERENCES

[1] Wang, Chien-Yao & Bochkovskiy, Alexey & Liao, Hong-yuan. (2022).
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for
real-time object detectors. 10.48550/arXiv.2207.02696.

[2] Jain A, Bansal R, Kumar A, Singh KD. (2015). A comparative study of
visual and auditory reaction times on the basis of gender and physical
activity levels of medical first year students. Int J Appl Basic Med Res.
2015 May-Aug;5(2):124-7. doi: 10.4103/2229-516X.157168. PMID:
26097821; PMCID: PMC4456887.

[3] Deber J, Jota R, Forlines C, Wigdor D. (2015). How Much Faster is Fast
Enough?: User Perception of Latency & Latency Improvements in
Direct and Indirect Touch. 978-1-4503-3145-6

10
18-500 Design Project Report: Team A7 02/25/2023

