
Jack of All 
Trades

Team A7
Miya, Mason, Rachel



Use Case/ Problem Statement
With our system, it is possible to 
play card games over the internet 
with physical cards.

ECE Areas: 
Software and Hardware



Game Requirements
● Play with physical cards
● Plays the games Go Fish, Euchre, and Rummy
● Multiplayer support up to 5 players per game
● Be able to input any card for game logic
● Ability to have concurrent games



Quantitative Requirements
● A 18” x 24” playing/vision area
● Playing/vision area updates are done at least once per second
● When dealing cards are emitted at least once per second
● The full physical device is smaller than a shoebox (14 in x 10 in x 5 in) 

and lighter than 10lbs



Technical Challenges
● Real-time signal handling
● Classification latency
● Identifying unique devices to facilitate multiple players in distinct 

games
● Interfacing between the multiple physical devices (input, display, and 

dealing)



Approach/Architecture



Vision Device and Classification
Hardware: 
● Raspberry Pi Camera Module 3 Wide
Software:
● OpenCV using Python to detect the card played by the 

user
● Tensorflow to train an ML model to identify the card’s 

suit and number



Input Device
● 10 key keyboard for 

user input of cards 
● Repaint some keys to 

represent suits

8



Output Devices
● 40x4 character LCD Screen to display commands and 

prompts involved in games
● A mechatronic dealing device is out of scope, but to keep 

the physical card aspect, we will use a receipt printer



Unit Testing
1. Thermal printer: Be able to print the correct cards with corresponding suit and 

number with a consistent size 
2. Camera/Computer Vision: Properly identifies card(s)
3. Small keyboard: Inputs are properly received and buffered.
4. LCD Screen: Displays text, then special characters like suits
5. Implementing game logic for different games: Go fish, Euchre, Rummy
6. EC2/Networking: Concurrency and logic tests.

10



Integration Testing
1. Software device-level supervisor: Services interrupt from peripherals in a timely 

manner without dropping any signals.
2. Keyboard/Screen Coupling: Keypresses appear on screen within our latency 

targets.
3. Server/device Network Protocol: The device supervisor is able to send game state 

update messages to the server in a timely manner, and the server can reconstruct a 
matching local game state. The reverse is also true, the server can send commands 
to the device, which are serviced in a timely manner. The string representation of 
the game state is shown on the device screen.

11



Tasks and Timeline



Division of Labor
ML track: Rachel
Hardware track: Mason & Miya
Software track: Mason & Miya (& Rachel)

13


