
18-500 Design Project Report: Team A6 03/03/2023

1

Abstract—We propose a universal drone attachment that uses

mmWave radar and machine learning (ML) to accurately detect
humans in fire and fog search and rescue (SAR) conditions. Our web
application interfaces with the device to allow the user to drop a pin to
mark a victim’s location for subsequent rescue. Our device automates
human detection to increase SAR mission efficiency at 50% of the cost
of existing market solutions, assuming the average cost of a drone is
$1000.

Index Terms—Chassis, drone attachment, GPS, mmWave radar,
safety, SAR, sensor, 3D-CNN, web application

I. INTRODUCTION
ECENTLY, SAR applications have expanded by using
drones [1]. Drones provide many advantages; they limit the
exposure of first responders to extreme weather conditions

and dangerous terrain, cover large swaths of area efficiently,
and are compatible with high-definition cameras and sensors
that enhance SAR missions. For these missions, the standard
maximum flight altitude is 10 meters, and the duration is a
maximum of 30 minutes [2], [3].

However, there are a few drawbacks to the current
technology. Because they utilize a high-definition camera and
infrared sensing, SAR drones are very expensive. Also, they do
not perform well in high temperature conditions and are subject
to visible occlusions like fog and smoke. Lastly, they require
manual identification of victims.

Our universal drone attachment overcomes these barriers to
aid first responders. By using a millimeter-wave (mmWave)
radar, we provide a more cost-effective solution, making our
technology more accessible for public agencies like fire
departments and the National Park Service. Our mmWave radar
is also more robust to adverse weather conditions and fire
rescue situations, broadening the utility of our SAR drone
application. Specifically, we will focus on fire and fog
situations. The radar functions by measuring the range (distance
to target), Doppler (relative velocity of the target to the drone),
and azimuth (angle to the target) data. The Doppler data in
particular helps us locate moving targets, since they will create
a different velocity relative to the drone compared to stationary
targets. Therefore, we will be using this to our advantage. Using
machine learning, we automate the manual identification of
victims, increasing the efficiency of the mission where rescuing
victims is extremely urgent.

To attach our device to the drone, we will encase it with a
plastic chassis that will go around the drone’s rails. The first
responder will fly the drone remotely and hover in certain areas
that they choose to examine. The attached mmWave will

transmit radar data to the machine learning architecture that is
embedded in our web application. By viewing our web
application interface, the first responder can see if a human is
detected, and if so, they are sent the exact location of detection
and can save that location for subsequent rescue.

II. USE-CASE REQUIREMENTS
Since we are building a SAR drone attachment, drone

compatibility, increasing the efficiency of missions, safety of
first responders, and cost are the most important factors of our
application.

Our device must work well with a drone. Its size and weight
cannot impede the drone, and it must easily attach. With our
material we estimate our device will weigh less than 0.5 kg and
have an area of 11 square inches. By encapsulating our device
in a plastic chassis, we can attach our device to any drone via
its rails. While using plastic in high temperature situations may
invoke environmental questions, we have taken this into
consideration and will implement a high temperature warning
system for the user, so that neither the plastic nor our device is
ever damaged. Lastly, our device must work for the duration of
a drone flight and work at the standard flight altitude. These last
for roughly 30 minutes, so our device must maintain that
functionality for at least that long; our device must work within
10 m above the ground.

Moving onto increasing the efficiency of missions, SAR
conditions indicate people in crisis situations–it’s paramount
that these victims are rescued as quickly as possible. Our device
facilitates this by automating the human detection process,
pinning locations of victims, and having overall real-time
functionality. Instead of first responders manually scanning for
victims and not only wasting time but also having a more
substantial environmental impact, we can point out where
victims are using the mmWave radar and machine learning;
pinning locations of victims allows first responders to mark
spots of rescue, so that they can then systematically dispatch
rescuers. Finally, our system must accomplish all of this in a
timely manner under the pressure of a crisis.

The safety of first responders is also very important. By
making a drone attachment, we help limit their exposure to
extreme weather and dangerous terrain conditions.

Finally, since our application would be used by fire
departments, it needs to be affordable to enable accessibility.
Currently, drones are very expensive and employ a high-
definition camera and thermal imaging to find victims. Our
mmWave application overcomes this cost barrier, because
mmWave radars are substantially cheaper. We can make it
easier for fire departments to use our product and improve the
overall process of rescuing people from wilderness fires.

Flying Under the Radar

Linsey Szabo, Ayesha Gupta, and Angie Bu

Department of Electrical and Computer Engineering, Carnegie Mellon University

R

18-500 Design Project Report: Team A6 03/03/2023

2

Fig 1: System block diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Enclosed in a plastic chassis and attached to the drone, the

device collects range-Doppler and range-azimuth coordinates
through the mmWave radar and temperature, Global
Positioning System (GPS), and inertial measurement unit
(IMU) data through their respective sensors. The device also
includes a Raspberry Pi (RPi), which is key for data
transmission. Lastly, on board the drone, there is a speaker,
which is a safety addition.

We implemented an important high temperature feature to
ensure the functionality of our device during its deployment in
fire and fog missions. To prevent the first responder from flying
the drone into temperatures that can cause functionality
degradation, the temperature sensor data is captured on board
the drone and sent via the RPi to the web application. Once the
measured temperature exceeds 100o C, the web application
indicates to the first responder that the current environment is
dangerous for the drone and device, so the first responder can
safely fly the drone out of harm’s way.

The speaker also enhances the usability of our system. By
playing the message, “Please wave your arms if you are able in
order to help us detect you better,” repeatedly, it effectively
alerts nearby victims to wave their arms. This movement will

enhance their ability to be detected by the Doppler shift that we
observe with the mmWave radar.

Embedded in the web application in the base station
computer, the machine learning model is loaded into the web
application and reformatted to perform inference on a single
radar frame. The range-Doppler and range-azimuth coordinates
are sent via the RPi to the machine learning architecture. In
practice, inference would be performed when the IMU data–
specifically the drone’s velocity and horizontal acceleration–
indicates that the drone is upright and stationary. However, due
to the scope of this class and the inability to fly the drone
indoors, we will perform inference on the radar data when a key
is pressed. The 3D CNN (convolutional neural network)
architecture then runs and determines whether a human has
been detected by outputting a 1 for a human or a 1 for no human.
That binary value is then returned to the web application.

The web application alerts the first responder of the result
with either “Human detected!” or “No human detected.” The
web application uses the GPS data that has the same timestamp
as the radar data to determine the location of the detected
human. The web application will then provide the user with the
ability to save this location on the map and drop a marker to
track this location, using the HERE Maps API.

18-500 Design Project Report: Team A6 03/03/2023

3

We have made some changes from our original design. We
had small speakers from 18-100 lab but found that they were
too quiet for our use case. After purchasing louder speakers,
their connection to the RPi now was a headphone jack.
Additionally, we decided not to deploy our web application as
an EC2 instance. By only running it locally, we made testing
and integration more efficient. Lastly, after examining
TensorFlow functionalities for loading model weights, we
didn’t use an API to connect the web application and machine
learning architecture. We simply loaded the model weights and
reformatted the machine learning code to perform inference on
a single radar frame.

IV. DESIGN REQUIREMENTS
Table I: Design Requirement Metrics

Requirement Goal

mmWave Radar Image Quality

Capture high resolution range-
Doppler and range-azimuth data at

5 Hz to determine a human
presence from 5 m

Speaker Volume Heard from within the 5 m range
Temperature Warning Point 100 o C
GPS Localization Accuracy 0.5 m

Machine Learning Model F1-
Score 0.7

Web Application Latency 100 ms
System Latency (good Wi-Fi, bad

Wi-Fi) 1 s, 3 s

Power metric 30 min

A mmWave radar must be able to produce data from 5 m
away such that the machine learning architecture can detect
humans waving their arms from the radar returns. This range is
safely within 10 m, which is the standard flight altitude for a
SAR drone. The human may be obscured by obstacles such as
fog, fire, and smoke.

The speaker will be playing the usability message instructing
victims to wave their arms. Not only will this help our machine
learning architecture detect them, but it will also make the
victims themselves aware of the drone. This message must be
audible from our detection range of 5 m.

A temperature sensor that can function between -20o and
120o C and output whether the temperature exceeds 100oC is to
be included to inform the user that the drone and radar system
are operating in high temperatures. This warning point is when
the plastic chassis and radar are in danger of losing form and
functionality [4], [5].

GPS and IMU sensors are included to determine the location,
speed, and orientation of the drone. This requirement is set to
increase the efficiency of the SAR mission by aiming for a low
search radius for the first responders.

An RPi controller is included to collect data from the sensors
and transmit the data to a base station computer, which runs our
web application. The assembly is powered by a 5V battery,
enabling it to function for the 30-minute flight time. It is
encased in a plastic enclosure including a radome to protect the
electronic components from damage caused by hostile
environments the drone may encounter such as smoke and fire.

The machine learning architecture for detecting humans will

have an F1-score of at least .7. This metric is defined with
precision and recall and “TP” denoting true positives, “FN”
denoting false negatives and so on.

 Precision = !"
!"	$	%"

 (1)

 Recall = !"
!"	$	%&

 (2)

 F1-Score = '	*	"()*+,+-.	*	/)*011
"()*+,+-.	$	/)*011

 (3)

In this case, using the F1-score as our metric penalizes false
negatives and false positives more than accuracy does [6],
which is necessary for our use case. It would be very costly to
falsely send out a search team for a human that doesn’t exist or
to not send out a search team when a human is present.

We arrived at this metric by examining similar architectures
that have achieved F1 scores in the range .6-.7 when predicting
over multiple classes (i.e., identifying many different objects)
[7], so we will beat that metric when predicting over just two
classes–there is a human present versus there is not. This ties
back to the user requirement of increasing the efficiency of the
SAR mission. We need to accurately detect humans in order to
successfully automate the victim searching process. It is also
important to clarify that this metric will be achieved on our own
radar data.

The web application latency refers to the time for the page to
load, received sensor data to be displayed, and location pin to
be saved and visualized on the map. We expect this time to be
100 ms since this is perceived as instantaneous to users. The
purpose of the web application ties back to our use case
requirement of keeping first responders safe by being able to
track detected humans and knowing their exact location without
having to search the entire area first.

The system latency refers to the time for collected sensor and
radar data to be sent by the RPi and displayed on the web
application with the resulting inference result from that radar
frame. Similar machine learning architectures ([7]) take
approximately 40 ms for inference time, and we have set a 100
ms latency of the web application. Therefore, to achieve real-
time functionality for the system, the time of transmission from
the RPi to the web application is the more important
component. Given that our use case for SAR missions can occur
outdoors where there may be slow service, we are allowing for
a maximum latency of 3 seconds end-to-end of our entire
system, which would occur with an approximate Internet speed
of 15 Mbps. When we are testing on campus where the Internet
speed is approximately 215 Mbps, we expect to be well below
that threshold with a quicker latency time of 1 s.

Our whole system needs to last at least 30 minutes [2]. The
typical drone flight duration for a SAR mission is 30 minutes,
so by setting this requirement, we ensure drone compatibility in
this way.

18-500 Design Project Report: Team A6 03/03/2023

4

V. DESIGN TRADE STUDIES

A. Radar
We underwent several changes while selecting and testing

frequency modulated continuous wave (FMCW) radar
modules. In the beginning, we had the TI AWR1843BOOST
and AWR1642BOOST radars at our disposal. The two radars
are similar in specifications and performance–both having the
same dimensions, weight and configuration of patch antenna
array transmitting from 77 to 81 GHz. We chose the AWR1843
because the AWR1642’s antenna was more corroded from
extended outdoor use, which would introduce more noise into
the collected radar data. Next, we tested the Silicon Radar
TRX120 [8] a 120 GHz radar which transmits from 119.3 to
126.8 GHz. Owing to its higher frequency, the TRX120 has
higher range resolution which would provide higher quality
data for resolving the range-Doppler features of humans versus
nonhumans. Its maximum range as listed on the datasheet is 10
m, which is within our design requirement, but likely only
corner reflectors can be detected from such a distance with
humans only being resolvable within 1 m due to a combination
of background noise and the relatively low radar cross section
of a human body compared to a corner reflector.

After returning to the AWR1843, we used TI’s
DCA1000EVM in hopes of collecting raw ADC samples from
the AWR1843 through Ethernet to create higher definition
range-Doppler maps, as had been done by the Smart Robot
dataset which also collected data using an AWR1843.
However, TI’s MMWAVE SDK and MMWAVE Studio GUI
are required to collect and parse the raw data, and with
dependencies added, take up nearly 1 GB of space which is
scarce on the RPi. Since the time it would take to develop code
to collect the raw data without MMWAVE Studio seemed
substantial, we decided to sacrifice the ideal high velocity-
resolution data. Processing the raw data on the RPi or the laptop
is slower than the range-doppler and range-azimuth maps
generated onboard the AWR1843, which may cause the
requirement for inference within 3 seconds of data collection to
fail. Additionally, using the AWR1843 is the cheapest and
fastest solution out of the radar configurations we’ve tried, in
keeping with our goal to create a low-cost system. The below
table includes some of our quantitative and qualitative
considerations for selecting a radar configuration:

Table II: Radar Comparison

 Resolution

Radar Price Low
Latency

Range Doppler Azimuth Human
Detection

Range
AWR18
43BOO

ST

$299 39 ms 0.047 m 0.07 m/s 15
degrees

~10 m

AWR18
43BOO

ST +
DCA10
00EVM

$898 Slowest Higher Higher Higher Higher

TRX_12
0_067 +
SiRad

Easy R4

$600+ Slower Highest Highest Highest ~1 m

We also made tradeoffs in data collection and the scope of
human detection after training the neural network on our own
collected data. After training the neural network on an
additional 3600 samples of preprocessed images including 1800
samples of humans moving subtly, such as standing still or deep
breathing, the F1 score decreased from 0.50 to 0.33, indicating
that the radar signature of a breathing human cannot be detected
using our data, which has relatively low velocity resolution
compared to literature, and performs inference on a single
frame instead of a sequence. After taking into account the
limitations of the data available to us by our choice of hardware,
we limited the scope of human detection to a human who is
waving their arms or legs, adding a speaker to audibly prompt
nearby people to move their arms in order to be detected.

B. Temperature Sensor
Two temperature sensors were considered and tested. The

first one was an Adafruit TMP36 with analog output. Although
using an analog output sensor is simpler to read on the RPi, with
a logical 1 reading when the temperature exceeded a threshold
and 0 when the temperature was below that threshold, a voltage
divider connected to a transistor was required to set the
temperature threshold’s output equal to the threshold between a
logical 0 and 1 on the RPi’s General-purpose input/output
(GPIO) pins. Additionally, the analog output is relatively noisy
compared to a digital output and would lead to more incorrect
readings about whether the temperature was greater than the
threshold. Therefore, we switched to the SparkFun TMP102
sensor with a digital output. This sensor had more connections
to the RPi and used more memory, but the output is more
accurate and precise and does not require additional circuitry to
determine whether the temperature is above the threshold.

C. Computer

We considered using either a Raspberry Pi or Nvidia Jetson
Nano to control our system. Eventually, we chose the Raspberry
Pi 4. The Raspberry Pi includes a dedicated audio output which
allows messages to be played loudly and clearly from the
speakers such that people can understand spoken messages five
meters away with background noise. The Raspberry Pi at
$71.20 is also less than half as expensive as the Nvidia Jetson
Nano at $149.00 in accordance with our goal to produce a low-
cost system. While the Nvidia Jetson has superior processing
capabilities for ML due to its GPU, our system performs
inference remotely, on the laptop or a computer which may
have even more processing power than the Jetson, instead of
onboard the Raspberry Pi already occupied with wirelessly
streaming large volumes of data, which is better suited for
prototyping of controlling and sending data from multiple
peripheral devices such as our radar, GPS, temperature sensor,
and speaker. Additionally, the popularity of Raspberry Pi lends
itself to a richness in hardware, software, and tutorials
specifically centered around Raspberry Pi which speeds up

18-500 Design Project Report: Team A6 03/03/2023

5

development, such as our GPS module which is designed to fit
onto the Raspberry Pi’s pins.

D. Machine Learning Architecture
For the machine learning architecture, the tradeoffs

considered pertained to the preprocessing and the architecture
itself. For preprocessing, we weighed the difference between
reconstructing the 3D data on the RPi versus in the architecture.
However, reconstruction on the RPi requires sending higher
dimensional data over Wi-Fi, which would consume bandwidth
that may be very sparse in the wilderness. Therefore, we chose
to perform this preprocessing in the machine learning
architecture.

Next, for the architecture, we needed a design that would be
able to learn complex relationships among the 3D data.
Traditionally, CNNs are 2D, so the kernel only slides in two
dimensions. However, after conducting research, having a
kernel that slides in all three dimensions is better able to learn
relationships for 3D data. Therefore, we chose a 3D CNN
architecture. To support this approach, [7] and [9] both used 3D
CNNs to detect targets using radar data. Additionally, [7]
provided relevant metrics for F1-scores, leading to the
benchmark .6-.7 range that we mentioned.

Lastly, we considered both PyTorch and TensorFlow for
architecture implementation. PyTorch has harder to use
functions but is better at handling higher dimensional data.
TensorFlow has increased functionality but requires conversion
from NumPy arrays to create tensors. Because the dataset we
used for training ([6]) was so high dimensional, we ran out of
memory when using TensorFlow. Therefore, that network was
implemented in PyTorch. However, once we were able to
collect data from our radar, we realized that our data was lower
dimensional and able to be processed in TensorFlow, so we
migrated the model to TensorFlow.

E. Web Application
There were a couple different considerations made in our

design choices. The main one was deciding which maps API to
use. We originally wanted to use the Google Maps API because
it has a great satellite view and other Google Earth tools, which
is useful for when we need to zoom into a very specific location
on a map. This view would provide more information about the
coverage area. However, this API cost money and was not
attainable due to course policy. We were able to use HERE
Maps API, which is free and still has all the necessary
functionalities such as marker adding abilities, map display,
scroll, and zoom. However, there was no satellite view that
provided as much detail as the Google Maps API. Because this
was a secondary requirement, we chose the HERE Maps API.

The next tradeoff considered was how to communicate with
and receive information from the RPi. We considered options
such as WebSockets, but these options were very complicated
and unnecessary to accomplish what we needed. Through
research, we found that we could use the Python “requests”
package to send HTTP requests from the RPi to the web
application, which is simpler and made integration much easier.

Additionally, we were going to use the REST API to run our
machine learning model within our web application. We then
considered fully training our model beforehand and then
loading it into our web application by replicating the code. This

proved to be significantly easier than using the API, because we
were able to easily integrate the algorithm into existing files as
opposed to using a new API with different guidelines than the
rest of the functionalities. While our model was quite large, we
still found that it was small enough to implement directly into
our web application as opposed to deploying it somewhere else
and having to send the information. This also allowed us to be
able to send the images to the web application and directly use
them in the model instead of having to send it somewhere else
based on where the model was stored.

Lastly, we considered whether to deploy our application on
an SDK (software development kit). While this may have
helped improve latency, for testing purposes it is significantly
easier and more efficient to run the application locally and
debug while making improvements. Since we are still able to
send requests to our locally run application from any device, we
decided to not deploy so that we could focus on thorough testing
and smoother integration.

F. Chassis
Originally, we were going to 3D print our chassis to perfectly

fit our device. However, we saved this task for the end of our
timeline, and TechSpark lost power during one of our print
releases and many of the machines were down. Therefore, we
decided to build our chassis from existing spare parts we have.
Additionally, we acknowledge that the chassis of our device is
specific to the drone and weather conditions and is not pivotal
to the main functionality of our project.

VI. SYSTEM IMPLEMENTATION
Our system has both hardware and software components.

The software is split into machine learning and frontend.

A. Hardware

Fig 2: Hardware block diagram

A RPi controls the peripheral devices and reads, preprocesses,
and sends the sensor data to a base station computer over WiFi.
A rechargeable 5000 MAh battery pack powers the RPi at
5VDC via USB-C, which in turn powers the rest of the
peripherals from its 5V and 3.3V pins for over 30 minutes
without recharging.
The sensor suite consists of:

• TI AWR1843BOOST radar - A 77 GHz automotive
radar evaluation module that transmits FMCW chirps
from 77 to 81 GHz from its patch antenna array,

18-500 Design Project Report: Team A6 03/03/2023

6

configured to transmit using 4 antennas and receive
using 2. Further configuration details are listed in
section VII.E. The radar board is mounted such that
the plane of the antenna array sits parallel to the
drone’s “up” direction.. The radar transmits range-
doppler and range-azimuth data via UART to the RPi ,
which preprocesses the data and sends the 123 kB of
binary data and timestamp to the laptop via WiFi at 5
Hz.

• Ozzmaker BerryGPS receiver - This module
receives Global Positioning System (GPS) data and
outputs NMEA sentences over a serial port. Once the
GPS fixes onto satellites, the GNGLL and GNGGA
sentences contain the calculated latitude and longitude
of the receiver. The coordinates and timestamp are
sent to the laptop via WiFi at 1 Hz.

• Sparkfun TMP102 temperature sensor - This
module measures temperatures between -25o and 80o C
at a precision of 0.0625o C and outputs the reading to
the RPi’s GPIO pins. The temperature and timestamp
are sent to the laptop via WiFi at 1 Hz, where the user
is notified if the temperature exceeds a threshold
temperature.

• Speakers - These speakers connected the RPi’s audio
output play sounds to notify nearby people up to and
at least 5 meters away of the drone’s presence. For
example, the system can play a spoken message
prompting people to wave their arms, whose radar
return is easy to identify as a human by the neural
network compared to a still human.

B. Machine Learning Architecture

Fig 3: Machine learning architecture block diagram

The machine learning model is loaded into the web

application. The radar data–both the range-Doppler and range-
azimuth data–is received by the base station computer from the
RPi through Wi-Fi. Upon a key press event, the model performs
inference on the radar frame.

The collected radar data is preprocessed before being
reconstructed into 3D data and fed into the neural network for
training and test purposes as well as normal operation as
illustrated.

Fig 4: Radar frame preprocessing procedure

1. Downscale zero-doppler returns. As most of the

indoor scenes in our dataset and use case consist of
static returns, the range-Doppler maps at all ranges
contain a spike in the three Doppler bins representing
the lowest speeds. To reduce the emphasis on these
static returns as well as increase emphasis on the
moving returns, the three central bins are downscaled
by a factor of 0.7.

2. Normalize range-Doppler map. The mean of all
points in the range-Doppler map is subtracted from the
map, but the data is not divided by its standard
deviation since this would darken the brightest moving
radar returns that we are looking to emphasize.

3. Exponential weighting of range-Doppler map. The
normalized range-Doppler map is remapped along the
exponential function f(x)=40.001x such that the
brightest returns, which are more likely to represent
macroscopic parts of a moving human, are amplified
the most, while the darkest returns, which are more
likely to be noise, are suppressed. The weighting
function was adjusted such that moderately bright
returns, which are likely to represent smaller parts of a
moving object, are also sufficiently represented in the
data so that moving humans could be distinguished
from moving nonhumans.

After this preprocessing, by multiplying the range-Doppler
and range-azimuth data along the corresponding axes, we can
create a low-fidelity 3D tomographic reconstruction of the
scene, resulting in 3D data where the x, y, and z axes represent
the azimuth, range, and Doppler values respectively.

This radar cube is fed into the 3D CNN network, which
consists of the following in this order: 3 convolution layers each
followed by max-pooling, batch normalization, and ReLU
(rectified linear unit) activation, and then 1 fully connected
layer at the end. The convolution layers work to learn
relationships along each of the range, Doppler, and azimuth
axes. The fully connected layer does the final reduction in
output size step by step by flattening through taking an average
along the first axis then passing the output through 512 nodes.
At the end, we output a 1 for human presence and a 0 for no
human presence. The ReLU activation function prevents the
vanishing gradient problem during training and introduces
nonlinearities into the network to better learn the potential
presence of a human. By employing this 3D CNN architecture,

18-500 Design Project Report: Team A6 03/03/2023

7

we will detect micro-Doppler features produced by moving
objects in the radar’s frame. From these features, we can then
deduce which correspond to a moving human.

During training, binary cross entropy will be the loss used to
tune the network. This loss is necessary, because we are
concerned with binary outputs; this loss will effectively
compute the difference between our output and our ground truth
label and reduce the model’s uncertainty in its predictions.
Once detection is complete, a yes or no output is returned to the
web application. Then, to deploy the model in the web
application, we saved the model weights after independent
training and testing and load those weights into the web
application code, using TensorFlow functions.

C. Web Application

Fig 5: Diagram of web application architecture and interactions.

We used the Django framework in conjunction with AJAX

and the HERE Maps API to create our web application. Django
allows for easy website creation and maintenance and is
implemented in Python, which will integrate well with the
machine learning model (also in Python). From the RPi an
HTTP Request will be sent to the server, and using Django, we
will be able to connect that request to a specific URL, retrieve
the associated data, and display the associated page. AJAX will
be used in conjunction with Django to send and receive data
such that the browser display and behavior is not interrupted,
and so that we can update the data quickly and consistently,
since we will be sending multiple requests, containing sensor
data and radar images, per second. Our web application
contains a map display, which was implemented using HERE
Maps API, as well as a display of hardware data, which was
sent to the web application from the RPi using HTTP requests.
Our web application also displayed the output of the machine
learning algorithm by receiving the radar images from the RPi
and running the machine learning model from within the web
application code. For the scope of this class, we will be running
the application locally, but we will still be able to accept
requests from any host.

D. Integration
In order to connect our hardware and software components,

we are using an RPi. This RPi will send the radar data to the
machine learning architecture to begin the image processing
and run the human detection algorithms. The RPi will also
collect the sensor data, as outlined in Figure 2, and send that to
our base station computer through Wi-Fi. This base station

computer is what runs the web application. This is important
because the GPS data needs to be sent from the RPi in order for
users to be able to drop pins on the map which is displayed on
the web application.
 The machine learning model is run from a Python file, which
allows it to be loaded into within the web application. Since our
web application uses Django, we can use the Django REST
Framework, which is free. This framework is easily installable
within our application.

VII. TEST, VERIFICATION AND VALIDATION
Our goal for testing all our components is to achieve the

metrics outlined in our design requirements summary table
(see Table I).

A. Results for mmWave Radar
To test the radar functionality, data of different scenes was

captured from a stationary location: scenes with moving
humans waving their arms, no humans, and humans obstructed
at different distances from 0 to 5 m. While the purpose of the
radar is to generate data with characteristics sufficient for the
neural network to distinguish humans from moving and
stationary nonhumans, tests independent from the neural
network were conducted as well, with qualitative results:

• The moving radar return of a human waving their
arms from 0 to 5 meters away is noticeable (by
human eyes) from the same scene without humans

• The moving radar returns of humans obstructed
behind cardboard, glass, wood, and thin concrete
are also noticeable, indicating the penetration of
mm waves through visually opaque materials, as
expected.

• The moving radar returns of stationary, breathing
humans are not noticeable. With more information
in the radar trade study, the neural network could
not discern a human solely by the Doppler return of
a human’s breath or heartbeat, leading to a change
in scope of what comprises a human moving in
place.

B. Results for Speaker
To test the functionality of the speaker, we used the ALSA-

utils package on the RPi to play audio. We copied an audio file
of Linsey saying, “Please wave your arms if you are able to help
us detect you,” to the RPi and then used the ALSA-utils
package. Our speakers also came with an amplifier, which we
also attached. To test if our message was audible from 5 m, we
measured a spot 5 m away from the speaker and played the
message at maximum volume. We were able to hear the
message over the background noise in TechSpark.

C. Results for Temperature Sensor
To test the functionality of the temperature sensor, we

connected it to the RPi and used the serial monitor to visualize
all the current temperature readings. We also purchased an
ambient temperature thermometer. By comparing the two
readings, we verified that our digital temperature sensor was
taking accurate readings. We increased the ambient temperature
using a hair dryer and set the temperature alert to be 84oF,

18-500 Design Project Report: Team A6 03/03/2023

8

because it would be unsafe to test in temperatures that could
degrade the functionality of our system. We again compared the
two readings and observed that the accuracy of our temperature
sensor was within 1oC. Also, when the temperature reached
84oF, a temperature warning was issued. Since we set this
threshold in the RPi code, we can easily change it to 100oC to
protect our device in its use case.

D. Results for GPS/IMU Sensor
Several quantitative tests were run to determine the

functionality of the GPS module. First, the time to first fix was
measured. This metric represents how long it takes for the
module to calculate a location.

A cold start is when the GPS does not know the information
of the satellites and downloads the almanac containing
information about the satellites, which is repeatedly broadcast
over 12.5 minutes and is valid for 180 days. Ideally, the time to
first fix from a cold start would take only 12.5 minutes, but poor
reception can lengthen this time. The GPS module was unable
to obtain first fix using its internal antenna after continuously
running for 8 hours indoors. After placing the module outside a
window for 1 hour, the GPS obtained a spotty fix, which was
broken once the GPS was taken indoors. One way to improve
the GPS reception is to use an external antenna. However, our
use case assumes that the drone is flying outdoors, where
reception of GPS signals is superior.

A warm start is when the GPS has the almanac saved and
waits for reception of signals from satellites to obtain the first
fix. The BerryGPS can keep the almanac saved for at least 4
hours using the power from a capacitor. After rebooting the RPi
and BerryGPS, the GPS is able to obtain a first fix from a warm
start in 30 seconds.

Figure 6: Results of geolocation test with coordinates plotted on map

4927 coordinate pairs were logged from a stationary receiver
to determine the accuracy and precision of geolocation. The
result shows that the posted coordinates are highly inaccurate
but moderately precise. On average, the coordinates are 32 km
away from the actual location, and the standard deviation of the
coordinates from the average location is 1.5 m.

Overall, tests showed that our GPS module does not meet the
design requirement of geolocating itself to 0.5m accuracy, and
an alternative way to possibly meet the requirement would be
to use the onboard IMU to determine location, using the GPS to
mark the starting point.

E. Results for Machine Learning Architecture
To train the neural network, a total of 7200 samples were

collected, consisting of 3600 samples containing humans and
3600 samples without humans. Each sample consists of a

128x32 range-Doppler map and a 128x8 range-azimuth map.
The range resolution is 0.047 m, giving a total range of 6.0 m
in the maps with an unambiguous range of 5.29m. The velocity
(Doppler) resolution is 0.07, giving a total velocity space of
±1.12 m/s and a total unambiguous velocity space of 1.00 m/s.
The azimuth resolution is 15 degrees, leading to a total field of
view (FOV) of 120 degrees around the axis where the beam is
steered. This leaves the data with 92% unambiguous points in
the range-Doppler maps and 98% unambiguous points in the
range-azimuth maps. The sample rate is 5 Hz. Each scene used
in the training, validation, and test data was taken indoors.

The data used to train humans contains a human waving their
arms and/or legs at several different ranges, azimuths, and
elevations. While parts of the humans are moving, the human
as a whole is stationary and is not continuously walking or
moving away. The data containing humans may also capture
moving non-human objects such as cardboard and metal chairs.
The human may be situated behind a barrier such as a cardboard
wall, a wooden door, and partial obstruction by metal chairs and
walls. The data without humans contains a variety of scenes:
static images of a room, scenes containing moving nonhumans
such as cardboard, chairs, and wasps, and images taken from a
moving radar. The scenes were taken from a variety of
elevations, but mostly from high resolution looking down at the
human to simulate a flying drone.

The test dataset, consisting of 300 human and nonhuman
samples each, is taken indoors in a different room than where
the training dataset was taken. The human test data similarly
contains a human moving arms and legs including behind a
cardboard barrier, while the test data without humans contains
imagery of a room from both a static and moving radar, as well
as imagery of moving nonhuman objects. In compiling the
samples into a dataset, a small number (< 100) of garbled
samples were removed, and the rest of the samples were
preprocessed to reduce noise.

We initially trained the model on the unprocessed data and
achieved an F1-score of .33 on the testing data. After
preprocessing the training data, the F1-score increased to .5. At
this point, we were still considering breathing, non-moving
humans as a human presence. However, we decided that this
was too challenging for our radar to detect. Therefore, all
samples classified as human presence contained humans
waving at least their arms. After this relabeling, the model’s F1-
score increased to .99 on our testing data, achieving our
requirement.
F. Results for Web Application

For testing the frontend, we used scripts containing “dummy
data” in order to test that we could send information to the web
application using python requests and the IP address of the base
station computer. From there, we then ran those same scripts
from the RPi to make sure that we could create the connection
and send data over it securely. Lastly, we gathered the data from
the sensors and then sent that over the RPi. Through using these
steps, we were able to isolate any issues and quickly set up the
pipeline from hardware to front end.

G. Results for Integration
For integrating the machine learning architecture with the

web application, we added the fully trained model to our web

18-500 Design Project Report: Team A6 03/03/2023

9

application and retested it on our test files to ensure that we saw
the same results and metrics. The rest of the results for this
relies on the integration of the radar and the ability to send
accurate images to the web application.

For integrating the hardware circuit with our web application,
we measured a latency of 27 ms when sending GPS and
temperature data from the sensors to the web application. We
did this by recording the time of the request and the time of
when it was received and using these two values to calculate the
time it takes to receive the data.

The most intricate component of our system is the radar,
specifically the pipeline of sending images from the radar to the
web application. For the radar, we recorded the time when the
radar recorded the images and sent that information to our web
application. We then subtracted that from the time of the base
station computer when that data was received. This allowed us
to record our latency per request, which ended up being around
39.3 ms on average. Finally, we tested our radar data and
machine learning algorithm by recording live images with the
radar and sending that data to the frontend and running the
machine learning algorithm on it immediately. This is to ensure
that radar information is not getting lost when sending.

VIII. PROJECT MANAGEMENT

A. Schedule
We all worked on our individual subsystems in parallel for

the two thirds of the semester. At the beginning of April, we
began testing the individual subsystems, and by mid-April, we
began integrating subsystems. We had some delays from our
original schedule, which were due to design changes, namely
switching the radar, switching the maps API, and deciding to
collect our own data which delayed training our model. See
Figure 7 on the next page for the schedule, shown in a Gantt
chart. Linsey is blue, Ayesha is brown, Angie is green, and the
remaining colors involve multiple people, if not all of us.

Our major tasks included the following:
1. Acquire radar.
2. Set up web application.
3. Capture radar images.
4. Train ML architecture.
5. Validate ML architecture.
6. Test ML on unseen radar images.
7. Send images to web application.
8. Test sensors and speaker.
9. Integrate HERE Maps API.
10. Add marker functionality.
11. Send sensor data to web application.
12. Test ML output and temperature warning display on web

application.
13. Test entire system latency and functionality.

B. Team Member Responsibilities
We have both hardware and software components in this

project, but we have split it up into three specific
concentrations—hardware, machine learning, and web
application.

Angie has a lot of experience with hardware and signal
processing, and she had a specific interest in using the radar we
procured. Angie worked on capturing the images with the radar,

connecting the GPS/IMU to the system, and using an RPi to
store and send the images to our software system.

Linsey is minoring in machine learning, so she worked on the
image processing portion of our project.

Ayesha has experience with building web applications, so
she created the frontend portion of our project. Ayesha’s
secondary responsibility was to help Linsey with the machine
learning architecture as needed.

Linsey and Ayesha worked on connecting and testing the
speaker and temperature sensor to the system, as well as
building the full circuit to connect all of the hardware
components to the RPi and the 5 V battery.

All three members tested their individual portions on their
own. They altogether collected data for training, and they also
all worked on integration. Specifically, Ayesha and Angie
worked on sending data from the hardware to the web
application, and Angie and Linsey worked on processing the
data for machine learning.

C. Bill of Materials and Budget
Our total budget for this project is $83.44. This is because we

were able to borrow our most expensive items from labs such
as CyLab. If we were to have purchased each item, the total
price would have been $549.49. Our bill of materials is located
on page 8 (see Table III).

D. Risk Management
As mentioned before, we did experience delays from our

original schedule due to malfunctions and design changes.
When we experienced issues with our dataset, we pivoted to
collecting our own data and made sure it was small enough to
be run faster than the dataset we were dealing with so that it
would not delay us significantly.
 In addition, when we did not meet our F1-score for the
machine learning architecture, we pivoted by adjusting our
dataset so that we were training on images of either moving
humans or no humans, as opposed to having images of
breathing/non-moving humans also. Having this data dropped
our F1-score quite significantly, but removing it helped us
surpass our goal for our F1-score. This helped us remove a great
risk of poor detection scores.
 For our web application, we had allowed for a bit of a buffer
in our timeline, so switching our map API did not hugely affect
our schedule.
 When any hardware was not meeting the metrics we had set,
we quickly ordered new parts. Specifically, our speakers were
not loud enough so we ordered louder ones. Our temperature
sensor worked well, so we were able to comfortably work with
that. We did attempt to switch our radar to improve the
resolution, however we had connection issues with this, so we
ended up going back to our original radar. This did add a bit of
time, but we immediately began testing our radar once we
finally switched back to it and began capturing data
immediately to avoid any further delays.

IX. ETHICAL ISSUES
The main concern with our device is privacy. Its intended use

is for SAR wilderness missions. However, because mmWave
radar can overcome visible occlusions, we worry about people’s

18-500 Design Project Report: Team A6 03/03/2023

10

concern about being able to detect them without their consent.
To combat this, we encourage strict regulation to make sure our
device is only available to public departments for SAR
missions. Additionally, we save locations of victims using our
GPS/IMU sensor data. If this data was stolen, it could raise
privacy concerns. Therefore, in its use case, we recommend
encrypting this data before storing it to prevent any attacks.

Because our device can be considered as drone technology,
we make minimal environmental impact during our device’s
actual use. This is key to the wilderness environment in which
it will operate.

Safety is also a paramount ethical issue for our product. We
aim to keep first responders safe by limiting their exposure to
harsh SAR conditions through our automated detection of
humans deployed on a drone.

Lastly, we increase accessibility to helpful SAR technology
by beating the price of current technology. SAR drones with an
HD camera and thermal sensor retail for $3300 [2], while our
device is compatible with any drone and uses cheaper
technology, mainly the mmWave radar.

X. RELATED WORK
To obtain our dataset, we examined this study [10] that

collected FMCW data with a mmWave radar mounted on a
stationary drone. While this study collects data in several
scenarios, we focused on the one where a corner reflector, an
aluminum foil pyramidal reflector, is placed at the center of the

open space and the drone hovers in front of it; this scenario

Figure 7: Updated Gantt chart with schedule changes.

18-500 Design Project Report: Team A6 03/03/2023

11

provides us with 2869 training examples. The corner
reflector is our model human as it ensures strong returns for the
radar signal. We acknowledge that this corner reflector isn’t
moving like our intended human target would; it will only
mimic a stationary human with much smaller Doppler shifts
like e.g., breathing. Therefore, it will only be used for initial
training of the machine learning architecture.

For the system implementation, we examined two studies [7]
and [9] that used radar to classify targets on the road. Both
construct 3D cubelets to accurately represent the range,
Doppler, and azimuth data. They also use 3D CNNs to classify
their targets. Therefore, for our architecture, we reconstruct the
3D representation using the range-Doppler and range-azimuth
data and employ a 3D CNN architecture. Although these papers
classify over multiple classes (they focus on cars, bikes, and
pedestrians), we adopted their methods for our two-class
prediction problem.

For the architecture code, we followed the construction of the
network in [12]. It details a 3D CNN network for classifying
CT scans. Therefore, [7] and [12] were key to building the
machine learning architecture.

XI. SUMMARY
Overall, our system was able to meet the design

specifications we set out for. We achieved almost every
requirement, such as the machine learning F1-score, the system
latency, and the temperature warning point. One metric we did
not meet was our GPS localization metric of accurately
pinpointing the location of our device within a 0.5 m radius. We
would want to work to either use a new GPS module or improve
the fixing abilities of the current one to detect this range more
accurately. However, we are aware that our module works
better outside which makes more sense for our use case, but we
were unable to test this.

A. Future Work
There is a lot of room to expand upon this project, but it is

unfortunately outside the scope of this class. We would like to
test our device on an actual drone. This would allow us to test
our product outside and in more realistic conditions that apply
to our use case. It would also allow us to test the functionality
of our chassis and how it keeps our entire device together and
safe. This would also help us measure if our device was too
heavy or too large to be attached to a drone.

In addition, we were only able to gather data with moving
humans and other moving objects such as chairs. However, in
wildlife, we would see more animals and other moving species
that are not humans. Therefore, this could affect our detection
algorithm and cause it to produce false positives. We also were
not able to test the IMU sensor to understand when we should
perform inference based on the horizontal acceleration of the
drone. This comes with using a drone for testing as well.

Lastly, we would like to further test our device with poor
network signals that more accurately simulate our use case of
an outdoor fire catastrophe. Since our presentations did not rely
on poor Wi-Fi, we wanted to ensure the functionality of each
component and really prioritize integration, and so we were
unable to test this extensively. However, this would be an
important future test for us to meet the user requirement of

speed with low strength signals. In practice, this could require
us to change our communication strategy if the drone was too
far away from the base station computer or if the signal was too
weak.

B. Lessons Learned
We learned a lot throughout this project about how to deal

with making complex systems that have multiple different
components. As we began testing throughout the semester, we
learned the importance of meticulously testing each layer of
each subsystem. However, one lesson we still learned was about
the difficulty of integration. While we knew this would be a
challenge and did allot time for the components to be integrated,
there were still problems when trying to integrate no matter how
much we tested each individual subsystem.

GLOSSARY OF ACRONYMS
EC2 – Elastic Cloud Compute
FMCW – frequency modulated continuous wave
FOV – field of view
GPIO – General-purpose input/output
GPS – Global Positioning System
GUI – graphical user interface
IMU – Inertial measurement unit
mmWave – millimeter-wave
ML – machine learning
ReLU – rectified linear unit
RPi – Raspberry Pi
SAR – search and rescue
SDK – Software Development Kit

REFERENCES
[1] R. Tariq, M. Rahim, N. Aslam, N. Bawany and U. Faseeha,

"DronAID : A Smart Human Detection Drone for Rescue," 2018
15th International Conference on Smart Cities: Improving Quality
of Life Using ICT & IoT (HONET-ICT), Islamabad, Pakistan, 2018,
pp. 33-37, doi: 10.1109/HONET.2018.8551326.

[2] “Inspire 2 - DJI.” DJI Official, DJI, https://www.dji.com/inspire-2.
[3] Vision Aerial, Vision Aerial. “How to Use Drones for Search and

Rescue.” Vision Aerial, Vision Aerial, Inc., 15 June 2021,
https://visionaerial.com/how-to-use-drones-for-search-and-rescue/.

[4] Texas Instruments, “AWR1843AOP Single-chip 77- and 79-GHz
FMCW mmWave Sensor Antennas-On- Package (AOP),” 1
Features datasheet, March 2021 [Revised July 2022]

[5] “At What Temperature Does Plastic Melt?” KIVO Flexible
Plastics, KIVO, 9 Apr. 2021, https://www.kivo.nl/en/knowledge-
base/faq-about-pe/at-what-temperature-does-plastic-melt/

[6] Huilgol, Purva. “Accuracy vs. F1-Score.” Medium, Analytics
Vidhya, 24 Aug. 2019, https://medium.com/analytics-
vidhya/accuracy-vs-f1-score-6258237beca2.

[7] Palffy, Andras, et al. IEEE ROBOTICS AND AUTOMATION
LETTERS, 2020, CNN Based Road User Detection Using the 3D
Radar Cube, https://arxiv.org/pdf/2004.12165.pdf.

[8] “120 GHz Transceiver trx_120_001 - Silicon Radar Gmbh.”
Silicon Radar GmbH - FORGET EVERYTHING You Thought
You Knew about Radar, Silicon Radar, 28 Oct. 2022,
https://siliconradar.com/products/single-product/120-ghz-radar-
transceiver/#datasheet

[9] K. Aziz, E. De Greef, M. Rykunov, A. Bourdoux and H. Sahli,
"Radar-camera Fusion for Road Target Classification," 2020 IEEE
Radar Conference (RadarConf20), Florence, Italy, 2020, pp. 1-6,
doi: 10.1109/RadarConf2043947.2020.9266510.

[10] Safa, Ali, et al. IDLab, Ghent University, Leuven, Belgium, 2023,
FMCW Radar Sensing for Indoor Drones Using Learned

18-500 Design Project Report: Team A6 03/03/2023

12

Representations, https://arxiv.org/pdf/2301.02451.pdf. Accessed 2
Mar. 2023.

[11] Dronedek. “How Much Weight Can a Delivery Drone Carry?”
Dronedek The Mailbox Of The Future, Dronedek, 10 May 2021,
https://www.dronedek.com/news/how-much-weight-can-a-
delivery-drone-carry/.

[12] Zunair, Hasib. “Keras Documentation: 3D Image Classification
from CT Scans.” Keras, Keras, 23 Sept. 2020,
https://keras.io/examples/vision/3D_image_classification/.

18-500 Design Project Report: Team A6 03/03/2023

13

TABLE III. BILL OF MATERIALS

Total budget: $83.44, Market price: $549.49
Description: mmWave radar
Name: AWR1843BOOST
Manufacturer: Texas Instruments
Cost: $0 ($352.82 on the market)
Notes: Radar borrowed from CyLab

Description: Controller for the sensors
Name: Raspberry Pi 4 Model B with 8GB RAM
Manufacturer: Element14
Cost: $0 ($75 on the market)
Notes:

Description: Temperature sensor
Name: TMP102
Manufacturer: SparkFun
Cost: $0 ($5.50 on the market)
Notes: Had from previous classes

Description: GPS and IMU sensor
Name: BerryGPS-IMUv4
Manufacturer: OzzMaker
Cost: $71.20
Notes: Single board with separate power supplies and communications

Description: Speakers
Name: Degraw DIY Speaker Kit
Manufacturer: Degraw
Cost: $11.99
Notes: Ordered on Amazon

Description: 5V battery pack
Name: Plank 5000 mAh Bamboo Wireless Power Bank
Manufacturer: PCNA
Cost: $0 ($32.98 on the market)
Notes: Had from a previous event

Description: NPN transistor
Cost: $0
Notes: From previous coursework

Description: HERE Maps API
Name: HERE Maps API
Manufacturer: HERE
Cost: $0
Notes: Downloaded from online source

Description: Resistors
Name: 500 Ω, 9 kΩ, 1 kΩ resistors
Cost: $0
Notes: From previous coursework

Description: Plastic chassis
Name: Plastic chassis
Manufacturer: Miscellaneous
Cost: $0
Notes: Self-designed from spare parts we already had

Description: Wires
Manufacturer:
Cost: $0
Notes: From previous coursework

