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Abstract—We propose a universal drone attachment that uses 

mmWave radar and machine learning (ML) to accurately detect 
humans in fire and fog search and rescue (SAR) conditions. Our web 
application interfaces with the device to allow the user to drop a pin to 
mark a victim’s location for subsequent rescue. Our device automates 
human detection to increase SAR mission efficiency at 50% of the cost 
of existing market solutions, assuming the average cost of a drone is 
$1000. 
 

Index Terms—Chassis, drone attachment, GPS, mmWave radar, 
safety, SAR, sensor, 3D-CNN, web application 

I. INTRODUCTION 
ECENTLY, SAR applications have expanded by using 
drones [1]. Drones provide many advantages; they limit the 
exposure of first responders to extreme weather conditions 

and dangerous terrain, cover large swaths of area efficiently, 
and are compatible with high-definition cameras and sensors 
that enhance SAR missions. For these missions, the standard 
maximum flight altitude is 10 meters, and the duration is a 
maximum of 30 minutes [2], [3].  

However, there are a few drawbacks to the current 
technology. Because they utilize a high-definition camera and 
infrared sensing, SAR drones are very expensive. Also, they do 
not perform well in high temperature conditions and are subject 
to visible occlusions like fog and smoke. Lastly, they require 
manual identification of victims. 

Our universal drone attachment overcomes these barriers to 
aid first responders. By using a millimeter-wave (mmWave) 
radar, we provide a more cost-effective solution, making our 
technology more accessible for public agencies like fire 
departments and the National Park Service. Our mmWave radar 
is also more robust to adverse weather conditions and fire 
rescue situations, broadening the utility of our SAR drone 
application. Specifically, we will focus on fire and fog 
situations. The radar functions by measuring the range (distance 
to target), Doppler (relative velocity of the target to the drone), 
and azimuth (angle to the target) data. The Doppler data in 
particular helps us locate moving targets, since they will create 
a different velocity relative to the drone compared to stationary 
targets. Therefore, we will be using this to our advantage. Using 
machine learning, we automate the manual identification of 
victims, increasing the efficiency of the mission where rescuing 
victims is extremely urgent.  

To attach our device to the drone, we will encase it with a 
plastic chassis that will go around the drone’s rails. The first 
responder will fly the drone remotely and hover in certain areas 
that they choose to examine. The attached mmWave will 

transmit radar data to the machine learning architecture that is 
embedded in our web application. By viewing our web 
application interface, the first responder can see if a human is 
detected, and if so, they are sent the exact location of detection 
and can save that location for subsequent rescue. 

II. USE-CASE REQUIREMENTS 
Since we are building a SAR drone attachment, drone 

compatibility, increasing the efficiency of missions, safety of 
first responders, and cost are the most important factors of our 
application. 

Our device must work well with a drone. Its size and weight 
cannot impede the drone, and it must easily attach. With our 
material we estimate our device will weigh less than 0.5 kg and 
have an area of 11 square inches. By encapsulating our device 
in a plastic chassis, we can attach our device to any drone via 
its rails. While using plastic in high temperature situations may 
invoke environmental questions, we have taken this into 
consideration and will implement a high temperature warning 
system for the user, so that neither the plastic nor our device is 
ever damaged. Lastly, our device must work for the duration of 
a drone flight and work at the standard flight altitude. These last 
for roughly 30 minutes, so our device must maintain that 
functionality for at least that long; our device must work within 
10 m above the ground.  

Moving onto increasing the efficiency of missions, SAR 
conditions indicate people in crisis situations–it’s paramount 
that these victims are rescued as quickly as possible. Our device 
facilitates this by automating the human detection process, 
pinning locations of victims, and having overall real-time 
functionality. Instead of first responders manually scanning for 
victims and not only wasting time but also having a more 
substantial environmental impact, we can point out where 
victims are using the mmWave radar and machine learning; 
pinning locations of victims allows first responders to mark 
spots of rescue, so that they can then systematically dispatch 
rescuers. Finally, our system must accomplish all of this in a 
timely manner under the pressure of a crisis.  

The safety of first responders is also very important. By 
making a drone attachment, we help limit their exposure to 
extreme weather and dangerous terrain conditions.  

Finally, since our application would be used by fire 
departments, it needs to be affordable to enable accessibility. 
Currently, drones are very expensive and employ a high-
definition camera and thermal imaging to find victims. Our 
mmWave application overcomes this cost barrier, because 
mmWave radars are substantially cheaper. We can make it 
easier for fire departments to use our product and improve the 
overall process of rescuing people from wilderness fires.  
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Fig 1: System block diagram 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Enclosed in a plastic chassis and attached to the drone, the 

device collects range-Doppler and range-azimuth coordinates 
through the mmWave radar and temperature, Global 
Positioning System (GPS), and inertial measurement unit 
(IMU) data through their respective sensors. The device also 
includes a Raspberry Pi (RPi), which is key for data 
transmission. Lastly, on board the drone, there is a speaker, 
which is a safety addition. 

We implemented an important high temperature feature to 
ensure the functionality of our device during its deployment in 
fire and fog missions. To prevent the first responder from flying 
the drone into temperatures that can cause functionality 
degradation, the temperature sensor data is captured on board 
the drone and sent via the RPi to the web application. Once the 
measured temperature exceeds 100o C, the web application 
indicates to the first responder that the current environment is 
dangerous for the drone and device, so the first responder can 
safely fly the drone out of harm’s way.  

The speaker also enhances the usability of our system. By 
playing the message, “Please wave your arms if you are able in 
order to help us detect you better,” repeatedly, it effectively 
alerts nearby victims to wave their arms. This movement will  

 
 
enhance their ability to be detected by the Doppler shift that we 
observe with the mmWave radar. 

Embedded in the web application in the base station 
computer, the machine learning model is loaded into the web 
application and reformatted to perform inference on a single 
radar frame. The range-Doppler and range-azimuth coordinates 
are sent via the RPi to the machine learning architecture. In 
practice, inference would be performed when the IMU data–
specifically the drone’s velocity and horizontal acceleration–
indicates that the drone is upright and stationary. However, due 
to the scope of this class and the inability to fly the drone 
indoors, we will perform inference on the radar data when a key 
is pressed. The 3D CNN (convolutional neural network) 
architecture then runs and determines whether a human has 
been detected by outputting a 1 for a human or a 1 for no human. 
That binary value is then returned to the web application. 

The web application alerts the first responder of the result 
with either “Human detected!” or “No human detected.” The 
web application uses the GPS data that has the same timestamp 
as the radar data to determine the location of the detected 
human. The web application will then provide the user with the 
ability to save this location on the map and drop a marker to 
track this location, using the HERE Maps API. 
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We have made some changes from our original design. We 
had small speakers from 18-100 lab but found that they were 
too quiet for our use case. After purchasing louder speakers, 
their connection to the RPi now was a headphone jack. 
Additionally, we decided not to deploy our web application as 
an EC2 instance. By only running it locally, we made testing 
and integration more efficient. Lastly, after examining 
TensorFlow functionalities for loading model weights, we 
didn’t use an API to connect the web application and machine 
learning architecture. We simply loaded the model weights and 
reformatted the machine learning code to perform inference on 
a single radar frame. 

IV. DESIGN REQUIREMENTS 
Table I: Design Requirement Metrics 

Requirement Goal 

mmWave Radar Image Quality 

Capture high resolution range-
Doppler and range-azimuth data at 

5 Hz to determine a human 
presence from 5 m 

Speaker Volume Heard from within the 5 m range 
Temperature Warning Point 100 o C 
GPS Localization Accuracy 0.5 m 

Machine Learning Model F1-
Score 0.7 

Web Application Latency 100 ms 
System Latency (good Wi-Fi, bad 

Wi-Fi) 1 s, 3 s 

Power metric 30 min 
 

A mmWave radar must be able to produce data from 5 m 
away such that the machine learning architecture can detect 
humans waving their arms from the radar returns. This range is 
safely within 10 m, which is the standard flight altitude for a 
SAR drone. The human may be obscured by obstacles such as 
fog, fire, and smoke.  

The speaker will be playing the usability message instructing 
victims to wave their arms. Not only will this help our machine 
learning architecture detect them, but it will also make the 
victims themselves aware of the drone. This message must be 
audible from our detection range of 5 m. 

A temperature sensor that can function between -20o and 
120o C and output whether the temperature exceeds 100oC is to 
be included to inform the user that the drone and radar system 
are operating in high temperatures. This warning point is when 
the plastic chassis and radar are in danger of losing form and 
functionality [4], [5]. 

GPS and IMU sensors are included to determine the location, 
speed, and orientation of the drone. This requirement is set to 
increase the efficiency of the SAR mission by aiming for a low 
search radius for the first responders. 

An RPi controller is included to collect data from the sensors 
and transmit the data to a base station computer, which runs our 
web application. The assembly is powered by a 5V battery, 
enabling it to function for the 30-minute flight time. It is 
encased in a plastic enclosure including a radome to protect the 
electronic components from damage caused by hostile 
environments the drone may encounter such as smoke and fire. 

The machine learning architecture for detecting humans will 

have an F1-score of at least .7. This metric is defined with 
precision and recall and “TP” denoting true positives, “FN” 
denoting false negatives and so on. 

 Precision = !"
!"	$	%"

 (1) 

 Recall = !"
!"	$	%&

 (2) 

 F1-Score = '	*	"()*+,+-.	*	/)*011
"()*+,+-.	$	/)*011

 (3) 

In this case, using the F1-score as our metric penalizes false 
negatives and false positives more than accuracy does [6], 
which is necessary for our use case. It would be very costly to 
falsely send out a search team for a human that doesn’t exist or 
to not send out a search team when a human is present. 

We arrived at this metric by examining similar architectures 
that have achieved F1 scores in the range .6-.7 when predicting 
over multiple classes (i.e., identifying many different objects) 
[7], so we will beat that metric when predicting over just two 
classes–there is a human present versus there is not. This ties 
back to the user requirement of increasing the efficiency of the 
SAR mission. We need to accurately detect humans in order to 
successfully automate the victim searching process. It is also 
important to clarify that this metric will be achieved on our own 
radar data.  

The web application latency refers to the time for the page to 
load, received sensor data to be displayed, and location pin to 
be saved and visualized on the map. We expect this time to be 
100 ms since this is perceived as instantaneous to users. The 
purpose of the web application ties back to our use case 
requirement of keeping first responders safe by being able to 
track detected humans and knowing their exact location without 
having to search the entire area first. 

The system latency refers to the time for collected sensor and 
radar data to be sent by the RPi and displayed on the web 
application with the resulting inference result from that radar 
frame. Similar machine learning architectures ([7]) take 
approximately 40 ms for inference time, and we have set a 100 
ms latency of the web application. Therefore, to achieve real-
time functionality for the system, the time of transmission from 
the RPi to the web application is the more important 
component. Given that our use case for SAR missions can occur 
outdoors where there may be slow service, we are allowing for 
a maximum latency of 3 seconds end-to-end of our entire 
system, which would occur with an approximate Internet speed 
of 15 Mbps. When we are testing on campus where the Internet 
speed is approximately 215 Mbps, we expect to be well below 
that threshold with a quicker latency time of 1 s. 

Our whole system needs to last at least 30 minutes [2]. The 
typical drone flight duration for a SAR mission is 30 minutes, 
so by setting this requirement, we ensure drone compatibility in 
this way. 
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V. DESIGN TRADE STUDIES 

A. Radar 
We underwent several changes while selecting and testing 

frequency modulated continuous wave (FMCW) radar 
modules. In the beginning, we had the TI AWR1843BOOST 
and AWR1642BOOST radars at our disposal. The two radars 
are similar in specifications and performance–both having the 
same dimensions, weight and configuration of patch antenna 
array transmitting from 77 to 81 GHz. We chose the AWR1843 
because the AWR1642’s antenna was more corroded from 
extended outdoor use, which would introduce more noise into 
the collected radar data. Next, we tested the Silicon Radar 
TRX120 [8] a 120 GHz radar which transmits from 119.3 to 
126.8 GHz. Owing to its higher frequency, the TRX120 has 
higher range resolution which would provide higher quality 
data for resolving the range-Doppler features of humans versus 
nonhumans. Its maximum range as listed on the datasheet is 10 
m, which is within our design requirement, but likely only 
corner reflectors can be detected from such a distance with 
humans only being resolvable within 1 m due to a combination 
of background noise and the relatively low radar cross section 
of a human body compared to a corner reflector. 

After returning to the AWR1843, we used TI’s 
DCA1000EVM in hopes of collecting raw ADC samples from 
the AWR1843 through Ethernet to create higher definition 
range-Doppler maps, as had been done by the Smart Robot 
dataset which also collected data using an AWR1843. 
However, TI’s MMWAVE SDK and MMWAVE Studio GUI 
are required to collect and parse the raw data, and with 
dependencies added, take up nearly 1 GB of space which is 
scarce on the RPi. Since the time it would take to develop code 
to collect the raw data without MMWAVE Studio seemed 
substantial, we decided to sacrifice the ideal high velocity-
resolution data. Processing the raw data on the RPi or the laptop 
is slower than the range-doppler and range-azimuth maps 
generated onboard the AWR1843, which may cause the 
requirement for inference within 3 seconds of data collection to 
fail. Additionally, using the AWR1843 is the cheapest and 
fastest solution out of the radar configurations we’ve tried, in 
keeping with our goal to create a low-cost system. The below 
table includes some of our quantitative and qualitative 
considerations for selecting a radar configuration: 

 
Table II: Radar Comparison 

 
 Resolution  

Radar Price Low 
Latency 

Range  Doppler  Azimuth  Human 
Detection 

Range 
AWR18
43BOO

ST 

$299 39 ms 0.047 m 0.07 m/s 15 
degrees 

~10 m 

AWR18
43BOO

ST + 
DCA10
00EVM 

$898 Slowest Higher Higher Higher Higher 

TRX_12
0_067 + 
SiRad 

Easy R4 

$600+ Slower Highest Highest Highest ~1 m 

 

We also made tradeoffs in data collection and the scope of 
human detection after training the neural network on our own 
collected data. After training the neural network on an 
additional 3600 samples of preprocessed images including 1800 
samples of humans moving subtly, such as standing still or deep 
breathing, the F1 score decreased from 0.50 to 0.33, indicating 
that the radar signature of a breathing human cannot be detected 
using our data, which has relatively low velocity resolution 
compared to literature, and performs inference on a single 
frame instead of a sequence. After taking into account the 
limitations of the data available to us by our choice of hardware, 
we limited the scope of human detection to a human who is 
waving their arms or legs, adding a speaker to audibly prompt 
nearby people to move their arms in order to be detected. 

B. Temperature Sensor 
Two temperature sensors were considered and tested. The 

first one was an Adafruit TMP36 with analog output. Although 
using an analog output sensor is simpler to read on the RPi, with 
a logical 1 reading when the temperature exceeded a threshold 
and 0 when the temperature was below that threshold, a voltage 
divider connected to a transistor was required to set the 
temperature threshold’s output equal to the threshold between a 
logical 0 and 1 on the RPi’s General-purpose input/output 
(GPIO) pins. Additionally, the analog output is relatively noisy 
compared to a digital output and would lead to more incorrect 
readings about whether the temperature was greater than the 
threshold. Therefore, we switched to the SparkFun TMP102 
sensor with a digital output. This sensor had more connections 
to the RPi and used more memory, but the output is more 
accurate and precise and does not require additional circuitry to 
determine whether the temperature is above the threshold.   

C. Computer 

We considered using either a Raspberry Pi or Nvidia Jetson 
Nano to control our system. Eventually, we chose the Raspberry 
Pi 4. The Raspberry Pi includes a dedicated audio output which 
allows messages to be played loudly and clearly from the 
speakers such that people can understand spoken messages five 
meters away with background noise. The Raspberry Pi at 
$71.20 is also less than half as expensive as the Nvidia Jetson 
Nano at $149.00 in accordance with our goal to produce a low-
cost system.  While the Nvidia Jetson has superior processing 
capabilities for ML due to its GPU, our system performs 
inference remotely, on the laptop or a computer which may 
have even more processing power than the Jetson, instead of 
onboard the Raspberry Pi already occupied with wirelessly 
streaming large volumes of data, which is better suited for 
prototyping of controlling and sending data from multiple 
peripheral devices such as our radar, GPS, temperature sensor, 
and speaker. Additionally, the popularity of Raspberry Pi lends 
itself to a richness in hardware, software, and tutorials 
specifically centered around Raspberry Pi which speeds up 
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development, such as our GPS module which is designed to fit 
onto the Raspberry Pi’s pins. 

D.  Machine Learning Architecture 
For the machine learning architecture, the tradeoffs 

considered pertained to the preprocessing and the architecture 
itself. For preprocessing, we weighed the difference between 
reconstructing the 3D data on the RPi versus in the architecture. 
However, reconstruction on the RPi requires sending higher 
dimensional data over Wi-Fi, which would consume bandwidth 
that may be very sparse in the wilderness. Therefore, we chose 
to perform this preprocessing in the machine learning 
architecture. 

Next, for the architecture, we needed a design that would be 
able to learn complex relationships among the 3D data. 
Traditionally, CNNs are 2D, so the kernel only slides in two 
dimensions. However, after conducting research, having a 
kernel that slides in all three dimensions is better able to learn 
relationships for 3D data. Therefore, we chose a 3D CNN 
architecture. To support this approach, [7] and [9] both used 3D 
CNNs to detect targets using radar data. Additionally, [7] 
provided relevant metrics for F1-scores, leading to the 
benchmark .6-.7 range that we mentioned.  

Lastly, we considered both PyTorch and TensorFlow for 
architecture implementation. PyTorch has harder to use 
functions but is better at handling higher dimensional data. 
TensorFlow has increased functionality but requires conversion 
from NumPy arrays to create tensors. Because the dataset we 
used for training ([6]) was so high dimensional, we ran out of 
memory when using TensorFlow. Therefore, that network was 
implemented in PyTorch. However, once we were able to 
collect data from our radar, we realized that our data was lower 
dimensional and able to be processed in TensorFlow, so we 
migrated the model to TensorFlow. 

E. Web Application 
There were a couple different considerations made in our 

design choices. The main one was deciding which maps API to 
use. We originally wanted to use the Google Maps API because 
it has a great satellite view and other Google Earth tools, which 
is useful for when we need to zoom into a very specific location 
on a map. This view would provide more information about the 
coverage area. However, this API cost money and was not 
attainable due to course policy. We were able to use HERE 
Maps API, which is free and still has all the necessary 
functionalities such as marker adding abilities, map display, 
scroll, and zoom. However, there was no satellite view that 
provided as much detail as the Google Maps API. Because this 
was a secondary requirement, we chose the HERE Maps API.  

The next tradeoff considered was how to communicate with 
and receive information from the RPi. We considered options 
such as WebSockets, but these options were very complicated 
and unnecessary to accomplish what we needed. Through 
research, we found that we could use the Python “requests” 
package to send HTTP requests from the RPi to the web 
application, which is simpler and made integration much easier. 

Additionally, we were going to use the REST API to run our 
machine learning model within our web application. We then 
considered fully training our model beforehand and then 
loading it into our web application by replicating the code. This 

proved to be significantly easier than using the API, because we 
were able to easily integrate the algorithm into existing files as 
opposed to using a new API with different guidelines than the 
rest of the functionalities. While our model was quite large, we 
still found that it was small enough to implement directly into 
our web application as opposed to deploying it somewhere else 
and having to send the information. This also allowed us to be 
able to send the images to the web application and directly use 
them in the model instead of having to send it somewhere else 
based on where the model was stored. 

Lastly, we considered whether to deploy our application on 
an SDK (software development kit). While this may have 
helped improve latency, for testing purposes it is significantly 
easier and more efficient to run the application locally and 
debug while making improvements. Since we are still able to 
send requests to our locally run application from any device, we 
decided to not deploy so that we could focus on thorough testing 
and smoother integration. 

F. Chassis 
Originally, we were going to 3D print our chassis to perfectly 

fit our device. However, we saved this task for the end of our 
timeline, and TechSpark lost power during one of our print 
releases and many of the machines were down. Therefore, we 
decided to build our chassis from existing spare parts we have. 
Additionally, we acknowledge that the chassis of our device is 
specific to the drone and weather conditions and is not pivotal 
to the main functionality of our project. 

VI. SYSTEM IMPLEMENTATION 
Our system has both hardware and software components. 

The software is split into machine learning and frontend.  

A. Hardware 

 
Fig 2: Hardware block diagram 
 
A RPi controls the peripheral devices and reads, preprocesses, 
and sends the sensor data to a base station computer over WiFi. 
A rechargeable 5000 MAh battery pack powers the RPi at 
5VDC via USB-C, which in turn powers the rest of the 
peripherals from its 5V and 3.3V pins for over 30 minutes 
without recharging.  
The sensor suite consists of: 

• TI AWR1843BOOST radar - A 77 GHz automotive 
radar evaluation module that transmits FMCW chirps 
from 77 to 81 GHz from its patch antenna array, 
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configured to transmit using 4 antennas and receive 
using 2. Further configuration details are listed in 
section VII.E. The radar board is mounted such that 
the plane of the antenna array sits parallel to the 
drone’s “up” direction.. The radar transmits range-
doppler and range-azimuth data via UART to the RPi , 
which preprocesses the data and sends the 123 kB of 
binary data and timestamp to the laptop via WiFi at 5 
Hz.  

• Ozzmaker BerryGPS receiver - This module 
receives Global Positioning System (GPS) data and 
outputs NMEA sentences over a serial port. Once the 
GPS fixes onto satellites, the GNGLL and GNGGA 
sentences contain the calculated latitude and longitude 
of the receiver. The coordinates and timestamp are 
sent to the laptop via WiFi at 1 Hz. 

• Sparkfun TMP102 temperature sensor - This 
module measures temperatures between -25o and 80o C 
at a precision of 0.0625o C and outputs the reading to 
the RPi’s GPIO pins. The temperature and timestamp 
are sent to the laptop via WiFi at 1 Hz, where the user 
is notified if the temperature exceeds a threshold 
temperature.  

• Speakers - These speakers connected the RPi’s audio 
output play sounds to notify nearby people up to and 
at least 5 meters away of the drone’s presence. For 
example, the system can play a spoken message 
prompting people to wave their arms, whose radar 
return is easy to identify as a human by the neural 
network compared to a still human. 

B. Machine Learning Architecture 

 
Fig 3: Machine learning architecture block diagram 

 
The machine learning model is loaded into the web 

application. The radar data–both the range-Doppler and range-
azimuth data–is received by the base station computer from the 
RPi through Wi-Fi. Upon a key press event, the model performs 
inference on the radar frame. 

The collected radar data is preprocessed before being 
reconstructed into 3D data and fed into the neural network for 
training and test purposes as well as normal operation as 
illustrated. 

 
 

 
Fig 4: Radar frame preprocessing procedure 

 
1. Downscale zero-doppler returns. As most of the 

indoor scenes in our dataset and use case consist of 
static returns, the range-Doppler maps at all ranges 
contain a spike in the three Doppler bins representing 
the lowest speeds. To reduce the emphasis on these 
static returns as well as increase emphasis on the 
moving returns, the three central bins are downscaled 
by a factor of 0.7. 

2. Normalize range-Doppler map. The mean of all 
points in the range-Doppler map is subtracted from the 
map, but the data is not divided by its standard 
deviation since this would darken the brightest moving 
radar returns that we are looking to emphasize.  

3. Exponential weighting of range-Doppler map. The 
normalized range-Doppler map is remapped along the 
exponential function f(x)=40.001x such that the 
brightest returns, which are more likely to represent 
macroscopic parts of a moving human, are amplified 
the most, while the darkest returns, which are more 
likely to be noise, are suppressed. The weighting 
function was adjusted such that moderately bright 
returns, which are likely to represent smaller parts of a 
moving object, are also sufficiently represented in the 
data so that moving humans could be distinguished 
from moving nonhumans. 

After this preprocessing, by multiplying the range-Doppler 
and range-azimuth data along the corresponding axes, we can 
create a low-fidelity 3D tomographic reconstruction of the 
scene, resulting in 3D data where the x, y, and z axes represent 
the azimuth, range, and Doppler values respectively.  

This radar cube is fed into the 3D CNN network, which 
consists of the following in this order: 3 convolution layers each 
followed by max-pooling, batch normalization, and ReLU 
(rectified linear unit) activation, and then 1 fully connected 
layer at the end. The convolution layers work to learn 
relationships along each of the range, Doppler, and azimuth 
axes. The fully connected layer does the final reduction in 
output size step by step by flattening through taking an average 
along the first axis then passing the output through 512 nodes. 
At the end, we output a 1 for human presence and a 0 for no 
human presence. The ReLU activation function prevents the 
vanishing gradient problem during training and introduces 
nonlinearities into the network to better learn the potential 
presence of a human. By employing this 3D CNN architecture, 
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we will detect micro-Doppler features produced by moving 
objects in the radar’s frame. From these features, we can then 
deduce which correspond to a moving human.  

During training, binary cross entropy will be the loss used to 
tune the network. This loss is necessary, because we are 
concerned with binary outputs; this loss will effectively 
compute the difference between our output and our ground truth 
label and reduce the model’s uncertainty in its predictions. 
Once detection is complete, a yes or no output is returned to the 
web application. Then, to deploy the model in the web 
application, we saved the model weights after independent 
training and testing and load those weights into the web 
application code, using TensorFlow functions.  

C. Web Application 

 
Fig 5: Diagram of web application architecture and interactions. 

 
We used the Django framework in conjunction with AJAX 

and the HERE Maps API to create our web application. Django 
allows for easy website creation and maintenance and is 
implemented in Python, which will integrate well with the 
machine learning model (also in Python). From the RPi an 
HTTP Request will be sent to the server, and using Django, we 
will be able to connect that request to a specific URL, retrieve 
the associated data, and display the associated page. AJAX will 
be used in conjunction with Django to send and receive data 
such that the browser display and behavior is not interrupted, 
and so that we can update the data quickly and consistently, 
since we will be sending multiple requests, containing sensor 
data and radar images, per second. Our web application 
contains a map display, which was implemented using HERE 
Maps API, as well as a display of hardware data, which was 
sent to the web application from the RPi using HTTP requests. 
Our web application also displayed the output of the machine 
learning algorithm by receiving the radar images from the RPi 
and running the machine learning model from within the web 
application code. For the scope of this class, we will be running 
the application locally, but we will still be able to accept 
requests from any host. 

D. Integration 
In order to connect our hardware and software components, 

we are using an RPi. This RPi will send the radar data to the 
machine learning architecture to begin the image processing 
and run the human detection algorithms. The RPi will also 
collect the sensor data, as outlined in Figure 2, and send that to 
our base station computer through Wi-Fi. This base station 

computer is what runs the web application. This is important 
because the GPS data needs to be sent from the RPi in order for 
users to be able to drop pins on the map which is displayed on 
the web application. 
 The machine learning model is run from a Python file, which 
allows it to be loaded into within the web application. Since our 
web application uses Django, we can use the Django REST 
Framework, which is free. This framework is easily installable 
within our application.  

VII. TEST, VERIFICATION AND VALIDATION 
Our goal for testing all our components is to achieve the 

metrics outlined in our design requirements summary table 
(see Table I).  

A. Results for mmWave Radar 
To test the radar functionality, data of different scenes was 

captured from a stationary location: scenes with moving 
humans waving their arms, no humans, and humans obstructed 
at different distances from 0 to 5 m. While the purpose of the 
radar is to generate data with characteristics sufficient for the 
neural network to distinguish humans from moving and 
stationary nonhumans, tests independent from the neural 
network were conducted as well, with qualitative results: 

• The moving radar return of a human waving their 
arms from 0 to 5 meters away is noticeable (by 
human eyes) from the same scene without humans  

• The moving radar returns of humans obstructed 
behind cardboard, glass, wood, and thin concrete 
are also noticeable, indicating the penetration of 
mm waves through visually opaque materials, as 
expected. 

• The  moving radar returns of stationary, breathing 
humans are not noticeable. With more information 
in the radar trade study, the neural network could 
not discern a human solely by the Doppler return of 
a human’s breath or heartbeat, leading to a change 
in scope of what comprises a human moving in 
place. 

B. Results for Speaker 
To test the functionality of the speaker, we used the ALSA-

utils package on the RPi to play audio. We copied an audio file 
of Linsey saying, “Please wave your arms if you are able to help 
us detect you,” to the RPi and then used the ALSA-utils 
package. Our speakers also came with an amplifier, which we 
also attached. To test if our message was audible from 5 m, we 
measured a spot 5 m away from the speaker and played the 
message at maximum volume. We were able to hear the 
message over the background noise in TechSpark. 

C. Results for Temperature Sensor 
To test the functionality of the temperature sensor, we 

connected it to the RPi and used the serial monitor to visualize 
all the current temperature readings. We also purchased an 
ambient temperature thermometer. By comparing the two 
readings, we verified that our digital temperature sensor was 
taking accurate readings. We increased the ambient temperature 
using a hair dryer and set the temperature alert to be 84oF, 
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because it would be unsafe to test in temperatures that could 
degrade the functionality of our system. We again compared the 
two readings and observed that the accuracy of our temperature 
sensor was within 1oC. Also, when the temperature reached 
84oF, a temperature warning was issued. Since we set this 
threshold in the RPi code, we can easily change it to 100oC to 
protect our device in its use case. 

D. Results for GPS/IMU Sensor 
Several quantitative tests were run to determine the 

functionality of the GPS module. First, the time to first fix was 
measured. This metric represents how long it takes for the 
module to calculate a location.  

A cold start is when the GPS  does not know the information 
of the satellites and downloads the almanac containing 
information about the satellites, which is repeatedly broadcast 
over 12.5 minutes and is valid for 180 days. Ideally, the time to 
first fix from a cold start would take only 12.5 minutes, but poor 
reception can lengthen this time. The GPS module was unable 
to obtain first fix using its internal antenna after continuously 
running for 8 hours indoors. After placing the module outside a 
window for 1 hour, the GPS obtained a spotty fix, which was 
broken once the GPS was taken indoors. One way to improve 
the GPS reception is to use an external antenna. However, our 
use case assumes that the drone is flying outdoors, where 
reception of GPS signals is superior. 

A warm start is when the GPS has the almanac saved and 
waits for reception of signals from satellites to obtain the first 
fix. The BerryGPS can keep the almanac saved for at least 4 
hours using the power from a capacitor. After rebooting the RPi 
and BerryGPS, the GPS is able to obtain a first fix from a warm 
start in 30 seconds. 

 
Figure 6: Results of geolocation test with coordinates plotted on map 

4927 coordinate pairs were logged from a stationary receiver 
to determine the accuracy and precision of geolocation. The 
result shows that the posted coordinates are highly inaccurate 
but moderately precise. On average, the coordinates are 32 km 
away from the actual location, and the standard deviation of the 
coordinates from the average location is 1.5 m.  

Overall, tests showed that our GPS module does not meet the 
design requirement of geolocating itself to 0.5m accuracy, and 
an alternative way to possibly meet the requirement would be 
to use the onboard IMU to determine location, using the GPS to 
mark the starting point.  

E. Results for Machine Learning Architecture 
To train the neural network, a total of 7200 samples were 

collected, consisting of 3600 samples containing humans and 
3600 samples without humans. Each sample consists of a 

128x32 range-Doppler map and a 128x8 range-azimuth map. 
The range resolution is 0.047 m, giving a total range of 6.0 m 
in the maps with an unambiguous range of 5.29m. The velocity 
(Doppler) resolution is 0.07, giving a total velocity space of 
±1.12 m/s and a total unambiguous velocity space of 1.00 m/s. 
The azimuth resolution is 15 degrees, leading to a total field of 
view (FOV) of 120 degrees around the axis where the beam is 
steered. This leaves the data with 92% unambiguous points in 
the range-Doppler maps and 98% unambiguous points in the 
range-azimuth maps. The sample rate is 5 Hz. Each scene used 
in the training, validation, and test data was taken indoors.  

The data used to train humans contains a human waving their 
arms and/or legs at several different ranges, azimuths, and 
elevations. While parts of the humans are moving, the human 
as a whole is stationary and is not continuously walking or 
moving away. The data containing humans may also capture 
moving non-human objects such as cardboard and metal chairs. 
The human may be situated behind a barrier such as a cardboard 
wall, a wooden door, and partial obstruction by metal chairs and 
walls. The data without humans contains a variety of scenes: 
static images of a room, scenes containing moving nonhumans 
such as cardboard, chairs, and wasps, and images taken from a 
moving radar. The scenes were taken from a variety of 
elevations, but mostly from high resolution looking down at the 
human to simulate a flying drone. 

The test dataset, consisting of 300 human and nonhuman 
samples each, is taken indoors in a different room than where 
the training dataset was taken. The human test data similarly 
contains a human moving arms and legs including behind a 
cardboard barrier, while the test data without humans contains 
imagery of a room from both a static and moving radar, as well 
as imagery of moving nonhuman objects. In compiling the 
samples into a dataset, a small number (< 100) of garbled 
samples were removed, and the rest of the samples were 
preprocessed to reduce noise.  

We initially trained the model on the unprocessed data and 
achieved an F1-score of .33 on the testing data. After 
preprocessing the training data, the F1-score increased to .5. At 
this point, we were still considering breathing, non-moving 
humans as a human presence. However, we decided that this 
was too challenging for our radar to detect. Therefore, all 
samples classified as human presence contained humans 
waving at least their arms. After this relabeling, the model’s F1-
score increased to .99 on our testing data, achieving our 
requirement. 
F. Results for Web Application 

For testing the frontend, we used scripts containing “dummy 
data” in order to test that we could send information to the web 
application using python requests and the IP address of the base 
station computer. From there, we then ran those same scripts 
from the RPi to make sure that we could create the connection 
and send data over it securely. Lastly, we gathered the data from 
the sensors and then sent that over the RPi. Through using these 
steps, we were able to isolate any issues and quickly set up the 
pipeline from hardware to front end.  

G. Results for Integration 
For integrating the machine learning architecture with the 

web application, we added the fully trained model to our web 
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application and retested it on our test files to ensure that we saw 
the same results and metrics. The rest of the results for this 
relies on the integration of the radar and the ability to send 
accurate images to the web application. 

For integrating the hardware circuit with our web application, 
we measured a latency of 27 ms when sending GPS and 
temperature data from the sensors to the web application. We 
did this by recording the time of the request and the time of 
when it was received and using these two values to calculate the 
time it takes to receive the data.  

The most intricate component of our system is the radar, 
specifically the pipeline of sending images from the radar to the 
web application. For the radar, we recorded the time when the 
radar recorded the images and sent that information to our web 
application. We then subtracted that from the time of the base 
station computer when that data was received. This allowed us 
to record our latency per request, which ended up being around 
39.3 ms on average. Finally, we tested our radar data and 
machine learning algorithm by recording live images with the 
radar and sending that data to the frontend and running the 
machine learning algorithm on it immediately. This is to ensure 
that radar information is not getting lost when sending. 

VIII. PROJECT MANAGEMENT 

A. Schedule 
We all worked on our individual subsystems in parallel for 

the two thirds of the semester. At the beginning of April, we 
began testing the individual subsystems, and by mid-April, we 
began integrating subsystems. We had some delays from our 
original schedule, which were due to design changes, namely 
switching the radar, switching the maps API, and deciding to 
collect our own data which delayed training our model. See 
Figure 7 on the next page for the schedule, shown in a Gantt 
chart. Linsey is blue, Ayesha is brown, Angie is green, and the 
remaining colors involve multiple people, if not all of us.  

Our major tasks included the following: 
1. Acquire radar. 
2. Set up web application. 
3. Capture radar images. 
4. Train ML architecture. 
5. Validate ML architecture. 
6. Test ML on unseen radar images. 
7. Send images to web application. 
8. Test sensors and speaker. 
9. Integrate HERE Maps API. 
10. Add marker functionality. 
11. Send sensor data to web application. 
12. Test ML output and temperature warning display on web 

application. 
13. Test entire system latency and functionality. 

B. Team Member Responsibilities 
We have both hardware and software components in this 

project, but we have split it up into three specific 
concentrations—hardware, machine learning, and web 
application. 

Angie has a lot of experience with hardware and signal 
processing, and she had a specific interest in using the radar we 
procured. Angie worked on capturing the images with the radar, 

connecting the GPS/IMU to the system, and using an RPi to 
store and send the images to our software system. 

Linsey is minoring in machine learning, so she worked on the 
image processing portion of our project. 

Ayesha has experience with building web applications, so 
she created the frontend portion of our project. Ayesha’s 
secondary responsibility was to help Linsey with the machine 
learning architecture as needed. 

Linsey and Ayesha worked on connecting and testing the 
speaker and temperature sensor to the system, as well as 
building the full circuit to connect all of the hardware 
components to the RPi and the 5 V battery. 

All three members tested their individual portions on their 
own. They altogether collected data for training, and they also 
all worked on integration. Specifically, Ayesha and Angie 
worked on sending data from the hardware to the web 
application, and Angie and Linsey worked on processing the 
data for machine learning. 

C. Bill of Materials and Budget 
Our total budget for this project is $83.44. This is because we 

were able to borrow our most expensive items from labs such 
as CyLab. If we were to have purchased each item, the total 
price would have been $549.49. Our bill of materials is located 
on page 8 (see Table III). 

D. Risk Management 
As mentioned before, we did experience delays from our 

original schedule due to malfunctions and design changes. 
When we experienced issues with our dataset, we pivoted to 
collecting our own data and made sure it was small enough to 
be run faster than the dataset we were dealing with so that it 
would not delay us significantly.  
 In addition, when we did not meet our F1-score for the 
machine learning architecture, we pivoted by adjusting our 
dataset so that we were training on images of either moving 
humans or no humans, as opposed to having images of 
breathing/non-moving humans also. Having this data dropped 
our F1-score quite significantly, but removing it helped us 
surpass our goal for our F1-score. This helped us remove a great 
risk of poor detection scores. 
 For our web application, we had allowed for a bit of a buffer 
in our timeline, so switching our map API did not hugely affect 
our schedule.  
 When any hardware was not meeting the metrics we had set, 
we quickly ordered new parts. Specifically, our speakers were 
not loud enough so we ordered louder ones. Our temperature 
sensor worked well, so we were able to comfortably work with 
that. We did attempt to switch our radar to improve the 
resolution, however we had connection issues with this, so we 
ended up going back to our original radar. This did add a bit of 
time, but we immediately began testing our radar once we 
finally switched back to it and began capturing data 
immediately to avoid any further delays.  

IX. ETHICAL ISSUES 
The main concern with our device is privacy. Its intended use 

is for SAR wilderness missions. However, because mmWave 
radar can overcome visible occlusions, we worry about people’s 
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concern about being able to detect them without their consent. 
To combat this, we encourage strict regulation to make sure our 
device is only available to public departments for SAR 
missions. Additionally, we save locations of victims using our 
GPS/IMU sensor data. If this data was stolen, it could raise 
privacy concerns. Therefore, in its use case, we recommend 
encrypting this data before storing it to prevent any attacks.  

Because our device can be considered as drone technology, 
we make minimal environmental impact during our device’s 
actual use. This is key to the wilderness environment in which 
it will operate. 

Safety is also a paramount ethical issue for our product. We 
aim to keep first responders safe by limiting their exposure to 
harsh SAR conditions through our automated detection of 
humans deployed on a drone.  

Lastly, we increase accessibility to helpful SAR technology 
by beating the price of current technology. SAR drones with an 
HD camera and thermal sensor retail for $3300 [2], while our 
device is compatible with any drone and uses cheaper 
technology, mainly the mmWave radar. 

X. RELATED WORK 
To obtain our dataset, we examined this study [10] that 

collected FMCW data with a mmWave radar mounted on a 
stationary drone. While this study collects data in several 
scenarios, we focused on the one where a corner reflector, an 
aluminum foil pyramidal reflector, is placed at the center of the 

open space and the drone hovers in front of it; this scenario 

 
Figure 7: Updated Gantt chart with schedule changes. 
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provides us with 2869 training examples. The corner 
reflector is our model human as it ensures strong returns for the 
radar signal. We acknowledge that this corner reflector isn’t 
moving like our intended human target would; it will only 
mimic a stationary human with much smaller Doppler shifts 
like e.g., breathing. Therefore, it will only be used for initial 
training of the machine learning architecture. 

For the system implementation, we examined two studies [7] 
and [9] that used radar to classify targets on the road. Both 
construct 3D cubelets to accurately represent the range, 
Doppler, and azimuth data. They also use 3D CNNs to classify 
their targets. Therefore, for our architecture, we reconstruct the 
3D representation using the range-Doppler and range-azimuth 
data and employ a 3D CNN architecture. Although these papers 
classify over multiple classes (they focus on cars, bikes, and 
pedestrians), we adopted their methods for our two-class 
prediction problem.  

For the architecture code, we followed the construction of the 
network in [12]. It details a 3D CNN network for classifying 
CT scans. Therefore, [7] and [12] were key to building the 
machine learning architecture. 

XI. SUMMARY 
Overall, our system was able to meet the design 

specifications we set out for. We achieved almost every 
requirement, such as the machine learning F1-score, the system 
latency, and the temperature warning point. One metric we did 
not meet was our GPS localization metric of accurately 
pinpointing the location of our device within a 0.5 m radius. We 
would want to work to either use a new GPS module or improve 
the fixing abilities of the current one to detect this range more 
accurately. However, we are aware that our module works 
better outside which makes more sense for our use case, but we 
were unable to test this.  

A. Future Work 
There is a lot of room to expand upon this project, but it is 

unfortunately outside the scope of this class. We would like to 
test our device on an actual drone. This would allow us to test 
our product outside and in more realistic conditions that apply 
to our use case. It would also allow us to test the functionality 
of our chassis and how it keeps our entire device together and 
safe. This would also help us measure if our device was too 
heavy or too large to be attached to a drone.  

In addition, we were only able to gather data with moving 
humans and other moving objects such as chairs. However, in 
wildlife, we would see more animals and other moving species 
that are not humans. Therefore, this could affect our detection 
algorithm and cause it to produce false positives. We also were 
not able to test the IMU sensor to understand when we should 
perform inference based on the horizontal acceleration of the 
drone. This comes with using a drone for testing as well.  

Lastly, we would like to further test our device with poor 
network signals that more accurately simulate our use case of 
an outdoor fire catastrophe. Since our presentations did not rely 
on poor Wi-Fi, we wanted to ensure the functionality of each 
component and really prioritize integration, and so we were 
unable to test this extensively. However, this would be an 
important future test for us to meet the user requirement of 

speed with low strength signals. In practice, this could require 
us to change our communication strategy if the drone was too 
far away from the base station computer or if the signal was too 
weak. 

B. Lessons Learned 
We learned a lot throughout this project about how to deal 

with making complex systems that have multiple different 
components. As we began testing throughout the semester, we 
learned the importance of meticulously testing each layer of 
each subsystem. However, one lesson we still learned was about 
the difficulty of integration. While we knew this would be a 
challenge and did allot time for the components to be integrated, 
there were still problems when trying to integrate no matter how 
much we tested each individual subsystem. 

GLOSSARY OF ACRONYMS 
EC2 – Elastic Cloud Compute 
FMCW – frequency modulated continuous wave 
FOV – field of view 
GPIO – General-purpose input/output 
GPS – Global Positioning System 
GUI – graphical user interface 
IMU – Inertial measurement unit 
mmWave – millimeter-wave 
ML – machine learning 
ReLU – rectified linear unit 
RPi – Raspberry Pi 
SAR – search and rescue 
SDK – Software Development Kit 
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TABLE III.  BILL OF MATERIALS 

Total budget: $83.44, Market price: $549.49 
Description: mmWave radar 
Name: AWR1843BOOST 
Manufacturer: Texas Instruments 
Cost: $0 ($352.82 on the market) 
Notes: Radar borrowed from CyLab 

Description: Controller for the sensors 
Name: Raspberry Pi 4 Model B with 8GB RAM 
Manufacturer: Element14 
Cost: $0 ($75 on the market) 
Notes: 

Description: Temperature sensor 
Name: TMP102 
Manufacturer: SparkFun 
Cost: $0 ($5.50 on the market) 
Notes: Had from previous classes 

Description: GPS and IMU sensor 
Name: BerryGPS-IMUv4 
Manufacturer: OzzMaker 
Cost: $71.20 
Notes: Single board with separate power supplies and communications 

Description: Speakers 
Name: Degraw DIY Speaker Kit 
Manufacturer: Degraw 
Cost: $11.99  
Notes: Ordered on Amazon 

Description: 5V battery pack 
Name: Plank 5000 mAh Bamboo Wireless Power Bank 
Manufacturer: PCNA 
Cost: $0 ($32.98 on the market) 
Notes: Had from a previous event 

Description: NPN transistor 
Cost: $0 
Notes: From previous coursework 

Description: HERE Maps API 
Name: HERE Maps API 
Manufacturer: HERE 
Cost: $0 
Notes: Downloaded from online source 

Description: Resistors 
Name: 500 Ω, 9 kΩ, 1 kΩ resistors 
Cost: $0 
Notes: From previous coursework 

Description: Plastic chassis 
Name: Plastic chassis 
Manufacturer: Miscellaneous 
Cost: $0 
Notes: Self-designed from spare parts we already had 

Description: Wires 
Manufacturer: 
Cost: $0 
Notes: From previous coursework 

 


