Flying Under the Radar

Team A6 Angie Bu, Ayesha Gupta, Linsey Szabo

User Requirements

Universal Drone Attachment

Maximize usability and cover large areas despite difficult terrain

Fire SAR Missions

Reach areas where traditionally used infrared fails

Break Cost Barrier

Our mmWave radar application is cheaper than drones currently used for SAR

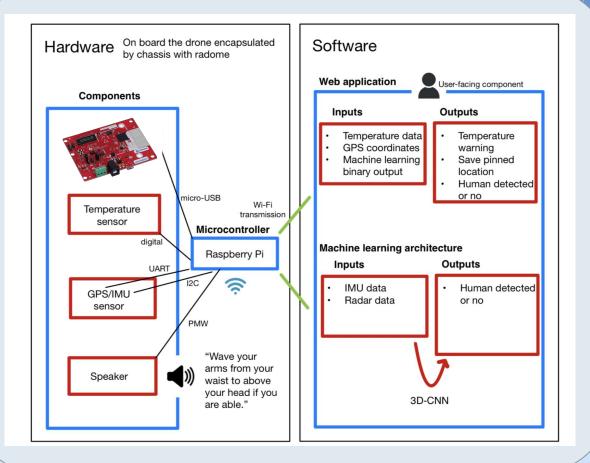
Human Detection

Detect and save locations of victims for efficient rescue

Solution Approach

Design Changes

- > Hardware
 - Radar changes
- > Machine Learning
 - Large data difficulties
 - PyTorch -> Tensorflow
- > Web app
 - ▷ HERE Maps API



Complete Solution

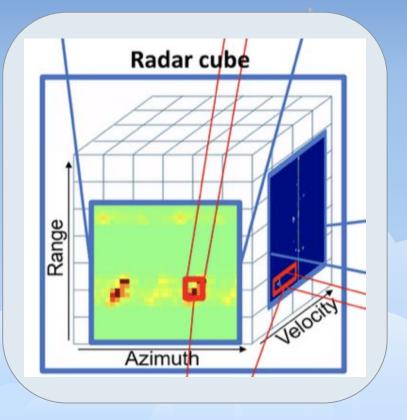
Radar capturing live scenes of moving people

- Interactive with obstructions
- Detection output
- Web application with map and GPS data on other monitor
- Immediate display of sensor information

Data Collection

Palffy, Andras, et al. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, *CNN Based Road User Detection Using the 3D Radar Cube*, <u>https://arxiv.org/pdf/2004.12165.pdf</u>.

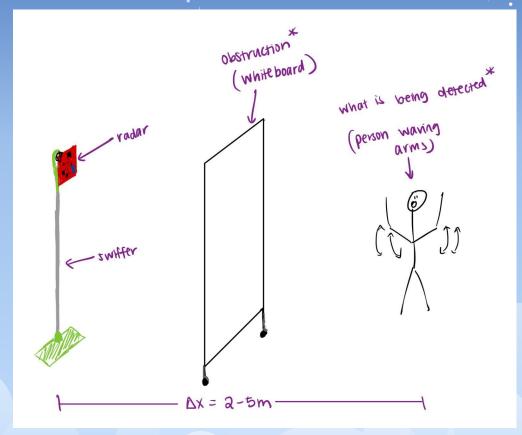
 Neural network trained on our dataset of 3600 samples
 1800 samples with humans
 1800 samples without humans



5

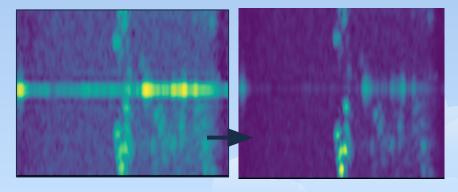
Data Collection

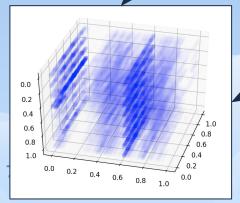
- Attach radar to Swiffer
- Capture various scenes
 - Obstructions
 - Moving humans
 - Breathing humans
 - Moving objects
 - Static
- Distances of 5 m and less



Preprocessing pipeline

- Get range-doppler & range-azimuth maps
- Project both maps into 3D
 range-doppler-azimuth space
- Denoising to emphasize doppler signature typical of a human target





Hardware

- Temperature sensor
 - Tested ambient temperature with Arduino
 - Can validate
 with ambient
 thermometer
- > Speaker
 - Needed new
 speaker for use
 case

1 PyTorch + Gent University Dataset		2 TensorFlow + Our Own Training Data
Training examples	175	Training examples
Validation examples	75	Validation examples
Epochs	15	Epochs
Validation accuracy	45%	Validation accuracy

Design Requirement: F1 score = 0.7

ML

Own maining Data		
Training examples	2516	
Validation examples	1079	
Epochs	35	
Validation accuracy	99.63%	
F1 Score	1.00	
9		

Testing examples	700
Testing accuracy	58.51%
F1 Score	.50
Next	

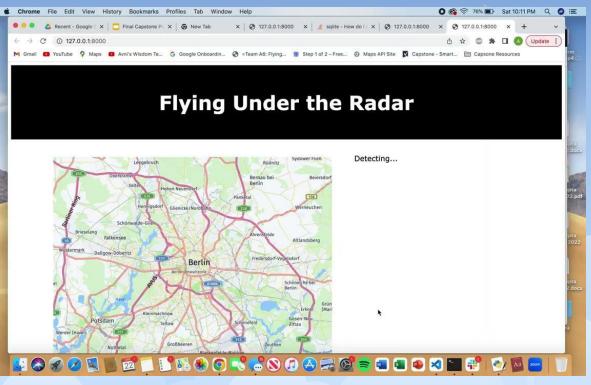
Testing Metrics

3

- Training on more data to increase F1 score
- Real time: 173 ms inference time

Front end

- Sending data to web app
 - Http requests usingPython requests
- 300 ms within request
 being sent for location
 to update



Design Metrics

Requirement	Metric	l.
mmWave radar detection range	< 5 m	
GPS localization accuracy	0.5 m	
Temperature warning point	100 ° C	
F1 score	0.7	
Web application latency	100 ms	
System latency	3 s	

