
18-500 Design Project Report: Team A6 03/03/2023

1

Abstract—We propose a universal drone attachment that uses

mmWave radar and machine learning to accurately detect humans in
fire and fog search and rescue (SAR) conditions. Our web application
interfaces with the device to allow the user to drop a pin to mark a
victim’s location for subsequent rescue. From a hovering drone, our
device–a lightweight, handheld attachment–will detect moving
humans from 10 meters away in fire and fog conditions, providing a
cheaper, automated SAR drone application.

Index Terms—Chassis, drone attachment, GPS, mmWave radar,
safety, SAR, sensor, 3D-CNN, web application

I. INTRODUCTION
ECENTLY, SAR applications have expanded by using
drones [1]. Drones provide many advantages; they limit the
exposure of first responders to extreme weather conditions

and dangerous terrain, cover large swaths of area efficiently,
and are compatible with high-definition cameras and sensors
that enhance SAR missions. For these missions, the standard
maximum flight altitude is 10 meters, and the duration is a
maximum of 30 minutes [2], [3].

However, there are a few drawbacks to the current
technology. Because they utilize a high-definition camera and
infrared sensing, SAR drones are very expensive. Furthermore,
they do not perform well in high temperature conditions and are
subject to visible occlusions like fog and smoke. Lastly, they
require manual identification of victims.

Our universal drone attachment overcomes these barriers to
aid first responders. By using a millimeter-wave (mmWave)
radar, we provide a more cost-effective solution, making our
technology more accessible for public agencies like fire
departments and the National Park Service. Our mmWave radar
is also more robust to adverse weather conditions and fire
rescue situations, broadening the utility of our SAR drone
application. Specifically, we will focus on fire and fog
situations. The radar functions by measuring the range (distance
to target), Doppler (relative velocity of the target to the drone),
and azimuth (angle to the target) data. The Doppler data in
particular helps us locate moving targets, since they will create
a different velocity relative to the drone compared to stationary
targets. Therefore, we will be using this to our advantage. Using
machine learning, we automate the manual identification of
victims, increasing the efficiency of the mission where rescuing
victims is extremely urgent.

To attach our device to the drone, we will encase it with a
3D-printed chassis that will go around the drone’s rails. The
first responder will fly the drone remotely and hover in certain
areas that they choose to examine. The attached mmWave will

transmit radar data to the machine learning architecture that is
embedded in our web application. By viewing our web
application interface, the first responder can see if a human is
detected, and if so, they are sent the exact location of detection
and can save that location for subsequent rescue.

II. USE-CASE REQUIREMENTS
Since we are building a SAR drone attachment, drone

compatibility, increasing the efficiency of missions, safety of
first responders, and cost are the most important factors of our
application.

Our device must work well with a drone. Its size and weight
cannot impede the drone, and it must easily attach. With our
material we estimate our device will weigh less than 0.5 kg and
have an area of 11 square inches. By encapsulating our device
in a 3D-printed chassis, we can attach our device to any drone
via its rails. While using plastic in high temperature situations
may invoke environmental questions, we have taken this into
consideration and will implement a high temperature warning
system for the user, so that neither the plastic nor our device is
ever damaged. Lastly, our device must work for the duration of
a drone flight and work at the standard flight altitude. These last
for roughly 30 minutes, so our device must maintain that
functionality for at least that long; our device must work within
10 m above the ground.

Moving onto increasing the efficiency of missions, SAR
conditions indicate people in crisis situations–it’s paramount
that these victims are rescued as quickly as possible. Our device
facilitates this by automating the human detection process,
pinning locations of victims, and having overall real-time
functionality. Instead of first responders manually scanning for
victims and not only wasting time but also having a more
substantial environmental impact, we can point out where
victims are using the mmWave radar and machine learning;
pinning locations of victims allows first responders to mark
spots of rescue, so that they can then systematically dispatch
rescuers. Finally, our system must accomplish all of this in a
timely manner under the pressure of a crisis situation.

The safety of first responders is also very important. By
making a drone attachment, we help limit their exposure to
extreme weather and dangerous terrain conditions.

Finally, since our application would be used by fire
departments, it needs to be affordable to enable accessibility.
Currently, drones are very expensive and employ a high-
definition camera and thermal imaging to find victims. Our
mmWave application overcomes this cost barrier, because
mmWave radars are substantially cheaper. We can make it
easier for fire departments to use our product and improve the
overall process of rescuing people from wilderness fires.

Flying Under the Radar

Linsey Szabo, Ayesha Gupta, and Angie Bu

Department of Electrical and Computer Engineering, Carnegie Mellon University

R

18-500 Design Project Report: Team A6 03/03/2023

2

Fig 1: System block diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Enclosed in a 3D-printed chassis and attached to the drone,

the device collects range-Doppler and range-azimuth
coordinates through the mmWave radar and temperature,
Global Positioning System (GPS), and inertial measurement
unit (IMU) data through their respective sensors. The device
also includes a Raspberry Pi (RPi), which is key for data
transmission. Lastly, on board the drone, there is a speaker,
which is a safety addition.

We implemented an important high temperature feature to
ensure the functionality of our device during its deployment in
fire and fog missions. To prevent the first responder from flying
the drone into temperatures that can cause functionality
degradation, the temperature sensor data is captured on board
the drone and sent via the RPi to the web application. Once the
measured temperature exceeds 100o C, the web application
indicates to the first responder that the current environment is
dangerous for the drone and device, so the first responder can
safely fly the drone out of harm’s way.

The speaker also enhances the usability of our system. By
playing a message like “wave your arms from your waist to
above your head if you are able” repeatedly, it effectively alerts
nearby victims to wave their arms. This movement will enhance

their ability to be detected by the Doppler shift that we observe
with the mmWave radar.

Embedded in the web application in the base station
computer, the machine learning architecture is connected to the
web application via the Django REST API. The range-Doppler
and range-azimuth coordinates are sent via the RPi to the
machine learning architecture. Inference is performed when the
IMU data–specifically the drone’s velocity and horizontal
acceleration–indicates that the drone is upright and stationary.
The 3D-CNN (convolutional neural network) architecture then
runs and determines whether a human has been detected by
outputting either valid range, Doppler, azimuth coordinates
indicating a successful detection or invalid coordinates for no
detection. That binary value is forwarded to the web
application.

If a human has been detected, the web application alerts the
first responder of the detection. The web application uses the
GPS data that has the same timestamp as the radar data to
determine the location of the detected human. The web
application will then provide the user with the ability to save
this location on the map and drop a marker to track this location,
using the Google Maps API.

18-500 Design Project Report: Team A6 03/03/2023

3

IV. DESIGN REQUIREMENTS
Table I: Design Requirement Metrics

Requirement Metric
mmWave radar detection range < 5 m

GPS localization accuracy 0.5 m
Temperature warning point 100 o C

F1 score 0.7
Web application latency 100 ms

System latency 3 s

A mmWave radar must be able to produce data from 5 m
away such that the machine learning architecture can detect
humans from the radar returns. This range is safely within 10
m, which is the standard flight altitude for a SAR drone. The
human may be obscured by obstacles such as fog, fire, and
smoke. A temperature sensor that can function between -20o and
120o C and output whether the temperature exceeds 100oC is to
be included to inform the user that the drone and radar system
are operating in high temperatures that may damage the drone
or the radar and shorten its service lifetime. A speaker is
included to output audio to alert potential victims of its
presence. By encouraging the victims to wave their arms, this
movement will help our system detect them and increase the
efficiency of the SAR mission. GPS and IMU sensors are
included to determine the location, speed, and orientation of the
drone. A RPi controller is included to collect data from the
sensors and transmit the data to a base station computer, which
runs our web application. The assembly is powered by a 9V
battery, enabling it to function for the 30-minute flight time. It
is encased in a 3D-printed enclosure including a radome to
protect the electronic components from damage caused by
hostile environments the drone may encounter such as smoke
and fire.

The machine learning architecture for detecting humans will
have an F1 score of at least .7; similar architectures have
achieved F1 scores in the range .6-.7 when predicting over
multiple classes (i.e. identifying many different objects), so we
will beat that metric when predicting over just two classes–there
is a human present versus there is not. This ties back to the user
requirement of increasing the efficiency of the SAR mission.
We need to accurately detect humans in order to successfully
automate the victim searching process. It is also important to
clarify that this metric will be achieved on our own radar data.
In terms of latency, similar architectures ([4]) take
approximately 40 ms for inference time. Therefore, to achieve
real-time functionality, the speed of the web application is the
more important component.

Given that our use case for search and rescue missions can
occur outdoors where there may be slow service, we are
allowing for a maximum latency of 3 seconds end-to-end of our
entire system. This means that for our web application, when
strong signals are available, we expect the latency of the web
application functions, such as loading pages, to be 100
milliseconds, since this is perceived as instantaneous to users.
The purpose of the web application ties back to our use case
requirement of keeping first responders safe by being able to
track detected humans and knowing their exact location without

having to search the entire area first.

V. DESIGN TRADE STUDIES

A. Radar
A 120 GHz radar module was used due to its availability

from CyLab and ability to stream raw ADC samples in real time
and an API for easy control via RPi. In the beginning of the
project, we had used a 77 GHz TI AWR1843Boost radar
module due to its availability, small size, lower power usage
(380 mW vs 2000 mW). However, while this radar had superior
penetration, it required an additional DCA1000EVM module to
stream real-time raw radar data which was not available and
alone cost more than the $600 budget. Therefore, we chose the
120 GHz radar module.
B. Temperature Sensor

A temperature sensor with analog output was chosen due to
its immediate availability and low cost ($1) compared to a
temperature sensor with digital output (> $5). Since the design
requirements for this system only prescribe notification of
temperature beyond a threshold, it is easier to implement this
functionality with analog output than digital.

C. Machine Learning Architecture
For the machine learning architecture, the tradeoffs

considered pertained to the preprocessing and the architecture
itself. For preprocessing, we weighed the difference between
reconstructing the 3D data on the RPi versus in the architecture.
However, reconstruction on the RPi requires sending higher
dimensional data over Wi-Fi, which would consume bandwidth
that may be very sparse in the wilderness. Therefore, we chose
to perform this preprocessing in the machine learning
architecture.

Next, for the architecture, we needed a design that would be
able to learn complex relationships among the 3D data.
Traditionally, CNNs are 2D, so the kernel only slides in two
dimensions–this is what Linsey has worked with many times
before. However, after conducting research, having a kernel
that slides in all three dimensions is better able to learn
relationships for 3D data. Therefore, we chose a 3D-CNN
architecture. To support this approach, [4] and [5] both used
3D-CNNs to detect targets using radar data. Additionally, [4]
provided relevant metrics for F1 scores, leading to the
benchmark .6-.7 range that we mentioned.
D. Web Application

There were not too many tradeoffs we considered. To create
the web application, we used Django because Ayesha has
experience with this, and it is simple to set up a base site with
the simple pages that we wanted to lay out. In order to fulfill the
design requirements, we knew we wanted map functionality.
We considered both GeoDjango and Google Maps API. The
GeoDjango library is much more limited, and since we want our
web application to allow us to add pins to the map and receive
GPS data, Google Maps API provides that capability. We chose
to deploy our web application on Amazon Elastic Cloud
Compute (EC2) because we are given full control of EC2
instances, and it allows for fast deployment. There were not any
significant differences between EC2 and Azure since Google

18-500 Design Project Report: Team A6 03/03/2023

4

Compute Engine does not have all of the functionalities that
EC2 and Azure do. Since Ayesha has previously done
deployment with Amazon EC2 and it was efficient, we chose
this route.

VI. SYSTEM IMPLEMENTATION
Our system has both hardware and software components.

The software is split into machine learning and frontend.

A. Hardware

Fig 2: Hardware block diagram

The sensor suite consists of a mmWave radar module, IMU,
GPS receiver, and a temperature sensor. A speaker is also
included to broadcast audio to potential humans in the search
area and is connected to the RPi. All the aforementioned
components are controlled with a RPi which transmits the data
via Wi-Fi to a base station computer, which runs the web
application. The unit is powered by a single 9V battery and is
enclosed in a chassis (including the radome) additively
manufactured from polylactic acid (PLA). The Silicon Radar
TRX_120 module transmits FMCW chirps from 122 to 123
GHz from a 2 by 2 patch antenna array and receives from
another 2 by 2 patch antenna array and streams raw ADC
samples to the RPi through a micro-USB connection. The GPS
data is streamed through UART, and the IMU data is streamed
through I2C to the RPi. The temperature alert is streamed along
with the radar, GPS, and IMU data through Wi-Fi included on
the RPi.

B. Machine Learning Architecture

Fig 3: Machine learning architecture block diagram

The machine learning architecture is embedded within the

web application. The radar data–both the range-Doppler and
range-azimuth data–is received by the base station computer
from the RPi through Wi-Fi. First, the drone needs to be

hovering in a stationary position in order for the input to be
valid. The drone is considered stationary if the drone’s velocity
and horizontal acceleration, calculated from IMU data that has
been damped with a FIR filter on the base station computer, do
not exceed 0.1 m/s and 1 m/s2.

From there, by multiplying the range-Doppler and range-
azimuth data along the corresponding axes, we can create a low-
fidelity 3D tomographic reconstruction of the scene. This radar
cube is fed into the 3D-CNN network, which consists of the
following in this order: 4 convolution layers each followed by
max-pooling and then 2 fully connected layers at the end. The
convolution layers work to learn relationships along each of the
range, Doppler, and azimuth axes. By following each
convolutional layer with a max-pooling layer, we prevent
overfitting and reduce the output size between layers. The fully
connected layers do the final reduction in output size step by
step, until we eventually output a tuple with 3 elements– (range,
Doppler, azimuth). After each of these layers, we employ a
ReLU activation function to prevent the vanishing gradient
problem during training and introduce nonlinearities into the
network to better learn the potential location of a human. By
employing this 3D-CNN architecture, we will detect micro-
Doppler features produced by moving objects in the radar’s
frame. From these features, we can then deduce which
correspond to a moving human. If no human is detected, the
range value will be -1 (an invalid value). Otherwise, there will
be valid range, Doppler, and azimuth values in the returned
tuple.

During training, mean squared error will be the loss used to
tune the network. This loss is necessary, because we are
concerned with real-valued, continuous outputs; mean squared
error will effectively compute the difference between our
output and our ground truth target, while penalizing outliers.
Once detection is complete, the web application will receive a
yes or no output. Then, we must create the machine learning
architecture-web application interface. This will be done using
the Django REST API, which will allow our machine learning
model to deploy within our web application, so that the output
of the machine learning model is accessible to the application.
C. Web Application

Fig 4: Diagram of web application architecture and interactions.

The web application architecture will be implemented using

18-500 Design Project Report: Team A6 03/03/2023

5

the Django framework in conjunction with AJAX and the
Google Maps API. Django allows for easy website creation and
maintenance and is implemented in python. From the browser,
an HTTP Request will be sent to the server, and using Django,
we will be able to connect that request to a specific URL,
retrieve the associated data, and display the associated page.
AJAX will be used in conjunction with Django to send and
receive data such that the browser display and behavior is not
interrupted. This is where we will utilize the Google Maps API
in order to display a dynamically updating map. The Google
Maps API will interact with the JavaScript files, as well as the
templated HTML files, to display a map and add marker
functionality. GPS data will be sent from the RPi to the web
application containing the location of the device when a human
was detected from the captured image so that the location can
be marked on a map, displayed by the maps API. Finally, we
will be deploying our web application on an SDK to increase
latency. We will deploy our site on Amazon EC2.

D. Integration
In order to connect our hardware and software components,

we are using an RPi. This RPi will send the radar data to the
machine learning architecture to begin the image processing
and running the human detection algorithms. The RPi will also
collect the sensor data, as outlined in figure 2, and send that to
our base station computer through Wi-Fi. This base station
computer is what runs the web application. This is important
because the GPS data needs to be sent from the RPi in order for
users to be able to drop pins on the map which is displayed on
the web application.
 The machine learning model is run from a Python file, which
allows it to be deployed within the web application using the
Django REST API. Since our web application uses Django, we
can use the Django REST Framework, which is free. This
framework is easily installable within our application and will
work with our web application being deployed on EC2.

VII. TEST, VERIFICATION AND VALIDATION
Our goal for testing all our components is to achieve the

metrics outlined in our design requirements summary table
(see Table I).

A. Tests for mmWave Radar
To test the radar functionality, data of different scenes will

be captured from a stationary location: scenes with moving
humans waving their arms, no humans, and humans obstructed
by fog at different distances from 1 to 10 m away in increments
of 3 m. To simulate fog, we will use a fog machine.
Additionally, because it is risky to deploy our device in high
temperature conditions, we will use our device’s performance
in fog to generalize to smoke, since fog and smoke have the
same properties with respect to the radar’s penetration ability.

B. Tests for Temperature Sensor
To test the functionality of the temperature sensor, the output

of the heat alert is monitored as the temperature sensor and a
separate thermometer are heated from room temperature to
125oC using a heat gun. System integration testing and latency
measurement is achieved by measuring the difference between

the timestamp sent from the RPi and the time upon receival by
the base station computer.
C. Tests for Machine Learning Architecture

For initially training the machine learning architecture alone,
we will use the drone radar dataset from Ghent University [6]
with a 70-30 training-validation split. It is composed of range-
Doppler, range-azimuth, and position data taken from a
hovering, upright drone which is taking images of a corner
reflector–our model human. This preliminary training is to
ensure that the network integrates with the radar data with
respect to dimensions and sensible metrics, i.e., accuracy
increases with training (we do not have a specific metric in
mind, we are merely observing trends). Once we have collected
more radar data (~1000 samples), we can use this for further
training the model to better generalize to our real-world
scenarios as mentioned in section A. During these tests using
our own collected radar data, we will be comparing the F1 score
against our .7 requirement.
D. Tests for Web Application

We will manually test the web application by trying out the
functionality ourselves and having others try it out and getting
feedback. This will be how we test the qualitative aspects of the
site, such as how easy it is to navigate and how visually
appealing it is. We will test the latency of the web application
functions itself, such as the timing to add a marker for a specific
geolocation and the timing between simple actions like
switching pages and scrolling. As mentioned in the design
requirements, when strong service is present, we expect these
functionalities to seem instantaneous to users, so we will be
testing for a latency of 100 ms.
E. Integration Tests

For integrating the machine learning architecture with the
web application, we can return a binary value and ensure that
the web application correctly displays to the first responder
whether a human has been detected. For integrating the radar
and sensors with the web application and machine learning
architecture, we will ensure that the data is transmitted by the
RPi to the software end.

VIII. PROJECT MANAGEMENT

A. Schedule
We will all be working on our individual sections in parallel

for the first half of the semester. We plan to begin integrating
during the second half of the semester, so around mid-March.
See Figure 5 on the next page for the schedule, shown in a Gantt
chart. Linsey is blue, Ayesha is brown, Angie is green, and the
remaining colors involve multiple people, if not all of us.

Our major tasks include the following:
1. Acquire radar
2. Find dataset
3. Set up web application
4. Capture radar images
5. Train ML architecture
6. Validate ML architecture
7. Test ML on radar images
8. Send images to web application

18-500 Design Project Report: Team A6 03/03/2023

6

9. Test sensors
10. Integrate Google Maps API
11. Add marker functionality
12. Send sensor data to web application
13. Test ML output and temperature warning display on web

application
14. Test entire system

B. Team Member Responsibilities
We have both hardware and software components in this

project, but we have split it up into three specific
concentrations—hardware, machine learning, and web
application.

Angie has a lot of experience with hardware and signal
processing, and she had a specific interest in using the radar we
procured. Angie will be working on capturing the images with
the radar, connecting the sensors (GPS/IMU and temperature)
and the speaker, and using a RPi to store and send the images
to our software system.

Linsey is minoring in machine learning, so she will be
working on the image processing portion of our project.

Ayesha has experience with building web applications, so
she will be creating the frontend portion of our
project. Ayesha’s secondary responsibility will be to help
Linsey with the machine learning architecture as needed.

All three members will test their individual portions on their
own and test the integrated system parts together.
C. Bill of Materials and Budget

Our total budget for this project is $122.45. This is because
we were able to borrow our most expensive items from labs
such as CyLab. If we were to have purchased each item, the
total price would have been $1,175.58. Our bill of materials is
located on page 8 (see Table II).

D. Risk Mitigation Plans
In the event that we do not meet our desired test outputs, we

have some plans to adjust each component in order to overcome
any issues.

If our hardware accuracy is low, we plan to increase the data
rate of the radar. If our hardware speed is low, we plan to
decrease the data rate of the radar. This will affect the two most
important metrics of the hardware components.
 For the machine learning architecture, if we do not meet our
desired F1 score of 0.7, we will tune the hyperparameters of the
CNN. Specifically, this involves changing the filter size and the
number of layers in the CNN.
 For the web application, we will already be using an SDK to
improve latency. Therefore, if latency is still an issue in areas
with strong service, we will reduce the number of HTTP
requests, as well as simplify the templates, which include the
HTML and CSS files, to increase the latency of the web
application.

IX. RELATED WORK
To obtain our dataset, we examined this study [6] that

collected FMCW data with a mmWave radar mounted on a
stationary drone. While this study collects data in several
scenarios, we focused on the one where a corner reflector, an

Fig 5: Gantt chart with milestones for the semester.

A
cq

ui
re

 ra
da

r
Fi

nd
 d

at
as

et

Se
t u

p
w

eb
 a

pp

C
ap

tu
re

 ra
da

r i
m

ag
es

Tr

ai
n

M
L

ar
ch

ite
ct

ur
e

V
al

id
at

e
M

L
ar

ch
.

Te
st

 M
L

w
ith

 ra
da

r
Se

nd
 o

ut
pu

t t
o

w
eb

 a
pp

Te

st
 s

en
so

rs

A
dd

 g
oo

gl
e

m
ap

s A
PI

A

dd
 m

ap
 m

ar
ke

rs

Se
nd

 se
ns

or
 d

at
a

to
 a

pp

Te
st

 w
eb

 a
pp

Te

st
 w

ho
le

 sy
st

em

Sl
ac

k

Ta
sk

 N
am

e

18-500 Design Project Report: Team A6 03/03/2023

7

aluminum foil pyramidal reflector, is placed at the center of
the open space and the drone hovers in front of it; this scenario
provides us with 2869 training examples. The corner reflector
is our model human as it ensures strong returns for the radar
signal. We acknowledge that this corner reflector isn’t moving
like our intended human target would; it will only mimic a
stationary human with much smaller Doppler shifts like e.g.,
breathing. Therefore, it will only be used for initial training of
the machine learning architecture.

For the system implementation, we examined two studies
[4] and [5] that used radar to classify targets on the road. Both
construct 3D cubelets to accurately represent the range,
Doppler, and azimuth data. They also use 3D-CNNs to
classify their targets. Therefore, for our architecture, we
reconstruct the 3D representation using the range-Doppler and
range-azimuth data and employ a 3D-CNN architecture.
Although these papers classify over multiple classes (they
focus on cars, bikes, and pedestrians), we adopted their
methods for our two-class prediction problem.

For the architecture code, we followed the construction of
the network in [8]. It details a 3D-CNN network for
classifying CT scans. Their initial code contained only 3
convolution layers. Linsey added an additional layer to more
closely follow the RTCNet architecture mentioned in [4].
Therefore, [4] and [8] were key to building the machine
learning architecture.

X. SUMMARY
Our universal drone attachment serves to aid and improve

SAR missions by providing a more cost-effective and robust
solution. Our device will use mmWave radar to overcome
barriers that are typically faced with infrared and cameras, such
as seeing through fog and smoke. Our device will also be lower
cost than what is currently available with our total being
$1,175.58, and SAR drones currently in use are ~$3,300 [2].
Additionally, because our attachment is independent of drone
peripherals and weighs less than 0.5 kg, it will be compatible
with most drones used for SAR missions (the average weight a
drone can carry is 0.5-2 kg) [7]. Our device will capture images
during SAR missions and send them to be processed by our
machine learning architecture. Finally, our device will
communicate with a web application that will receive location
data and allow users to pin specific locations on the map based
on where humans are detected; to ensure the safety and usability
of our system, we included a temperature sensor which in turn
allows us to alert the user when the drone is flying in conditions
that are too hot, and we included a speaker to instruct victims
to move their arms, making it easier for our device to detect
their presence.

We foresee that image capture with our radar will be a
challenging task because the data is relatively low resolution.
Integration is always challenging. We have allotted a lot of time
for this by planning to start it mid-March.

GLOSSARY OF ACRONYMS
EC2 – Elastic Cloud Compute
GPS - Global Positioning System
IMU - Inertial measurement unit
mmWave - millimeter-wave

RPi - Raspberry Pi
SAR - search and rescue
SDK - Software Development Kit

REFERENCES
[1] R. Tariq, M. Rahim, N. Aslam, N. Bawany and U. Faseeha,

"DronAID : A Smart Human Detection Drone for Rescue," 2018
15th International Conference on Smart Cities: Improving Quality
of Life Using ICT & IoT (HONET-ICT), Islamabad, Pakistan, 2018,
pp. 33-37, doi: 10.1109/HONET.2018.8551326.

[2] “Inspire 2 - DJI.” DJI Official, DJI, https://www.dji.com/inspire-2.
[3] Vision Aerial, Vision Aerial. “How to Use Drones for Search and

Rescue.” Vision Aerial, Vision Aerial, Inc., 15 June 2021,
https://visionaerial.com/how-to-use-drones-for-search-and-rescue/.

[4] Palffy, Andras, et al. IEEE ROBOTICS AND AUTOMATION
LETTERS, 2020, CNN Based Road User Detection Using the 3D
Radar Cube, https://arxiv.org/pdf/2004.12165.pdf.

[5] K. Aziz, E. De Greef, M. Rykunov, A. Bourdoux and H. Sahli,
"Radar-camera Fusion for Road Target Classification," 2020 IEEE
Radar Conference (RadarConf20), Florence, Italy, 2020, pp. 1-6,
doi: 10.1109/RadarConf2043947.2020.9266510.

[6] Safa, Ali, et al. IDLab, Ghent University, Leuven, Belgium, 2023,
FMCW Radar Sensing for Indoor Drones Using Learned
Representations, https://arxiv.org/pdf/2301.02451.pdf. Accessed 2
Mar. 2023.

[7] Dronedek. “How Much Weight Can a Delivery Drone Carry?”
Dronedek The Mailbox Of The Future, Dronedek, 10 May 2021,
https://www.dronedek.com/news/how-much-weight-can-a-
delivery-drone-carry/.

[8] Zunair, Hasib. “Keras Documentation: 3D Image Classification
from CT Scans.” Keras, Keras, 23 Sept. 2020,
https://keras.io/examples/vision/3D_image_classification/.

18-500 Design Project Report: Team A6 03/03/2023

8

TABLE II. BILL OF MATERIALS

Total budget: $122.45
Description: mmWave radar
Name: TRX_120_067
Manufacturer: Silicon Radar
Cost: $0 ($1000 on the market)
Notes: Radar and evaluation board borrowed from CyLab

Description: Controller for the sensors
Name: Raspberry Pi 4 Model B with 8GB RAM
Manufacturer: Element14
Cost: $0 ($75 on the market)
Notes:

Description: Temperature sensor
Name: TMP36
Manufacturer: Adafruit
Cost: $1
Notes: Bought from TechSpark

Description: GPS and IMU sensor
Name: BerryGPS-IMUv4
Manufacturer: OzzMaker
Cost: $71.20
Notes: Single board with separate power supplies and communications

Description: Speaker
Name: AS02008MR-LW152-R
Manufacturer: Digi-Key
Cost: $0 ($3.13 for a single speaker, $1.81 in bulk)
Notes: Part from previous coursework

Description: 5V Linear regulator
Name: L7085
Manufacturer: STMicroelectronics
Cost: $0.25
Notes: From TechSpark

Description: 9V batteries
Cost: $0
Notes: From previous coursework

Description: NPN transistor
Cost: $0
Notes: From previous coursework

Description: Google Maps API
Name: Google Maps API
Manufacturer: Google
Cost: $50 ($100 without coupon)
Notes: Using educational coupon

Description: Resistors
Name: 500 Ω, 9 kΩ, 1 kΩ resistors
Cost: $0
Notes: From previous coursework

Description: 3-D printed chassis
Name: 3-D printed PLA
Manufacturer: TechSpark
Cost: $0
Notes: Self-designed

Description: Wires
Manufacturer:
Cost: $0
Notes: From previous coursework

