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Abstract—We propose a universal drone attachment that uses 

mmWave radar and machine learning to accurately detect humans in 
fire and fog search and rescue (SAR) conditions. Our web application 
interfaces with the device to allow the user to drop a pin to mark a 
victim’s location for subsequent rescue. From a hovering drone, our 
device–a lightweight, handheld attachment–will detect moving 
humans from 10 meters away in fire and fog conditions, providing a 
cheaper, automated SAR drone application. 
 

Index Terms—Chassis, drone attachment, GPS, mmWave radar, 
safety, SAR, sensor, 3D-CNN, web application 
 

I. INTRODUCTION 
ECENTLY, SAR applications have expanded by using 
drones [1]. Drones provide many advantages; they limit the 
exposure of first responders to extreme weather conditions 

and dangerous terrain, cover large swaths of area efficiently, 
and are compatible with high-definition cameras and sensors 
that enhance SAR missions. For these missions, the standard 
maximum flight altitude is 10 meters, and the duration is a 
maximum of 30 minutes [2], [3].  

However, there are a few drawbacks to the current 
technology. Because they utilize a high-definition camera and 
infrared sensing, SAR drones are very expensive. Furthermore, 
they do not perform well in high temperature conditions and are 
subject to visible occlusions like fog and smoke. Lastly, they 
require manual identification of victims. 

Our universal drone attachment overcomes these barriers to 
aid first responders. By using a millimeter-wave (mmWave) 
radar, we provide a more cost-effective solution, making our 
technology more accessible for public agencies like fire 
departments and the National Park Service. Our mmWave radar 
is also more robust to adverse weather conditions and fire 
rescue situations, broadening the utility of our SAR drone 
application. Specifically, we will focus on fire and fog 
situations. The radar functions by measuring the range (distance 
to target), Doppler (relative velocity of the target to the drone), 
and azimuth (angle to the target) data. The Doppler data in 
particular helps us locate moving targets, since they will create 
a different velocity relative to the drone compared to stationary 
targets. Therefore, we will be using this to our advantage. Using 
machine learning, we automate the manual identification of 
victims, increasing the efficiency of the mission where rescuing 
victims is extremely urgent.  

To attach our device to the drone, we will encase it with a 
3D-printed chassis that will go around the drone’s rails. The 
first responder will fly the drone remotely and hover in certain 
areas that they choose to examine. The attached mmWave will 

transmit radar data to the machine learning architecture that is 
embedded in our web application. By viewing our web 
application interface, the first responder can see if a human is 
detected, and if so, they are sent the exact location of detection 
and can save that location for subsequent rescue. 

II. USE-CASE REQUIREMENTS 
Since we are building a SAR drone attachment, drone 

compatibility, increasing the efficiency of missions, safety of 
first responders, and cost are the most important factors of our 
application. 

Our device must work well with a drone. Its size and weight 
cannot impede the drone, and it must easily attach. With our 
material we estimate our device will weigh less than 0.5 kg and 
have an area of 11 square inches. By encapsulating our device 
in a 3D-printed chassis, we can attach our device to any drone 
via its rails. While using plastic in high temperature situations 
may invoke environmental questions, we have taken this into 
consideration and will implement a high temperature warning 
system for the user, so that neither the plastic nor our device is 
ever damaged. Lastly, our device must work for the duration of 
a drone flight and work at the standard flight altitude. These last 
for roughly 30 minutes, so our device must maintain that 
functionality for at least that long; our device must work within 
10 m above the ground.  

Moving onto increasing the efficiency of missions, SAR 
conditions indicate people in crisis situations–it’s paramount 
that these victims are rescued as quickly as possible. Our device 
facilitates this by automating the human detection process, 
pinning locations of victims, and having overall real-time 
functionality. Instead of first responders manually scanning for 
victims and not only wasting time but also having a more 
substantial environmental impact, we can point out where 
victims are using the mmWave radar and machine learning; 
pinning locations of victims allows first responders to mark 
spots of rescue, so that they can then systematically dispatch 
rescuers. Finally, our system must accomplish all of this in a 
timely manner under the pressure of a crisis situation.  

The safety of first responders is also very important. By 
making a drone attachment, we help limit their exposure to 
extreme weather and dangerous terrain conditions.  

Finally, since our application would be used by fire 
departments, it needs to be affordable to enable accessibility. 
Currently, drones are very expensive and employ a high-
definition camera and thermal imaging to find victims. Our 
mmWave application overcomes this cost barrier, because 
mmWave radars are substantially cheaper. We can make it 
easier for fire departments to use our product and improve the 
overall process of rescuing people from wilderness fires.  
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Fig 1: System block diagram 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Enclosed in a 3D-printed chassis and attached to the drone, 

the device collects range-Doppler and range-azimuth 
coordinates through the mmWave radar and temperature, 
Global Positioning System (GPS), and inertial measurement 
unit (IMU) data through their respective sensors. The device 
also includes a Raspberry Pi (RPi), which is key for data 
transmission. Lastly, on board the drone, there is a speaker, 
which is a safety addition. 

We implemented an important high temperature feature to 
ensure the functionality of our device during its deployment in 
fire and fog missions. To prevent the first responder from flying 
the drone into temperatures that can cause functionality 
degradation, the temperature sensor data is captured on board 
the drone and sent via the RPi to the web application. Once the 
measured temperature exceeds 100o C, the web application 
indicates to the first responder that the current environment is 
dangerous for the drone and device, so the first responder can 
safely fly the drone out of harm’s way.  

The speaker also enhances the usability of our system. By 
playing a message like “wave your arms from your waist to 
above your head if you are able” repeatedly, it effectively alerts 
nearby victims to wave their arms. This movement will enhance  

 
 
their ability to be detected by the Doppler shift that we observe 
with the mmWave radar. 

Embedded in the web application in the base station 
computer, the machine learning architecture is connected to the 
web application via the Django REST API. The range-Doppler 
and range-azimuth coordinates are sent via the RPi to the 
machine learning architecture. Inference is performed when the 
IMU data–specifically the drone’s velocity and horizontal 
acceleration–indicates that the drone is upright and stationary. 
The 3D-CNN (convolutional neural network) architecture then 
runs and determines whether a human has been detected by 
outputting either valid range, Doppler, azimuth coordinates 
indicating a successful detection or invalid coordinates for no 
detection. That binary value is forwarded to the web 
application. 

If a human has been detected, the web application alerts the 
first responder of the detection. The web application uses the 
GPS data that has the same timestamp as the radar data to 
determine the location of the detected human. The web 
application will then provide the user with the ability to save 
this location on the map and drop a marker to track this location, 
using the Google Maps API. 



18-500 Design Project Report: Team A6 03/03/2023 
 

3 

IV. DESIGN REQUIREMENTS 
Table I: Design Requirement Metrics 

Requirement Metric 
mmWave radar detection range < 5 m 

GPS localization accuracy 0.5 m 
Temperature warning point 100 o C 

F1 score 0.7 
Web application latency 100 ms 

System latency 3 s 
 

A mmWave radar must be able to produce data from 5 m 
away such that the machine learning architecture can detect 
humans from the radar returns. This range is safely within 10 
m, which is the standard flight altitude for a SAR drone. The 
human may be obscured by obstacles such as fog, fire, and 
smoke. A temperature sensor that can function between -20o and 
120o C and output whether the temperature exceeds 100oC is to 
be included to inform the user that the drone and radar system 
are operating in high temperatures that may damage the drone 
or the radar and shorten its service lifetime. A speaker is 
included to output audio to alert potential victims of its 
presence. By encouraging the victims to wave their arms, this 
movement will help our system detect them and increase the 
efficiency of the SAR mission. GPS and IMU sensors are 
included to determine the location, speed, and orientation of the 
drone. A RPi controller is included to collect data from the 
sensors and transmit the data to a base station computer, which 
runs our web application. The assembly is powered by a 9V 
battery, enabling it to function for the 30-minute flight time. It 
is encased in a 3D-printed enclosure including a radome to 
protect the electronic components from damage caused by 
hostile environments the drone may encounter such as smoke 
and fire. 

The machine learning architecture for detecting humans will 
have an F1 score of at least .7; similar architectures have 
achieved F1 scores in the range .6-.7 when predicting over 
multiple classes (i.e. identifying many different objects), so we 
will beat that metric when predicting over just two classes–there 
is a human present versus there is not. This ties back to the user 
requirement of increasing the efficiency of the SAR mission. 
We need to accurately detect humans in order to successfully 
automate the victim searching process. It is also important to 
clarify that this metric will be achieved on our own radar data. 
In terms of latency, similar architectures ([4]) take 
approximately 40 ms for inference time. Therefore, to achieve 
real-time functionality, the speed of the web application is the 
more important component. 

Given that our use case for search and rescue missions can 
occur outdoors where there may be slow service, we are 
allowing for a maximum latency of 3 seconds end-to-end of our 
entire system. This means that for our web application, when 
strong signals are available, we expect the latency of the web 
application functions, such as loading pages, to be 100 
milliseconds, since this is perceived as instantaneous to users. 
The purpose of the web application ties back to our use case 
requirement of keeping first responders safe by being able to 
track detected humans and knowing their exact location without 

having to search the entire area first. 

V. DESIGN TRADE STUDIES 

A. Radar 
A 120 GHz radar module was used due to its availability 

from CyLab and ability to stream raw ADC samples in real time 
and an API for easy control via RPi. In the beginning of the 
project, we had used a 77 GHz TI AWR1843Boost radar 
module due to its availability, small size, lower power usage 
(380 mW vs 2000 mW). However, while this radar had superior 
penetration, it required an additional DCA1000EVM module to 
stream real-time raw radar data which was not available and 
alone cost more than the $600 budget. Therefore, we chose the 
120 GHz radar module. 
B. Temperature Sensor 

A temperature sensor with analog output was chosen due to 
its immediate availability and low cost ($1) compared to a 
temperature sensor with digital output (> $5). Since the design 
requirements for this system only prescribe notification of 
temperature beyond a threshold, it is easier to implement this 
functionality with analog output than digital.  

C. Machine Learning Architecture 
For the machine learning architecture, the tradeoffs 

considered pertained to the preprocessing and the architecture 
itself. For preprocessing, we weighed the difference between 
reconstructing the 3D data on the RPi versus in the architecture. 
However, reconstruction on the RPi requires sending higher 
dimensional data over Wi-Fi, which would consume bandwidth 
that may be very sparse in the wilderness. Therefore, we chose 
to perform this preprocessing in the machine learning 
architecture. 

Next, for the architecture, we needed a design that would be 
able to learn complex relationships among the 3D data. 
Traditionally, CNNs are 2D, so the kernel only slides in two 
dimensions–this is what Linsey has worked with many times 
before. However, after conducting research, having a kernel 
that slides in all three dimensions is better able to learn 
relationships for 3D data. Therefore, we chose a 3D-CNN 
architecture. To support this approach, [4] and [5] both used 
3D-CNNs to detect targets using radar data. Additionally, [4] 
provided relevant metrics for F1 scores, leading to the 
benchmark .6-.7 range that we mentioned.  
D. Web Application 

There were not too many tradeoffs we considered. To create 
the web application, we used Django because Ayesha has 
experience with this, and it is simple to set up a base site with 
the simple pages that we wanted to lay out. In order to fulfill the 
design requirements, we knew we wanted map functionality. 
We considered both GeoDjango and Google Maps API. The 
GeoDjango library is much more limited, and since we want our 
web application to allow us to add pins to the map and receive 
GPS data, Google Maps API provides that capability. We chose 
to deploy our web application on Amazon Elastic Cloud 
Compute (EC2) because we are given full control of EC2 
instances, and it allows for fast deployment. There were not any 
significant differences between EC2 and Azure since Google 
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Compute Engine does not have all of the functionalities that 
EC2 and Azure do. Since Ayesha has previously done 
deployment with Amazon EC2 and it was efficient, we chose 
this route. 

VI. SYSTEM IMPLEMENTATION 
Our system has both hardware and software components. 

The software is split into machine learning and frontend.  

A. Hardware 

 
Fig 2: Hardware block diagram 
 

The sensor suite consists of a mmWave radar module, IMU, 
GPS receiver, and a temperature sensor. A speaker is also 
included to broadcast audio to potential humans in the search 
area and is connected to the RPi. All the aforementioned 
components are controlled with a RPi which transmits the data 
via Wi-Fi to a base station computer, which runs the web 
application. The unit is powered by a single 9V battery and is 
enclosed in a chassis (including the radome) additively 
manufactured from polylactic acid (PLA). The Silicon Radar 
TRX_120 module transmits FMCW chirps from 122 to 123 
GHz from a 2 by 2 patch antenna array and receives from 
another 2 by 2 patch antenna array and streams raw ADC 
samples to the RPi through a micro-USB connection. The GPS 
data is streamed through UART, and the IMU data is streamed 
through I2C to the RPi. The temperature alert is streamed along 
with the radar, GPS, and IMU data through Wi-Fi included on 
the RPi. 

B. Machine Learning Architecture 

 
Fig 3: Machine learning architecture block diagram 

 
The machine learning architecture is embedded within the 

web application. The radar data–both the range-Doppler and 
range-azimuth data–is received by the base station computer 
from the RPi through Wi-Fi. First, the drone needs to be 

hovering in a stationary position in order for the input to be 
valid. The drone is considered stationary if the drone’s velocity 
and horizontal acceleration, calculated from IMU data that has 
been damped with a FIR filter on the base station computer, do 
not exceed 0.1 m/s and 1 m/s2.  

From there, by multiplying the range-Doppler and range-
azimuth data along the corresponding axes, we can create a low-
fidelity 3D tomographic reconstruction of the scene. This radar 
cube is fed into the 3D-CNN network, which consists of the 
following in this order: 4 convolution layers each followed by 
max-pooling and then 2 fully connected layers at the end. The 
convolution layers work to learn relationships along each of the 
range, Doppler, and azimuth axes. By following each 
convolutional layer with a max-pooling layer, we prevent 
overfitting and reduce the output size between layers. The fully 
connected layers do the final reduction in output size step by 
step, until we eventually output a tuple with 3 elements– (range, 
Doppler, azimuth). After each of these layers, we employ a 
ReLU activation function to prevent the vanishing gradient 
problem during training and introduce nonlinearities into the 
network to better learn the potential location of a human. By 
employing this 3D-CNN architecture, we will detect micro-
Doppler features produced by moving objects in the radar’s 
frame. From these features, we can then deduce which 
correspond to a moving human. If no human is detected, the 
range value will be -1 (an invalid value). Otherwise, there will 
be valid range, Doppler, and azimuth values in the returned 
tuple.  

During training, mean squared error will be the loss used to 
tune the network. This loss is necessary, because we are 
concerned with real-valued, continuous outputs; mean squared 
error will effectively compute the difference between our 
output and our ground truth target, while penalizing outliers. 
Once detection is complete, the web application will receive a 
yes or no output. Then, we must create the machine learning 
architecture-web application interface. This will be done using 
the Django REST API, which will allow our machine learning 
model to deploy within our web application, so that the output 
of the machine learning model is accessible to the application. 
C. Web Application 

 
Fig 4: Diagram of web application architecture and interactions. 

 
The web application architecture will be implemented using 
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the Django framework in conjunction with AJAX and the 
Google Maps API. Django allows for easy website creation and 
maintenance and is implemented in python. From the browser, 
an HTTP Request will be sent to the server, and using Django, 
we will be able to connect that request to a specific URL, 
retrieve the associated data, and display the associated page. 
AJAX will be used in conjunction with Django to send and 
receive data such that the browser display and behavior is not 
interrupted. This is where we will utilize the Google Maps API 
in order to display a dynamically updating map. The Google 
Maps API will interact with the JavaScript files, as well as the 
templated HTML files, to display a map and add marker 
functionality. GPS data will be sent from the RPi to the web 
application containing the location of the device when a human 
was detected from the captured image so that the location can 
be marked on a map, displayed by the maps API. Finally, we 
will be deploying our web application on an SDK to increase 
latency. We will deploy our site on Amazon EC2. 

D. Integration 
In order to connect our hardware and software components, 

we are using an RPi. This RPi will send the radar data to the 
machine learning architecture to begin the image processing 
and running the human detection algorithms. The RPi will also 
collect the sensor data, as outlined in figure 2, and send that to 
our base station computer through Wi-Fi. This base station 
computer is what runs the web application. This is important 
because the GPS data needs to be sent from the RPi in order for 
users to be able to drop pins on the map which is displayed on 
the web application. 
 The machine learning model is run from a Python file, which 
allows it to be deployed within the web application using the 
Django REST API. Since our web application uses Django, we 
can use the Django REST Framework, which is free. This 
framework is easily installable within our application and will 
work with our web application being deployed on EC2.  

VII. TEST, VERIFICATION AND VALIDATION 
Our goal for testing all our components is to achieve the 

metrics outlined in our design requirements summary table 
(see Table I).  

A. Tests for mmWave Radar 
To test the radar functionality, data of different scenes will 

be captured from a stationary location: scenes with moving 
humans waving their arms, no humans, and humans obstructed 
by fog at different distances from 1 to 10 m away in increments 
of 3 m. To simulate fog, we will use a fog machine. 
Additionally, because it is risky to deploy our device in high 
temperature conditions, we will use our device’s performance 
in fog to generalize to smoke, since fog and smoke have the 
same properties with respect to the radar’s penetration ability.  

B. Tests for Temperature Sensor 
To test the functionality of the temperature sensor, the output 

of the heat alert is monitored as the temperature sensor and a 
separate thermometer are heated from room temperature to 
125oC using a heat gun. System integration testing and latency 
measurement is achieved by measuring the difference between 

the timestamp sent from the RPi and the time upon receival by 
the base station computer. 
C. Tests for Machine Learning Architecture 

For initially training the machine learning architecture alone, 
we will use the drone radar dataset from Ghent University [6] 
with a 70-30 training-validation split. It is composed of range-
Doppler, range-azimuth, and position data taken from a 
hovering, upright drone which is taking images of a corner 
reflector–our model human. This preliminary training is to 
ensure that the network integrates with the radar data with 
respect to dimensions and sensible metrics, i.e., accuracy 
increases with training (we do not have a specific metric in 
mind, we are merely observing trends). Once we have collected 
more radar data (~1000 samples), we can use this for further 
training the model to better generalize to our real-world 
scenarios as mentioned in section A. During these tests using 
our own collected radar data, we will be comparing the F1 score 
against our .7 requirement.  
D. Tests for Web Application 

We will manually test the web application by trying out the 
functionality ourselves and having others try it out and getting 
feedback. This will be how we test the qualitative aspects of the 
site, such as how easy it is to navigate and how visually 
appealing it is. We will test the latency of the web application 
functions itself, such as the timing to add a marker for a specific 
geolocation and the timing between simple actions like 
switching pages and scrolling. As mentioned in the design 
requirements, when strong service is present, we expect these 
functionalities to seem instantaneous to users, so we will be 
testing for a latency of 100 ms. 
E. Integration Tests 

For integrating the machine learning architecture with the 
web application, we can return a binary value and ensure that 
the web application correctly displays to the first responder 
whether a human has been detected. For integrating the radar 
and sensors with the web application and machine learning 
architecture, we will ensure that the data is transmitted by the 
RPi to the software end.  

VIII. PROJECT MANAGEMENT 

A. Schedule 
We will all be working on our individual sections in parallel 

for the first half of the semester. We plan to begin integrating 
during the second half of the semester, so around mid-March. 
See Figure 5 on the next page for the schedule, shown in a Gantt 
chart. Linsey is blue, Ayesha is brown, Angie is green, and the 
remaining colors involve multiple people, if not all of us.  

Our major tasks include the following: 
1. Acquire radar 
2. Find dataset 
3. Set up web application 
4. Capture radar images 
5. Train ML architecture 
6. Validate ML architecture 
7. Test ML on radar images 
8. Send images to web application 
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9. Test sensors 
10. Integrate Google Maps API 
11. Add marker functionality 
12. Send sensor data to web application 
13. Test ML output and temperature warning display on web 

application 
14. Test entire system 

B. Team Member Responsibilities 
We have both hardware and software components in this 

project, but we have split it up into three specific 
concentrations—hardware, machine learning, and web 
application.  

Angie has a lot of experience with hardware and signal 
processing, and she had a specific interest in using the radar we 
procured. Angie will be working on capturing the images with 
the radar, connecting the sensors (GPS/IMU and temperature) 
and the speaker, and using a RPi to store and send the images 
to our software system.  

Linsey is minoring in machine learning, so she will be 
working on the image processing portion of our project.  

Ayesha has experience with building web applications, so 
she will be creating the frontend portion of our 
project. Ayesha’s secondary responsibility will be to help 
Linsey with the machine learning architecture as needed.  

All three members will test their individual portions on their 
own and test the integrated system parts together. 
C. Bill of Materials and Budget 

Our total budget for this project is $122.45. This is because 
we were able to borrow our most expensive items from labs 
such as CyLab. If we were to have purchased each item, the 
total price would have been $1,175.58. Our bill of materials is 
located on page 8 (see Table II). 

D. Risk Mitigation Plans 
In the event that we do not meet our desired test outputs, we 

have some plans to adjust each component in order to overcome 
any issues.  

If our hardware accuracy is low, we plan to increase the data 
rate of the radar. If our hardware speed is low, we plan to 
decrease the data rate of the radar. This will affect the two most 
important metrics of the hardware components. 
 For the machine learning architecture, if we do not meet our 
desired F1 score of 0.7, we will tune the hyperparameters of the 
CNN. Specifically, this involves changing the filter size and the 
number of layers in the CNN. 
 For the web application, we will already be using an SDK to 
improve latency. Therefore, if latency is still an issue in areas 
with strong service, we will reduce the number of HTTP 
requests, as well as simplify the templates, which include the 
HTML and CSS files, to increase the latency of the web 
application. 

IX. RELATED WORK 
To obtain our dataset, we examined this study [6] that 

collected FMCW data with a mmWave radar mounted on a 
stationary drone. While this study collects data in several 
scenarios, we focused on the one where a corner reflector, an 

Fig 5: Gantt chart with milestones for the semester. 

A
cq

ui
re

 ra
da

r 
Fi

nd
 d

at
as

et
 

Se
t u

p 
w

eb
 a

pp
 

C
ap

tu
re

 ra
da

r i
m

ag
es

 
Tr

ai
n 

M
L 

ar
ch

ite
ct

ur
e 

V
al

id
at

e 
M

L 
ar

ch
. 

Te
st

 M
L 

w
ith

 ra
da

r  
Se

nd
 o

ut
pu

t t
o 

w
eb

 a
pp

 
Te

st
 s

en
so

rs
 

A
dd

 g
oo

gl
e 

m
ap

s A
PI

 
A

dd
 m

ap
 m

ar
ke

rs
 

Se
nd

 se
ns

or
 d

at
a 

to
 a

pp
 

Te
st

 w
eb

 a
pp

 
Te

st
 w

ho
le

 sy
st

em
 

Sl
ac

k 

 

Ta
sk

 N
am

e 



18-500 Design Project Report: Team A6 03/03/2023 
 

7 

aluminum foil pyramidal reflector, is placed at the center of 
the open space and the drone hovers in front of it; this scenario 
provides us with 2869 training examples. The corner reflector 
is our model human as it ensures strong returns for the radar 
signal. We acknowledge that this corner reflector isn’t moving 
like our intended human target would; it will only mimic a 
stationary human with much smaller Doppler shifts like e.g., 
breathing. Therefore, it will only be used for initial training of 
the machine learning architecture. 

For the system implementation, we examined two studies 
[4] and [5] that used radar to classify targets on the road. Both 
construct 3D cubelets to accurately represent the range, 
Doppler, and azimuth data. They also use 3D-CNNs to 
classify their targets. Therefore, for our architecture, we 
reconstruct the 3D representation using the range-Doppler and 
range-azimuth data and employ a 3D-CNN architecture. 
Although these papers classify over multiple classes (they 
focus on cars, bikes, and pedestrians), we adopted their 
methods for our two-class prediction problem.  

For the architecture code, we followed the construction of 
the network in [8]. It details a 3D-CNN network for 
classifying CT scans. Their initial code contained only 3 
convolution layers. Linsey added an additional layer to more 
closely follow the RTCNet architecture mentioned in [4]. 
Therefore, [4] and [8] were key to building the machine 
learning architecture. 

X. SUMMARY 
Our universal drone attachment serves to aid and improve 

SAR missions by providing a more cost-effective and robust 
solution. Our device will use mmWave radar to overcome 
barriers that are typically faced with infrared and cameras, such 
as seeing through fog and smoke. Our device will also be lower 
cost than what is currently available with our total being 
$1,175.58, and SAR drones currently in use are ~$3,300 [2]. 
Additionally, because our attachment is independent of drone 
peripherals and weighs less than 0.5 kg, it will be compatible 
with most drones used for SAR missions (the average weight a 
drone can carry is 0.5-2 kg) [7]. Our device will capture images 
during SAR missions and send them to be processed by our 
machine learning architecture. Finally, our device will 
communicate with a web application that will receive location 
data and allow users to pin specific locations on the map based 
on where humans are detected; to ensure the safety and usability 
of our system, we included a temperature sensor which in turn 
allows us to alert the user when the drone is flying in conditions 
that are too hot, and we included a speaker to instruct victims 
to move their arms, making it easier for our device to detect 
their presence.  

We foresee that image capture with our radar will be a 
challenging task because the data is relatively low resolution. 
Integration is always challenging. We have allotted a lot of time 
for this by planning to start it mid-March.  

GLOSSARY OF ACRONYMS 
EC2 – Elastic Cloud Compute 
GPS - Global Positioning System 
IMU - Inertial measurement unit 
mmWave - millimeter-wave 

RPi - Raspberry Pi 
SAR - search and rescue 
SDK - Software Development Kit 
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TABLE II.  BILL OF MATERIALS 

Total budget: $122.45 
Description: mmWave radar 
Name: TRX_120_067 
Manufacturer: Silicon Radar 
Cost: $0 ($1000 on the market) 
Notes: Radar and evaluation board borrowed from CyLab 

Description: Controller for the sensors 
Name: Raspberry Pi 4 Model B with 8GB RAM 
Manufacturer: Element14 
Cost: $0 ($75 on the market) 
Notes: 

Description: Temperature sensor 
Name: TMP36 
Manufacturer: Adafruit 
Cost: $1 
Notes: Bought from TechSpark 

Description: GPS and IMU sensor 
Name: BerryGPS-IMUv4 
Manufacturer: OzzMaker 
Cost: $71.20 
Notes: Single board with separate power supplies and communications 

Description: Speaker 
Name: AS02008MR-LW152-R 
Manufacturer: Digi-Key 
Cost: $0 ($3.13 for a single speaker, $1.81 in bulk) 
Notes: Part from previous coursework 

Description: 5V Linear regulator 
Name: L7085 
Manufacturer: STMicroelectronics 
Cost: $0.25 
Notes: From TechSpark 

Description: 9V batteries 
Cost: $0 
Notes: From previous coursework 

Description: NPN transistor 
Cost: $0 
Notes: From previous coursework 

Description: Google Maps API 
Name: Google Maps API 
Manufacturer: Google 
Cost: $50 ($100 without coupon) 
Notes: Using educational coupon 

Description: Resistors 
Name: 500 Ω, 9 kΩ, 1 kΩ resistors 
Cost: $0 
Notes: From previous coursework 

Description: 3-D printed chassis 
Name: 3-D printed PLA 
Manufacturer: TechSpark 
Cost: $0 
Notes: Self-designed 

Description: Wires 
Manufacturer: 
Cost: $0 
Notes: From previous coursework 

 


