Flying Under the Radar

Team A6 Angie Bu, Ayesha Gupta, Linsey Szabo

Use Case

Goal

Help identify humans during search and rescue (SAR) missions

MVP

We will build a universal drone attachment to search through fire, fog, and rock with mmWave radar. It will detect humans at a close-range (<20 m) that may not be visible to the naked eye. Upon successful detection, our web application enables the user to save a victim's location so that they can be finally rescued.

ECE Areas

- I. Software
- II. Signal processing
- III. Hardware

User Requirements

User Requirements

Drone compatible Safe detection range

Withstands SAR conditions Overcomes low visibility conditions

Video source: <u>Spartan Radar</u>

Design Requirements

- > mmWave Radar (2 ⅔" x 3 ¼") with Antenna (1 sq. in)
- > 2 Watts
- > 2000-6000 hours total before breaking
- Detect non-moving people from 5-10 meters
- > Detect moving people from up to 30 meters
- Attachable to drone controlled by first responder
 - Coverage
 - Radar can withstand up to 125° C

Design Requirements - Hardware

mmWave radar for scanning area 15 degrees by 50 degrees angular resolution

Able to locate device from GPS/IMU sensor Minimum 30 minute scan periods

Design Requirements - Software

0.7 F1 score for human detection network

Pin victim geolocation

3 seconds end to end

Implementation

Integration of mmWave radar and

WUIGPS SERSOT WITH OTONE,

witeess connuncation to computer vision backend

Radat

- mmWave radar
- IMU/GPS sensor
- Raspberry Pi •

- **KUL-UAVSAFE** dataset
- Machine learning • libraries

Computer Vision Backend

architecture to detect humans

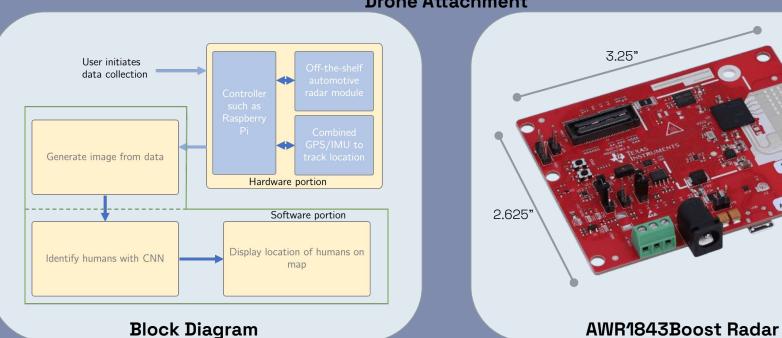
thendeploying twitting ges

captured by our own radar

Train an image processing

Djanqo

3


Google Maps API

Dianoo userintertace to drop pins

of located victime using the

Google Maps API

Implementation

Drone Attachment

antenna

1000 55868000584

Test Plan

Radar

Holding the radar still at positions at various distances and determining its ability to detect humans that are completely/partially obstructed with various materials

CV Backend

Using a preexisting mmWave dataset. training various models and comparing accuracies and speeds to determine the best model to detect humans with radar images

11

Web App Frontend

Determining the speed with which the application can display processed images and drop pin markers to specific locations

All able to occur in parallel!

Tasks and Division of Labor

Angie

Getting the radar functioning and capturing images

Angie specializes in hardware and signal processing, so she will focus on the radar.

Linsey

Building and testing the image processing architecture

Ayesha

Designing web application for first responders to keep track of victim locations

> Linsey and Ayesha both specialize in software, so after the frontend is complete, both can work to refine the machine learning architecture.

			•				•			•		•			•
Week		• 1	2	• 3	4	+ 5	6	7	8	9	10 +	11	12	13	14
	Acquiring radar								+				•		
•	Finding a dataset							•							•
	Setting up web app														
	Train one ML architecture on dataset														
	Train other ML architectures on dataset														
	Compare architectures														
	Capture radar images														
	Radar integration with drone														
	Finish frontend functionality														
	Test ML architectures on radar images														
	Integrate ML architecture with web app											A			
	Test whole pipeline (radar to web app)														
	Slack					17									
						13									