Dr. Green Use Case

Design

Dr. Green: Smart Recycling Device for Schools

Vision-based	Made	Interactive recycling
Recycling Classifier	for Schools	education

Use Case + Design Requirements

Requirements

Accurate camera capture, no interference, ease of use

Detection + Classification Model (YOLO) >90\% accuracy, <2 sec operation predicts correct output

Provide accurate visual/audible outputs to user

Accurately self organize recycling to prevent contamination (updated!).

Quantitative Metrics

100\% accuracy, <1 sec time
100% performance accuracy, < 1 sec operation time
100% correct bin transfer, 80° platform turn, (trash \& recyclable), < 1 sec operation time

Solution Approach

Areas: Software Systems, Signal Processing, Hardware Design

Solution Approach

Educational reinforcement

System Specifications:

/x = number of wired
connections

CSI Connector

System Specifications: Mechanics

Bottom (Inside) View of Lid

Material	L	W	H
Main Bin	20.5"	15"	21"
Mini Bins (x2)	8.25"	11.75"	11.5"
Swing Door	16"	11.25"	0.375 "
Back Frame	2"	$2 "$	24"
Overhead Platform	7.5"	4"	0.375 "

System

 Specifications: Jetson - Capture, Detect, \& Classify

System Specification : Software

Yolov5 model

- Real-time object detection + processing
- Better than Resnet (needs detection for multiple objects)
- Modify/Integrate existing model with pre-labeled dataset using transfer learning.

Example of bounding box with label

System Specifications : Hardware

Implementation Plan Overview

	Software	Hardware	Mechanics
Buy	Bought Camera, Jetson	Bought Arduino, Piezo, Servos x3, Ultrasonic Distance Sensors x2, Neopixels, USB Cable	Bought Main Bin, Small bins x2, acrylic platform, pipe/frame, screws
Create/ Modify	Modified Yolov5 model (downloaded dataset)	Self Assemble + Program Circuit (simulated)	Self assemble mechanical parts, connect to hardware for operation

Test, Verification, and Validation

Quant. Success Metrics What/How: Unit test, then integrate
Drinking Waste: Aluminium Cans, Glass, PET

Model accuracy > 90\% (*Fine tune model)
and HDPE bottles
Commonly Mis-Recycled Trash: Plastic bag, utensils, juice jugs

Input / Output

Recycle -> 0
Trash -> 1
100% accuracy of
visual/sound cues (*Replace parts)

Component Outputs (Neopixel, Piezo)

> Swing Door mechanics + servo control
> side servo locks
o->Green, Jingle 1->Red, Buzz
correct bin placement

Time capture, classification, alerts, platform
1+2+1+1 secs

Operation < 5 sec (*Optimize algs)

Project Management

RESEARCH Ideation Abstract Use case requirements Project Proposal Design revisions Design document due

DEVELOPMENT ML model training ML model fine tuning Mechanical part building Hardware setup build CV prototype Validate CV performance Interim Demo prep Interim Demo post demo review cv backend integration hardware build refinements

