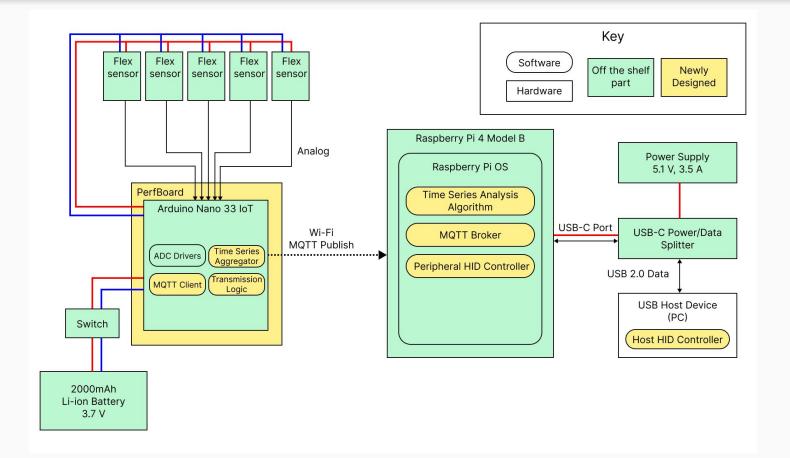
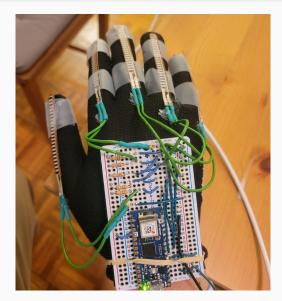
Team A4: TeleTouch

David Hwang, Gram Liu, Xuanye Li

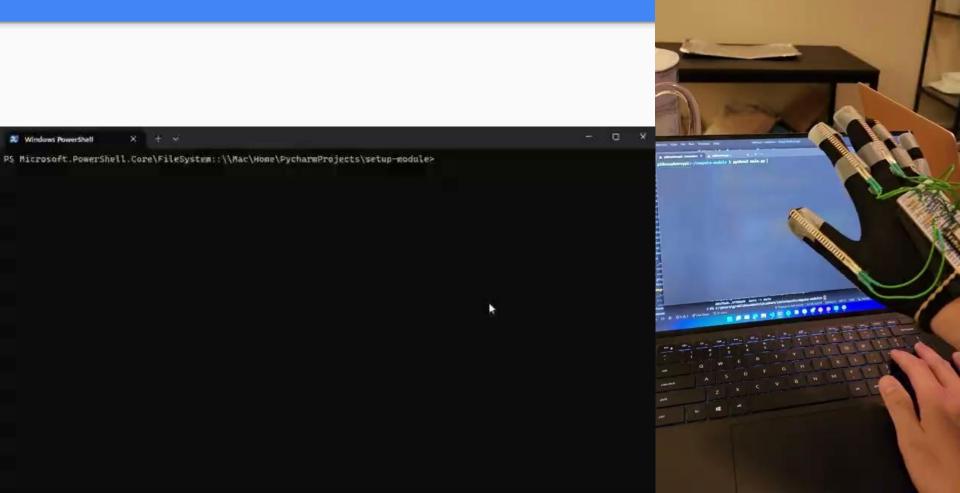
Use Case/Application


- Remotely interact with 3D models using gestures
- Support panning, zooming, and rotating gestures
- Have an on-board battery to last an entire presentation

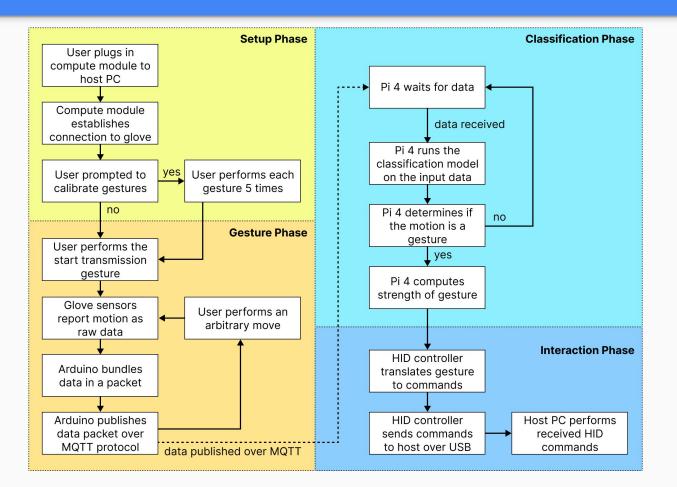
Requirement	Metric
Use sensor data to recognize when user is making gestures	6 gestures (enable/disable transmission, zoom in, zoom out, pan, rotate)
Reliable gesture detection	> 90% gesture recognition accuracy
Smooth user experience when using gesture manipulating objects	Gestures must be recognized and the correct controls should be dispatched to the computer within 1 second
Device should be lightweight and portable	Total mass is at most 1 kg Battery life is up to 1 hour of continuous use
User is able to move freely while using the device	Supports up to 50 m away from the computer


Solution Approach

Complete Solution - Hardware



Compute Module



Glove Module

Complete Solution - Classification

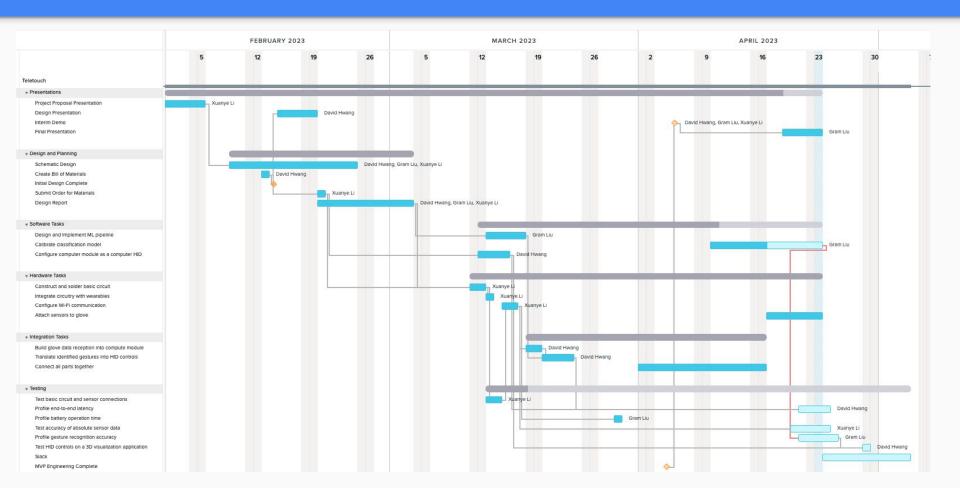
Data Pipeline

Design Changes and Trade-offs

Issue	Solution
CNN-LSTM : Too complex for use case, time frame too short to collect enough training data	Windowed Time Series Analysis : Use simpler ML methods like decision trees. Requires calibration.
Stitching sensors : Does not provide enough tension. Takes too long to stitch, but is more secure.	Use stronger, inelastic adhesives like tape and hot glue
Flex sensor strain: Significant strain on flex sensors with existing wires	Use more flexible wires and secure flex sensors at base
ESP with separate IMU not compact	Use Arduino Nano 33 IoT with WiFi and IMU for all-in-one package. Cheaper
Difficult to pair both glove and compute to same network	Use RPi compute module as an access point. Shorter range.
HID controller needs size of monitor and application information	Determine commands on PC : Configurable to arbitrary set ups and reduces communication cost

Testing, Verification, and Validation - Latency

Measurement	Actual Value
Oscilloscope measurement of Pi 4 GPIO pin and sensor detection output (overall measurement)	~ 112ms
Sensor data collection	~ 100ms
Model classification time	~ 5ms
Wi-Fi transmission delay with ping tests	~ 5ms
Dispatch time	TBD


Original target metric: < 1s total latency Tests were averaged over 20 trials

Testing, Verification, and Validation - Accuracy

Accuracy	Train/test split evaluation	> 90% gesture recognition accuracy	90% for rotation/pan
	Accuracy of dispatched HID	, ,	•
	controls		Other gestures TBD
			Dispatch accuracy TBD

Requirement	Measurement Procedure	Target Metric	Actual Value
Usability	Ease-of-use: User study measuring comfort, setup time, and responsiveness	90% user satisfaction based on survey Setup time < 5 mins	~4 minutes
Portability	Measure weight with a scale.	< 500 g	57g + 34g battery = 91g
Range	Test wireless communication across measured distances	Up to 50 m between glove and compute	10 m
Battery Life	Run glove module with all sensors and communication running and measure total power consumption	up to 1 hour of continuous use	~40 hours

Project Management

