Team A4: TeleTouch

David Hwang, Gram Liu, Xuanye Li

Use Case/Application

- Remotely interact with 3D models using gestures
- Support panning, zooming, and rotating gestures
- Have an on-board battery to last an entire presentation

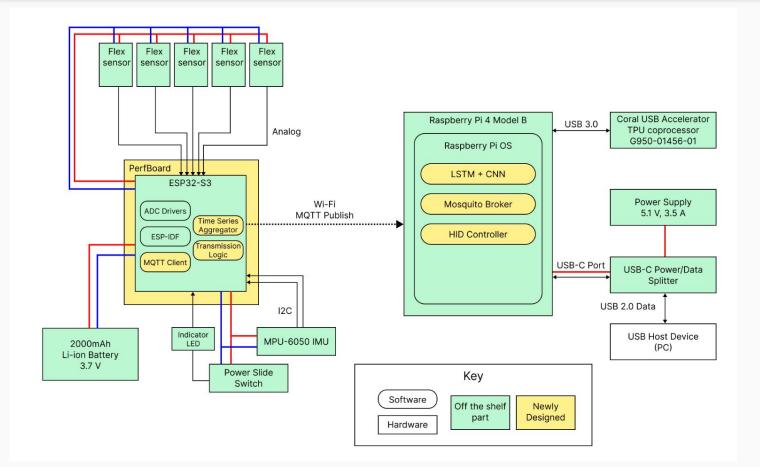
Requirement	Metric
Use sensor data to recognize when user is making gestures	6 gestures (enable/disable transmission, zoom in, zoom out, pan, rotate)
Reliable gesture detection	> 90% gesture recognition accuracy
Smooth user experience when using gesture manipulating objects	Gestures must be recognized and the correct controls should be dispatched to the computer within 1 second
Device should be lightweight and portable	Total mass is at most 1 kg Battery life is up to 1 hour of continuous use
User is able to move freely while using the device	Supports up to 50 m away from the computer

Solution

Two components: glove and compute module

Glove: 5 flex sensors + IMU connected to a Microcontroller

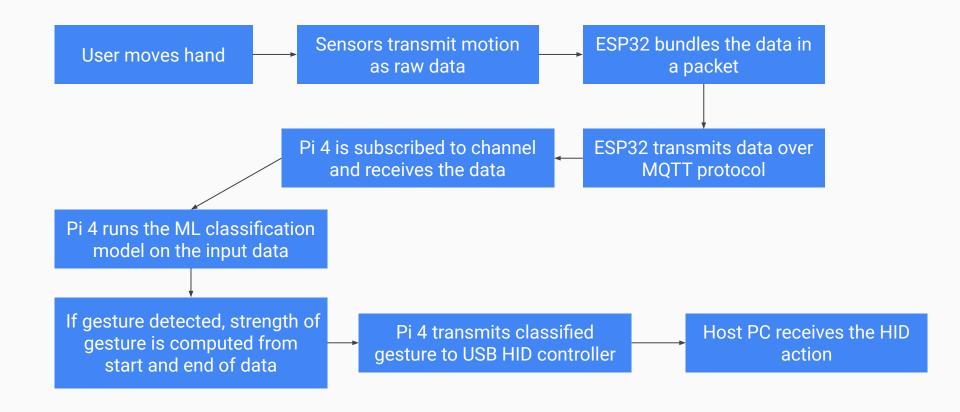
Compute: Single-board computer connected to PC via USB


Gloves are the most portable and accurate choice to collect data.

Addressing this issue will help education which has trickle-down effects on the rest of society.

Chosen parts are also more economical to make the glove more accessible to educators around the world

Block Diagram



Sensors and Hardware Specifications

MCU: ESP32-S3 Supports Wi-Fi and in stock

Single-board Computer: Raspberry Pi 4 (previously Jetson) Support for HID and Wi-Fi Coral TPU to extend compute

Battery: Lithium Ion Battery 3.7V 2000mAh Sensors: Spectra Symbol Flex Sensors IMU: MPU-6050 LED: Adafruit LED Sequin

Gestures

Enable recognition Flex: all increasing Acc: +y Gyro: +x (roll)

Disable recognition Flex: all decreasing Acc: -y Gyro: -x (roll)

Zoom In Flex: Thumb+Index decreasing, other fingers fully flexed Acc - constant Gyro - constant

Zoom Out Flex - All fingers increasing Acc - constant Gyro - constant

Pan Flex: all constant mid Acc: changing x Gyro: constant

Rotate Flex: all constant low mid Acc: constant Gyro: changing yaw

Described in terms of accelerometer, flex sensor, and gyroscope output

Gesture Classification

Lives in the compute module (Raspberry Pi 4)

CNN-LSTM model

- Input: time-series vector (11x1)
- Output: 1 of 6 gestures, confidence level

If a gesture is detected (confidence level above some threshold), strength of the gesture is computed based on start and end points of relevant values

Requirement	Measurement Procedure	Target Metric
Latency	Oscilloscope measurement of Pi 4 GPIO pin and sensor detection output	< 1 second total latency
	Evaluate Model classification time	
	Wi-Fi transmission delay with ping tests	
Accuracy	Train/test split evaluation Accuracy of dispatched HID controls	> 90% gesture recognition accuracy

Requirement	Measurement Procedure	Target Metric
Usability	Ease-of-use: User study measuring comfort, setup time, and responsiveness	90% user satisfaction based on survey Setup time < 5 mins
Portability	Measure weight with a scale.	< 1 kg
Range	Test wireless communication across measured distances	Up to 50 m between glove and compute
Battery Life	Run sensors and Wi-Fi communication on gloves continuously until connection is lost	up to 1 hour of continuous use

Project Management

