

Apple Watch Series 8 (\$399)

Oura Ring Gen 3 (\$299)

Fitbit Luxe (\$199)

Static electronic jewelry (from Neon Cowboys)

HALO-90 open source earrings: uses 90 single-color red 0402 diodes, STM8L151G4 microcontroller, CR2032 coin battery, microphone & button Purple locket by Artefact (prototype): digital locket, connects via BLE, theoretically uses photos from social media (no specs available)

Video pendant: uses ATSAMD21 microcontroller, 0.9" TFT ST7735S screen and LIR1220 battery (8mAh), upload images/gif files by connecting device to computer (no wireless)

Purple locket by Artefact (prototype): digital locket, connects via BLE, theoretically uses photos from social media (no specs available)

Use-Case Requirements: Physical Design

Spec	Requirement	Proposed methods to satisfy requirements					
weight	< 20 g per earring	 Manufacture the earring body from a material with a low density Employ a simplistic design with minimal details Design a hollow earring body, externalize some components to a back-of-ear mounted device (similar to hearing aids) 					
temperature	< 40 C device temperature	 Manufacture jewelry from body-safe metals such as titanium, surgical steel, platinum etc. Coat or plate outside of jewelry in hypoallergenic material Use a biocompatible polymer as an alternative to metal Integrating current-limiting resistance into circuit design 					
material	earring post must be skin-safe, hypoallergenic	 Incorporate features for heat dissipation into the earring casing (i.e. heat sinks, holes etc.) Avoid manufacturing the earring from a conductive material (steel and bronze have the lowest heat conductivity) 					

Use-Case Requirements: Functionality

Spec	Requirement	Proposed methods to satisfy requirements				
update speed	< 1500 ms to update design	 using BLE for data transfer: considering the resolution of the LCD, average image size will be 40-80 kb and BLE data transfer is 1Mbps compressing larger images (within a set range) before sending to device 				
setup time	< 90 s to scan/pair device and set custom pattern	 not using looped scanning to pair device clear, simple UI with preset pattern options easy to use pattern customization interface 				
battery life	3 hr for RGB matrix 45 min for LCD	 design variations to elongate battery life: making the battery external to the earring body to allow for a larger battery (hearing aid type mount) optimizing update functions to use minimum power 				

Technical Challenges

- Physical shape and design of device casing to contain, protect and withstand the operating conditions of all components: controller, sensors, power supply
 - dependent on weight and material constraints
- Careful PCB design to make sure microcontroller, screen, and battery can be integrated within the earring size requirement
 - The size of the earring should be no bigger than the screen itself, all electrical components should be hidden under the screen
- Consistent Bluetooth pairing with user mobile and successful image transmission via BLE
 - impacts speed and usability
- Power-aware hardware and software designs that maximize the battery life
 - Energy consumption should be taken into consideration
- Software algorithms that allow aesthetically pleasing moving patterns
 - Good algorithm design that ensures quick computation of the pixel value update

Solutions Approach: Hardware

- Microcontroller: STM32WB55RGV6
 - Matter connectivity. Has both built-in BLE to communicate with user mobile and SPI peripheral to interface with the screen
- Development Board: P-Nucleo-64
 - ultra-lower power, BLE compatible, easy to program.
 For firmware and software development purposes.
- LED panel: Adafruit DotStar RGB Pixel Matrix
 - 8x8 RGB DotStar pixels, individually addressable
- Screen: Non-Touch Graphic LCD Display Module
 - 128x128 RGB pixels, TFT type
- Button: KXT311LHS
 - low actuation force
- Casing for electronics:
 - 3D printed manufacturing: 316L grade Surgical Steel (Markforged), Silicon (Formlabs)

Solutions Approach: Firmware

- Communication Protocol: BLE (Bluetooth Low-Energy)
 - used in smart watches, smart home light bulbs
 - no IP addressing, designed to use smartphones as the gateway
 - data transfer speed is ~1Mbps
 - Existing libraries: react-native-ble-plx, react-native-ble-manager
 - works with iOS and Android, iOS is simpler, Android has more flexibility
- Interface with screen using SPI peripheral
 - Use the SPI 4-wires peripheral to interface pixel data with AFK128128A0 TFT LCD screen
 - HAL library peripheral driver eases the development and testing of SPI peripheral
 - Saleae logic analyzer for debugging and SPI peripheral driver
- Develop on nucleo development board
 - Use STM32WB55 Nucleo for developing the BLE and SPI firmwares
 - Get the full stack working on nucleo and breadboard first before assembling the actual physical design

Solutions Approach: Software

- Application Platform: iOS 16
 - Meets user needs of convenience and accessibility
- UI/UX: Figma
 - Intuitive views design and cloud sharing across team members
- SDK: SwiftUI
 - Optimised for iOS 16 Development
- Peripheral Interface: Core Bluetooth
 - Inherent Swift framework that enables foreground & background communication with BLE devices
- Data Management: Core Data

Proposed iOS Application User Flow

Testing, Verification and Metrics

Requirement	Testing/Verification Method
Weight	- Beyond weighing the device, we will survey users on the comfort of a heavier earring and measure the length of time it can be worn comfortably
Temperature	 Run the pattern update loop as close as possible to the data transfer limit for the device (~1Mbps so maybe 2-3 times per second for images, more for RGB matrix patterns) and track heat increase from the processor User testing for comfort while the processor is operating at higher speeds
Material	 Provide a sample to several users to ensure the device can be comfortably worn without irritating skin Stress testing: dropping the device, high/low weather temperatures

Testing, Verification and Metrics

Requirement	Testing/Verification Method				
Update Speed	 Timing tests: pre load a series of patterns to user interface end, time the length it takes for device to respond and execute a pattern switch 				
Setup Speed	 Time from opening the app to setting a pattern; includes BLE scanning, pairing, naming device (optional) and rendering the pattern control UI Individually time subprocesses (scanning/pair/UI) to find weaknesses 				
Battery Lif	 Time length of constant usage from full charge or new battery until device dies Time required to charge fully 				

Schedule (Gantt Chart)

Cyber Jewelery	0h	14%							
Project Milestones	8h	48%							
Abstract	3h	100%						 	
Proposal Presentation & Report	6h	100%							
Design Presentation	Oh	0%							
Interim Demo	Oh	0%							
Final Presentation	Oh	0%							
Hardware	Øh	0%							
Research & Planning	Oh	0%							
-> Parts Selection	Ob	0%							
Development and Testing:	Ob	0%							
	Oh	0%							
-> LCD Screen Integration	Ob	0%							
-> PI E Integration	Oh	0%							
PCB:	Ob	0%							
-> Degian & CAD	Oh	0%							
Monufacturing & Accomply	Oh	0%							
Manufacturing a Assembly	UII	0.0							
Embedded Systems	Øh	0%							
Research & Planning:	Oh	0%	 						
> System Architecture Design	Oh	0%							
Module 1: LED Matrix	Oh	0%							
Module 2: LCD Screen	Oh	0%							
Module 3: BLE	Oh	0%							
Module 4: Sensor (IMU)	Oh	0%							
10S App	2h	18%							
Research & Planning;	Oh	30%							
> Identify Existing Designs	1h	100%							
> Design System & UI Component Library	Oh	0%							
> User Flow & Wireframes	1h	50%							
> UML Diagram & Outline MVC Details	Oh	0%							
> Final Screen Views, Components & Navigation Flows	Oh	0%							
Front End Development:	Oh	0%							
> Data Models	Oh	0%							
> Component & Screen Views	Oh	0%							
Back End Development	Oh	0%							
> Implement Bluetooth Connectivity	Oh	0%							
> User Profiles, Database & Secure Login	Oh	0%							
Product Design	2h	33%							
Research & Planning:	2h	100%							
> Identify Existing Designs	10	100%							
> Develop Basic Design Constraints	1h	100%							
Ideation & Testing:	Oh	0%							
> Generate & Evaluate Potential Designs	Oh	0%							
> CAD Prototyping	Oh	0%							
> User Testing & Evaluation	Oh	0%							
> Mechanical Testing	Oh	0%							
Final Development:	Oh	0%							
-> Final Sketch & Engineering Drawing	Ob	0%							
> Final CAD Model	Oh	0%							
-> Manufacture from Final Material	Oh	0%							
		0.0							
Integration	eh	0%							
BLE resting	un	0%							
Component Assembly	Oh	0%							

Task Areas and Division of Labor

Task Area	Madi	Saniya	Shize		
Hardware Design & Assembly			x		
PCB Development			х		
Software: Firmware		x	Х		
Software: iOS Application	x	x			
Software: UI/ UX	x				
Product / Jewellery Design	x	x	х		
Assembly & Testing	x	x	х		
Parts Ordering & Inventory		x			
Gantt Chart & Meeting Notes	X				