
1
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

CyberJewelry
Saniya Singh, Madi Davis & Shize Che

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— Wearable tech has become ubiquitous in the last
few years, but most of the widely available options are focused
on utility: collecting health/fitness data or accessing smartphone
features. These devices have extremely limited customization and
are lacking sufficient avenues for self-expression. Our system
hopes to provide a solution to this in the form of wirelessly
customizable digital jewelry.

Index Terms—BLE, DotStar, UART

I. INTRODUCTION
In the last decade, wearable technology has become

increasingly ubiquitous in our society. Most of the widely
available wearable tech options are focused on providing some
utility such as collecting health data (ie: Fitbit, Oura Ring) or
increasing access to smartphone functions (ie: Apple Watch).
These devices all have limited customization options which do
not provide sufficient avenues for the wearer to express their
individuality. Due to these limitations, there exists a market
for digital wearable technology that exists purely for the sake
of style and self-expression. These bold electronic accessories
used to be reserved for the realms of festival wear and
costuming, but recently they have been slowly entering the
mainstream fashion consciousness. To draw inspiration for our
device, we looked to the electronic jewelry options that are
currently available. The festival wear company Neon
Cowboys has a few electronic accessories in this area such as
their ‘LED Face Jewelry’ and ‘Light-up Bolo Tie’; the former
utilizes single-color LED strips in a few shapes and color
options that are worn directly on the skin using an adhesive
and powered by an external non-rechargeable CR2032 coin
battery, and the latter uses EL wire powered by a large
rechargeable in-line battery pack. We also found an
open-source project called HALO-90 that allows users to
create a sound-responsive earring with a ring of single-color
LEDs controlled by an STM8 and powered by a
non-rechargeable CR2032 coin battery. This device is not
commercially available. None of these devices have color
changing options or wireless control.

With our project, we aim to design a set of digital earrings
that are wirelessly customizable via Bluetooth and an iOS
mobile application. This device would have a variety of use
cases from daily jewelry to clubwear for people who want an
elevated accessory that provides near infinite customization
options. There are very few competing technologies in this
area, and no commercially available products that provide the
features we intend to implement with our system.

II. USE-CASE REQUIREMENTS

From the description of our system and the needs of our
user base, we proceed by introducing the use case
requirements that will guide our design process.
A. PHYSICAL DESIGN

a. Weight
We want our users to be comfortable with the weight of
the device that will be hanging from their earlobe.
Looking at weight constraints for heavier earrings, we’ve
decided on a maximum weight constraint of 20 g per
earring to ensure user comfort.
b. Temperature
We want our users to be comfortable with the temperature
of the device because it will be in close contact with the
user’s skin. Looking at data for human temperature
sensitivity, we’ve decided on a maximum temperature
constraint of 40° C.
c. Material
We want the material that is used for the casing of the
device and the earring post to be skin-safe and
hypoallergenic. For this, we will be using surgical grade
steel for the portions of the earring that will be in direct
contact with the skin.

B. FUNCTIONALITY

a. Update Speed
We want the user to be able to quickly modify the pattern
on the earring without a lot of lagging after pushing the
new design to the earring.
b. Setup Time
We want users to have a quick and painless way to set up
the device. We are using BLE to make the device more
comfortable to wear, but this means the user’s will need to
pair to the device from their iOS device. We would like
the general setup time for the device to come in under 90
seconds for a new user.
c. Battery Life
We want the device to be usable for general eventwear so
we would like to achieve a minimum battery life of 3
hours for the DotStar Matrix and 45 minutes for the LCD
screen versions of the device.

III. CONCEPT OF OPERATION AND SYSTEM ARCHITECTURE

A. CONCEPT OF OPERATION

Our product consists of three primary subsystems: hardware
design, firmware and the mobile application interface . System
composition and Interactions are outlined in Fig . 1.
We designed the concept of operation as follows. The user

initiates interaction with the system via the iOS mobile
application. Upon launching the application, if a device is not
currently connected to the user’s mobile, a function to scan for
peripherals will be executed via the custom
CoreBluetoothBased BLE module. After turning on the

2
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

earring device, the peripheral will begin transmitting
advertising data containing identifiable information via
bluetooth over an advertising interval of 20ms. The mobile
application utilizes a filtering algorithm to detect
UART-enabled “Cyber Jewellery” devices and present them
as a list of connectable wearables on the mobile interface.
After a user selects and connects to a device, the application
will survey the device’s available characteristics and services,
including peripheral address and battery life, and store
relevant information locally as model classes. After
establishing a connection to the device, the application will
launch the Device Info/Home page, which will provide details
about the connected device’s name, brightness, current design
and battery life. A peripheral delegate in the BLE module will
asynchronously prompt updates to the displayed battery and
brightness properties by observing changes to
corresponduy87A

A. BATTERY LIFE
As outlined in our design requirements, our earring
must be lightweight and have durable battery life.
The weight and battery life are two competing factors
because more durable batteries carry heavier weight.
We plan to balance these two competing factors in
designing our firmware and making our choice of
batteries. We want the firmware to configure the
hardware to consume as little energy as possible.
Consideration of the following criteria allowed us to
develop a list of design guidelines.

LED Matrix Brightness
The brightness of the LED matrix is the dominating
factor of the total current draw of the hardware. The
total current draw of the hardware is critical to the
battery life. Without careful consideration, the LED
matrix can draw as much as 2.5A current, which not
only raises the temperature too high but also shortens
the battery life to less than 15 minutes. On the other
hand, a low brightness value provides less color
choices and can have the LED light invisible in a
bright surrounding. After experimenting with
different brightness values, we decided to set the
maximum brightness to 2, which is equivalent to
limiting the RGB values to below 64 (each RGB
value is 255 maximum).

By limiting the brightness to 2, the average current
draw of the LED matrix is 100mA, which results in
an overall average current draw of 120mA. Using 2
as the maximum brightness value results in 64^3
different color choices, and we noticed it’s enough
for the user to create usual colors such as yellow,
aqua, and magenta. In consideration of brightness, we
traded the number of color choices for battery life by
limiting the current draw of the LED matrix.

BLE Polling VS Interrupt
The BLE data can be received via either polling or
interrupt scheme. To further increase the battery life,

we decided to use interrupt. By using the interrupt
scheme, it releases the microcontroller from
executing the BLE data receive function on every
iteration of the loop and thus further reduces the
energy consumption. To enable a hardware triggered
interrupt, we plan to have users click on a push
button to let the microcontroller enter the data
receiving interrupt handler.

Choice of Battery
Since we want the earring to be rechargeable, we
narrowed our scope of battery choice to lithium
batteries. Choosing a battery is essentially a tradeoff
between weight, size, and battery life, and we want to
find the balance between them. We researched the
3.7v lithium batteries provided by Adafruit and found
three choices. The metrics of each battery is
summarized into table 1.

Table I. Battery Options

Capacity
Design Consideration

Dimensions Weight

150mAh 19.75mm x 26.02mm x 3.8mm 4.65g

350mAh 32.5mm x 25mm x 5mm 7g

500mAh 29mm x 36mm x 4.75mm 10.5g

From the capacity column of table 1, we can infer the
battery life achievable by each of these three
batteries. We designed the overall system current
draw to be no greater than 120mA, so both 350mAh
and 500mAh batteries satisfy the three hour
threshold. However, using the 500mAh battery will
cause a total weight of more than 20g and the size of
it doesn’t fit well with the dimensions of Feather M0,
so we choose the 350mAh battery as the default
battery. Additionally, considering some users may
prefer a lighter and more elegant earring and are
willing to accept a shorter battery life, we are actively
working on a different design that uses the 150mAh
battery.

IV. SYSTEM IMPLEMENTATION

A. Hardware
We built two versions of hardware, the first version serves

as our MVP and the second version has additionally a power
switch and an interrupt push button included.

Version 1
In this first version, we locate the LED matrix on the front

and the battery on the back. The Feather M0 is located in the
middle. To power and drive the LED matrix, there are four
connections we need to make: 3v, GND, SPI clock pin, and
SPI data pin. To minimize the thickness, the connections are
made by soldering the pins closely together. Fig 5 shows the
locations of the Feather M0 and the LED Matrix.

3
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

Fig. 5. Feather M0 and Matrix LED pin locations

To stabilize the LED matrix, instead of using LED matrix pins
on one single side, we use pins from both sides. Specifically,
we connect the +5v on LED matrix to the 3v pin on the
Feather M0, and we connect the GND pin on the bottom to the
GND on Feather M0. We also connect the CIN, and DIN pins
to Feather M0 pin 5 and 6, and use pin 5 and 6 as the SPI
clock and data pin. By using these pin connections, the matrix
has a stable connection to the Feather board. Fig 6 shows the
actual physical connections.

Fig. 6. Soldered Connections on Both Sides

There is a discrepancy between the voltage provided by the
Feather and voltage required by the LED matrix. The LED
matrix requires 5v on all pins. However, in practice, we were
able to get it working perfectly using 3v power supply and
3.3v on SPI clock and data. The soldered connections are
demonstrated in Fig 6.

As demonstrated in Fig 6, the battery connects to the Feather
M0 to supply power to the system. We are using a 3.7v
350mAh lithium battery. The battery is rechargeable and can
be easily charged by simply plugging the Feather M0 to a
micro USB. The overall dimension of the earring is 51mm x
25.4mm with a thickness of 1 cm including the battery.

Version 2
In this second version of the hardware, we added in two more
functionalities on top of the first version: power switch, and
interrupt push button. The first version has the battery

connected directly to the system, so it lacks a way for users to
turn it on and off. In this second version, we introduce a
switch in between so that users can power it off when not
using. The switch and battery are connected on a solder board.
In addition, as discussed in the battery section of tradeoff
studies, we plan to use an interrupt scheme for receiving BLE
data, hence it’s necessary to include a push button to trigger
the interrupt. We plan to connect the push button with battery
and pin on the same solder board that connects the switch and
the battery. Both the switch and push button will be taped to
the back of the Feather M0.

Fig . 7. Diagram of Hardware Version 2

The second version also has a new design for connection.
Instead of connecting the two components using soldered
wires, we use a set of short female headers to build the
connection. Using short female headers increases the thickness
but has more reliability. The SPI clock and data pins on the
second version are pin 5 and 6. See Fig 7, 8 and 9 the newly
modified connections of hardware version 2.

Fig . 8. Testing with Hardware Version 2

By shortening the wires to suitable length, we can hide the
battery in between the Feather M0 board and the LED matrix.
Fig 8 shows the front and side views of a fully integrated
hardware version 2.

4
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

Fig. 9. Front and Side Views of Hardware Version 2

B. Firmware
The firmware is coded using Arduino. We used Adafruit’s
BLE and DotStarMatrix libraries to interface with the BLE
module and LED matrix. Similar to hardware, we
implemented two versions of the firmware. The first version is
for interacting with our customized software, and the second
version is for using Adafruit’s Bluefruit Connect App. The
two versions differ mainly in how LED pixels are updated and
the implementation of moving patterns.

Version 1
The first version of the firmware is designed for interacting
with our customized iOS App. In our customized iOS App,
BLE data is sent using hex strings. For example, if the RGB
values of a pixel are 255, 255, 255, the App will send the
string “0xff0xff0xff” (each RGB value is 1 byte). The
firmware receives and parses this string into its corresponding
RGB values and sets the pixel value.
In this version, the LED matrix is updated only after
receiving the entire RGB values for all 64 pixels. This is in
correspondence with our software design where users first
design the whole matrix and then click send. As a result, users
won’t be able to see single pixel updates as they set single
pixel color on the App.
Independent moving pattern is implemented in this version.
To design a moving pattern, users first create 5 designs in the
App. These 5 designs are used as “frames” and are sent to the
firmware after the design is finalized. The data for all five
frames are sent sequentially (frame1 followed by frame2 and
so on). After receiving the data, the firmware processes them
into RGB values, chunks it into 5 frames, and saves them.
Then the firmware displays the saved frames sequentially
(frame1 followed by frame2 and so on) with 500ms delay in
between. This moving pattern gives users the flexibility to
create any 5-frame moving pattern they want.

Version 2
The second version of the firmware is designed for
interacting with Adafruit’s Bluefruit Connect App. This App is
freely available on the App Store, so anyone who comes to our

demo can download the App and try interacting with our
earring on their phone.
Adafruit’s App works differently, and every BLE data it
sends starts with a command character defining what it
expects the firmware to do. Table 2 summarizes the command
characters and the data following them. For our application
specifically, some commands are unnecessary, and they are
“not implemented” in the table.

Table II. Adafruit BLE Commands

Command
Character

Data Following the Command
Character

Expected Firmware
Behavior

‘V’ Not Implemented n.a.

‘S’ Not implemented n.a.

‘C’ uint8_t r, uint_t g, uint8_t b Set RGB values of all
pixels to {r, g, b}

‘B’ Not implemented n.a.

‘P’ uint8_t x, uint8_t y,
uint8_t r, uint8_t g, uint8_t b

Set RGB value of pixel
(x, y) to {r, g, b}

In correspondence with Adafruit’s Bluefruit Connect App,
the firmware reads the command character and data provided
in table 2 and performs expected behavior. If the command is
successfully executed, the firmware sends “OK” to the App.
Using the ‘P’ (set pixel) command, users are able to see single
pixel updates as they design the pattern.
This version of firmware implements dependent moving
patterns. Dependent moving patterns can have the current
pattern move up/down/left/right and rotate
clockwise/counterclockwise. To implement dependent moving
patterns, we extended the command characters to let users
define the way they want the pattern to move. Table 3
summarizes the extended command characters for moving
pattern definition.

Table III. Moving Pattern Commands

Command Character Moving Pattern Definition

‘^’ Move Up

‘-’ Move Down

‘<’ Move Left

‘>’ Move Right

‘l’ Rotate Left

‘r’ Rotate Right

‘.’ Stay Still

The moving pattern commands are sent via the UART
interface provided by the Adafruit App for users to move the

5
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

current pattern. The firmware computes the next frame based
on the current frame and delays for 500ms to display the next
frame. To avoid unnecessary usage of dynamic memory, all
next frames are computed in-place.

C. Mobile Application
The Mobile Application interface can be segmented into three
user flows, as documented in Appendix A: User Setup and
Design Selection. Design Editing and Design Upload & Save.

User Flow 1: User Setup - After Launching the application,
users will be directed to a “Bluetooth Connection” page.
Landing on this page will direct an instance of
CoreBluetooth’s CBCentralManager to scan for nearby
peripheral devices. Detected devices will appear on the bottom
of the screen as a list of card style buttons detailing the device
name and type (LED or LCD). When a user selects their
desired device from the available options, “Device Home” will
be loaded in the application.
This Home Screen will display a summary of device
information including an image of the device, device name,
the current battery life, the current uploaded design and a
slider control top adjust the overall display brightness. A
button in the top right hand corner of the screen will enable
the user to toggle the device’s bluetooth on and off. The home
page will be the same for both types of device. Using the
toolbar at the bottom of the screen allows the user to Navigate
to the “Design Library” where they will be able to choose an
existing design to upload to the device from a scrollable list of
options, via a search bar. Alternatively Users may choose to
create a new design by selecting the button in the top right
corner of the screen view. Both options will prompt the
application to navigate to the “Design Edit” page.

User Flow 2: Design Creation - The type of peripheral device
connected will dictate the “Design Edit” display and
subsequent functionalities.
If the device features an LCD Screen Display, the “Design
Edit” page will consist of a preview of the design rendered on
stylised representation of the device. A control menu at the
bottom of the screen will provide users with two options to
customize their design. Selecting the “Visual” Tab of the menu
will allow the user to upload files in the format of .jpg, .png
and .gif. Selecting multiple files will display each visual as a
slideshow, with a default display time of 10 seconds per image
and a default transition length of 500ms. Controls in the
“Motion” tab will allow the user to adjust slideshow
parameters. The”Transition Length”slider will change the
transition time between visuals (from 0 to 1000ms) and the
“Event Length” slider will alter the amount of time each visual
is displayed (from 0 to 30 seconds).
If the device has an LED Screen Display, the “Design Edit”
Screen will feature an touch-interactive model of the 8x8
matrix in the center of the page. The user can tap on one or
more of the 64 graphical representations to edit display
properties of the corresponding LED units on the device.
Selecting the “Hue” tab from the control menu allows the
color and brightness of the LED(s) to be adjusted using 2

separate slider controls. Selecting the “Motion” tab allows the
user to animate a single or group of LED(s). Animation can be
customized by selecting custom preset animations (E.g. blink,
fade, pulse etc.) or setting custom values for the Event Length
(length of time an LED is on/off) and Transition length via
slider widgets.
Selecting the Reset button in the top left hand corner of both
views will; reset the design back to its last saved state.

User Flow 3: Design Upload and Save
Selecting the button in the top right corner of the “Design Edit
Page” will save the current design and upload the device to the
design.

V. TESTING, VERIFICATION AND VALIDATION

A. HARDWARE DESIGN & FIRMWARE

STM32WB55RG System
Before switching to using the Adafruit Feather M0 board for
our system implementation, we spent a significant amount of
time working with the STM32 interface and developing a
custom PCB for that design. We selected the STM32WB55
model microcontroller and began developing our firmware
with the P-Nucleo development board. This microcontroller
was selected for versatility and computation power as well as
the wireless and BLE capabilities. The plan was to develop
basic firmware and create a matrix control library with the
P-Nucleo board, then transfer the firmware code to the
STM32WB microcontroller on a PCB with the same footprint
as the LED matrix. With the PCB, our device would have a
much sleeker form factor. Using the development board as a
reference, we designed the following schematic for our custom
PCB.

Fig . 10. Overview of PCB Schematic
The design intentionally accounts for various possible
modifications to the hardware circuit; there is a battery bracket
for a mounted CR2032 coin battery and an optional jumper for
Li-Po batteries. This schematic also includes special circuits to
specifically accommodate the STLINK programming interface
for the STM32 as shown in Fig. 11.

6
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

Fig . 11. STLINK Circuitry for Custom PCB
The most vital aspect of designing our PCB was to correctly
implement the RF circuitry that supported the STM32WB
microcontroller’s wireless and Bluetooth capabilities.

Fig . 12. RF Circuitry for PCB

Several components for the RF circuit were designed to
exactly match the inductor, capacitors and bandpass filter used
on the development board to ensure correct operation. The
board was also equipped with an onboard trace antenna (see
Fig. 13) for which there are no existing CAD components.
Several other components required for the operation of our
microcontroller did not have publicly available schematic
symbols or 2D models. Due to this, we designed a library of
custom CAD components, including a Schottky diode, both
oscillators and the RF trace antenna.

Fig . 13. Trace Antenna on the P-Nucleo Board [1][2]

A few iterations of the PCB antenna were developed, each
using the design specifications shown in Fig. 13.

Fig . 14. Trace Antenna, First Version
In the first version (Fig. 14), we approximated the design
specs of the trace antenna using PCB pads in Fusion 360.

Fig . 15. Trace Antenna, Final Version
In the final version (Fig. 15), the antenna is designed with the
exact measurements shown in Fig. 13 and connected to the
impedance matching circuitry via a single connective pad.
Once completed, the antenna was added to the schematic and
layout for our custom PCB. The final component and
schematic symbol for the trace antenna are shown in Figures
16 and 17.

Fig . 16. Antenna and RF Circuitry for PCB

Fig . 17. Custom antenna component

7
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

Many other components were designed for our custom PCB in
this fashion. Additional details about the custom design of
one of the oscillators is provided.

Fig . 18. Specification for NX2016_32M oscillator[3]

Fig . 19. Schematic symbol for oscillator

Fig . 20. 2D Layout (left) for NX2016_32M
Fig . 21. Library component (right) for NX2016_32M

Unfortunately, due to supply chain issues, we were unable to
procure some of the circuit components required to fabricate
the PCB for our system. Since the components missing were
essential to the RF circuitry, we decided to shift our focus and
begin developing with the Feather M0 board.

Feather M0 System

Results for Design Specification A1 - Display Update Latency
We measure the display update latency using the Saleae logic
analyzer. The latency between data reception and display is

caused by data parsing. Therefore, we wrap the data parsing
section of the code with digitalWrite(pin, HIGH) and
digitalWrite(pin, LOW) to indicate the time elapsed executing
them during a design upload. The following Fig 20 shows the
timing result.

Fig. 20. Display Update Latency Timing Result

As shown in Fig 20, the latency between data reception and
display update is 25.53ms, which is faster than the 500 ms
display update latency requirement.

Design Specification A2 - Battery Life
We measure the total battery life in two ways. The first way
is a theoretical estimation using measured current draw. As in
the tradeoff studies section, we designed our system to have an
average current draw of 120mAh. Using a fully charged
350mAh battery, the battery life should be 2.91 hours.
We also conducted a battery life experiment where we put the
LED matrix into an average power state—half pixels display
white and half pixels display blue. We chose this state because
white is the color that consumes the most energy and blue is a
color that consumes relatively less energy. Then we let the
system display a rotation moving pattern, which we assume is
a typical use case. Under such operating conditions, the LED
matrix kept lighting for more than 3 hours. However, we
noticed the color starts to dim after 2 hours and 30 minutes.
This is expected because a lithium battery’s voltage starts
dropping when it approaches the end of battery life. Fig 21
shows the voltage of a 3.7v lithium battery tested using a 18Ω
resistor. We noticed the same behavior in our battery life
testing.

8
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

Fig. 21. Lithium Battery Voltage Decays with Time

Design Specification A3 - Temperature
To measure a representative operating temperature, we use the
same operation condition as in the battery life test. After the
system operated for 1 hour, we measured the temperature
using a thermometer. The measured temperature is 38.3℃.

B. MOBILE APPLICATION INTERFACE

Results for Design Specification B1 - Pairing Time
To evaluate the ability of our system to effectively discover
and connect to the Adafruit Feather Device, we developed a
test module to stress evaluate the ability of our BLE module to
scan for and connect to peripherals. We ran 20 trials on three
different Feather M0 peripherals to check if our design
requirement of a minimum discovery window of 5000ms and
connection window of 50ms was met. We found that on all
trials, the peripheral was discovered within 500ms after the
startScan() function was invoked. Additionally, the connection
design requirement was also met 100% of the time.

Results for Design Specification B2 - BLE Connection Range
We evaluated the connection range of the device by testing the
ability of the application to discover and connect to the feather
M0 from an increasing range of horizontal distances, up to our
specified maximum of 5m.

TABLE IV. BLE CONNECTION TEST RESULTS

Distance (m) Discovered? Connected? RSSI (db)

0 Yes Yes -30

0.5 Yes Yes -57

1 Yes Yes -82

1.5 Yes Yes -77

2 Yes Yes -92

2.5 Yes Yes -84

3 Yes Yes -88

3.5 Yes Yes -87

4 Yes Yes -96

4.5 Yes Yes -93

5 Yes Yes -85

The results displayed in Table 4 demonstrate that the system
sufficiently meets the specified BLE connection range of 5m.
Moreover, the recorded RSSI values indicate the BLE signal
power strength is largest within a range of 0 to 1.5, which
suffices for the device’s intended use of the variable. To
further explore the connectivity range beyond the results
displayed above, we ran additional testing to explore the
maximum range of connection. We found that the mobile
application could successfully detect and connect to the
feather device up to 20 m ± 0.5m, although the pairing time
increased with distance, for distances greater than 15m.

C. USE-CASE REQUIREMENTS

Weight
The weight is measured using a weight scale. The measured
weight is 20g

Material
The components that can contact users’ skin are the LED
matrix, the Feather M0 board, or the battery, all of which are
skin-safe. Additionally, the maximum voltage in the entire is
3.7v, which is also safe.

Sturdiness
We conducted preliminary sturdiness tests on both versions of
hardware by shaking them in the air, dropping them on tables,
and exerting pressure on them, and the hardwares still
functions correctly.

VI. PROJECT MANAGEMENT

A. Schedule
The schedule was changed due to the change of hardware

design. We put together hardware and firmware version 1
before the final presentation. After the final presentation, we
are putting together the software with hardware and firmware
version 2. At the end of the semester, we are all working on
the version 2 hardware and software together. Fig 22 shows
the updated schedule after the design report.

B. Team Member Responsibilities

Shize Che is responsible for developing the firmware for both
of the systems that were tested (STM32 and Feather M0). This
includes interfacing with the LED matrix and transmitting
serial data to control the patterns on the device. He is also
responsible for assembling the initial hardware versions for
the earring device.

9
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

Madi Davis is primarily responsible for the Mobile
Application Interface section of the project. This will entail
designing the application functionality and UI/UX, front-end
development and implementing modules for data storage and
BLE Communication. She is also responsible for overseeing
integration and working on the first iteration of the CAD
model for the device enclosure

Saniya Singh is responsible for the PCB, as well as some
firmware and BLE-related software. Developing the custom
PCB for the STM32 version of the system involved creating a
custom library of components. She is also responsible for
assembling the final hardware design for the earring.

C. Bill of Materials and Budget

Part Manufacturer # Cost

Nucleo Dev Board for STM32WB55 Digikey 2 $83

LCD Screen Digikey 1 $38

DotStar LED Pixel Matrix Adafruit 5 $150

Feather M0 Board Adafruit 4 $120

Switch Adafruit 5 $10

Short Female Header Adafruit 5 $10

150mAh 3.7v Lithium Battery Adafruit 2 $9

350mAh 3.7v Lithium Battery Adafruit 2 $11

500mAh 5v Lithium Battery Adafruit 2 $20

D. Risk Management
Two risks have happened since the design report. First, we
weren't able to design our own PCB and second, we
experienced a significant challenge and delay in integrating
the hardware and software. We managed the PCB risk by
redesigning the hardware using a commercially available
microcontroller board. By using the commercially available
Feather M0 board, we comprised the size and weight of the
earring and mitigated the developing difficulty of the PCB.
Also, there were misconceptions about how the data is
transferred from the software to the hardware which caused
the delay on system integration. We successfully managed this
risk by having the team members communicate and work
together more frequently towards the end of the semester.

Fig. 22. Schedule Update After Design Report

VII. ETHICAL ISSUES
There are two main ethical concerns in this project. First,

people other than the user may find and connect to the device.
Second, users may display hostile patterns that are
inappropriate for certain groups.
We specifically addressed the first ethical concern in

firmware. To enable the display functionality of the earring,
the user has to first send a password. The password is
provided by us and only known to the user. Without sending
the correct password first, the firmware will ignore any
incoming data.
It’s harder to address the second ethical problem. A way we

thought about is to include a machine learning model in the
iOS App to recognize inappropriate patterns and avoid
sending it to the earring.

VIII. RELATED WORK

There’s a handful of other projects we found that provided
similar capabilities to what we want to achieve with our
device. The first and the simplest is the HALO-90 open-source
earrings project. The HALO-90 earrings use a ring of
single-color LEDs on a custom PCB for their design. The PCB
contains a STM8L series microcontroller and an onboard
battery. The device must be programmed over a wired
connection and the earrings react to music. There is one more
open source project that we found relevant to our work as it
uses the same LED matrix component for a similar
application. The project is titled DotStar Fortune Necklace: it
is a digital necklace that uses another Adafruit component for
Bluetooth connectivity and a large 3.7 V Lithium Polymer
battery that are encased in a large rectangle that hangs at the
back of the neck while the matrices acts as the necklace
pendant and hangs at the front connected by a wire.

IX. SUMMARY

The project met all the design and use-case requirements.

10
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

However, due to the fact that we replaced the PCB with
Feather M0, we compromised the size and weight. The size
was not originally in the design requirements but having a
PCB that fits together with the LED matrix creates a more
graceful design.

A. Future work
There’s potentially more work to be done on this project.

Specifically, Shize plans to continue expanding the project by
using our custom PCB design with the STM32WB55. The
STM32WB55 microcontroller is faster in both BLE and serial
communications. Also, we didn’t get a chance to try using the
LCD screen, and Shize plans to look into the possibility of
implementing the screen.

B. Lessons Learned
We were more on the optimistic side of building a Bluetooth

PCB. As discussed in the test and validation section, designing
a Bluetooth PCB is harder than a regular PCB and requires
more experience than we have. Furthermore, our project
experienced a delay in integration, which was caused by
miscommunication between team members. A lesson from it
is we should always communicate more with this team and
make sure we settle on how the system is integrated before we
proceed to working on our own parts.

GLOSSARY OF ACRONYMS

BLE – Bluetooth Low Energy
CB - CoreBluetooth
GATT - Generic Attribute Profile
PCB - Printed Circuit Board
UART - Universal Asynchronous Receiver/Transmitter

REFERENCES

[1] STMicroelectronics, “Bluetooth® Low Energy and 802.15.4 Nucleo
pack based on STM32WB Series microcontrollers,” UM2435 User
Manual, Jan. 2018 [Revised Apr. 2019].

[2] STMicroelectronics, “Low cost PCB antenna for 2.4 GHz radio:
meander design for STM32WB Series,” AN5129 Application note User
Manual, Jan. 2018 [Revised Apr. 2019].

[3] NDK, “Specification of Quartz Crystal Units,”
NX2016SA-32M-EXS00A-CS06465 datasheet, Mar. 2018.

[4] P. Taylor et.al, “Battery Power Comparison to Charge Medical Devices
in Developing Countries”, in Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 2009.

[5] u/Cummins_B, et al. "CoreBluetooth with SwiftUI." Reddit, 2021,
https://www.reddit.com/r/SwiftUI/comments/za3o2i/corebluetooth_with
_swiftui/.

[6] Novichkov, Artem. "Bluetooth and SwiftUI." Artem Novichkov, 2021,
https://blog.artemnovichkov.com/bluetooth-and-swiftui.

[7] Ito, Kazuya. "CoreBluetoothViewModel.swift." GitHub, 2021,
https://github.com/Kazuya-Ito-B/iOS-SwiftUI-BLE-Project/blob/main/S
wiftUI-BLE-Project/ViewModel/CoreBluetooth/CoreBluetoothViewMo
del.swift.

[8] Belanger, Jordan. "CBUUIDConvertible.swift." GitHub, 2017,
https://github.com/jordanebelanger/SwiftyBluetooth/blob/master/Source
s/CBUUIDConvertible.swift.

[9] Mazzini, Federico. "CBTransport.swift." GitHub, 2019,
https://github.com/federicomazzini/BLETemplate/blob/master/BLEThin
g/BLE/Provider/CBTransport.swift.

[10] Nordic Semiconductor. "CBMPeripheral." IOS-CoreBluetooth-Mock,
2021,
https://github.com/NordicSemiconductor/IOS-CoreBluetooth-Mock/blob
/main/CoreBluetoothMock/Documentation.docc/CBMPeripheral.md.

[11] Appcoda. "Core Bluetooth Programming Guide for iOS." Appcoda,
2021, https://www.appcoda.com/core-bluetooth/.

[12] Adafruit. "Build a Bluetooth App Using Swift 5." Adafruit, 2021,
https://cdn-learn.adafruit.com/downloads/pdf/build-a-bluetooth-app-usin
g-swift-5.pdf.

APPENDIX I - MOBILE APPLICATIONWIREFLOW DIAGRAMS

https://www.reddit.com/r/SwiftUI/comments/za3o2i/corebluetooth_with_swiftui/
https://www.reddit.com/r/SwiftUI/comments/za3o2i/corebluetooth_with_swiftui/
https://blog.artemnovichkov.com/bluetooth-and-swiftui
https://github.com/Kazuya-Ito-B/iOS-SwiftUI-BLE-Project/blob/main/SwiftUI-BLE-Project/ViewModel/CoreBluetooth/CoreBluetoothViewModel.swift
https://github.com/Kazuya-Ito-B/iOS-SwiftUI-BLE-Project/blob/main/SwiftUI-BLE-Project/ViewModel/CoreBluetooth/CoreBluetoothViewModel.swift
https://github.com/Kazuya-Ito-B/iOS-SwiftUI-BLE-Project/blob/main/SwiftUI-BLE-Project/ViewModel/CoreBluetooth/CoreBluetoothViewModel.swift
https://github.com/jordanebelanger/SwiftyBluetooth/blob/master/Sources/CBUUIDConvertible.swift
https://github.com/jordanebelanger/SwiftyBluetooth/blob/master/Sources/CBUUIDConvertible.swift
https://github.com/federicomazzini/BLETemplate/blob/master/BLEThing/BLE/Provider/CBTransport.swift
https://github.com/federicomazzini/BLETemplate/blob/master/BLEThing/BLE/Provider/CBTransport.swift
https://github.com/NordicSemiconductor/IOS-CoreBluetooth-Mock/blob/main/CoreBluetoothMock/Documentation.docc/CBMPeripheral.md
https://github.com/NordicSemiconductor/IOS-CoreBluetooth-Mock/blob/main/CoreBluetoothMock/Documentation.docc/CBMPeripheral.md
https://www.appcoda.com/core-bluetooth/
https://cdn-learn.adafruit.com/downloads/pdf/build-a-bluetooth-app-using-swift-5.pdf
https://cdn-learn.adafruit.com/downloads/pdf/build-a-bluetooth-app-using-swift-5.pdf

11
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

12
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

13
18-500 Final Project Report: Team A2: CyberJewelry 05/05/2023

