Use Case/Application

HALO-90 open source earrings: uses 90 single-color red 0402 diodes, STM8L151G4 microcontroller, CR2032 coin battery, microphone & button Purple locket by Artefact (prototype): digital locket, connects via BLE, theoretically uses photos from social media (no specs available)

Quantitative Design Requirements

Physical Design

Functionality

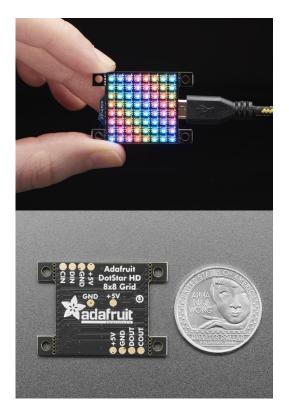
Spec	Requirement	Spec	Requirement	
weight	< 20 g per earring	update speed	< 1500 ms to update design	
temperature	< 40 C device temperature	setup time	< 90 s to scan/pair device and set custom pattern	
material	earring post must be skin-safe, hypoallergenic	battery life	3 hr for RGB matrix 45 min for LCD	

Solution Approach

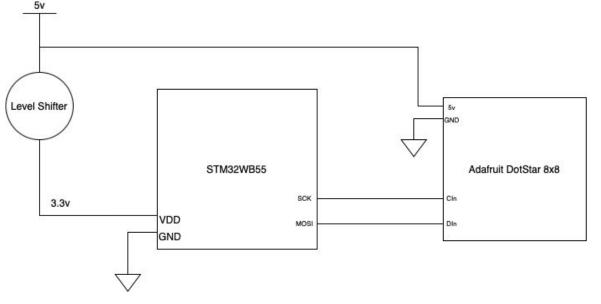
We aim to develop a highly customisable and aesthetic driven wearable for **fashion forward** individuals **aged 18-35** seeking new avenues of self expression

The wearables market is expected to reach \$USD 186.1 billion by 2030

There is a global shift in the fashion industry towards digitisation



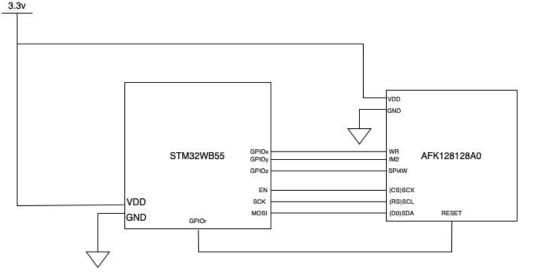
Our adaptable fashion solution promotes sustainability via reduced consumption

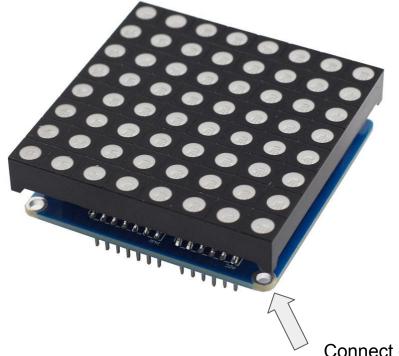


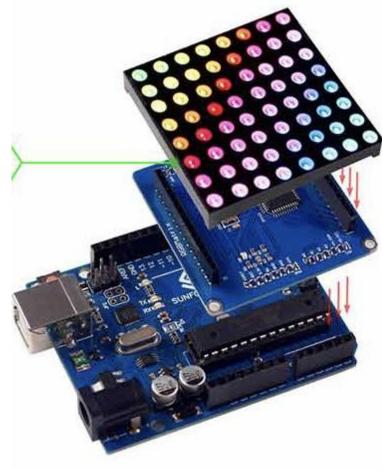
Younger consumers trend towards fashion that enables personalisation

System Specification/Block Diagram: MVP (LED Matrix)

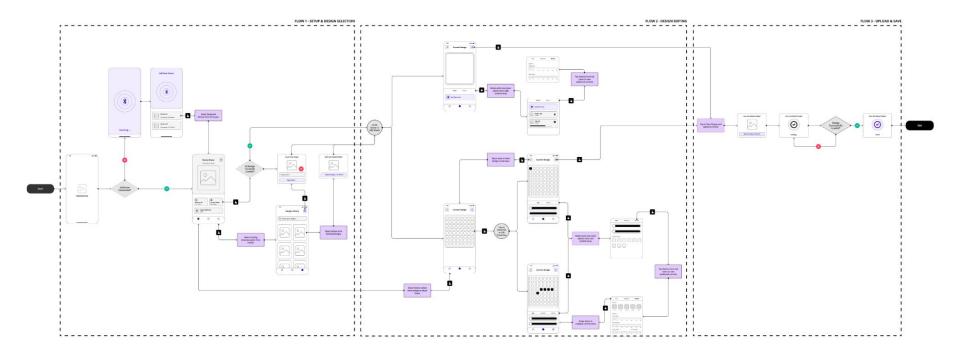
Size: 25.4mm x 25.4mm Update rate: 400HZ Easy to set up: Only needs two IO pins Each LED: 24 bits RGB values (8 bits for R, G, B) Potential violation of temperature requirement: small board Remedy: Cap all the RGB values to 128

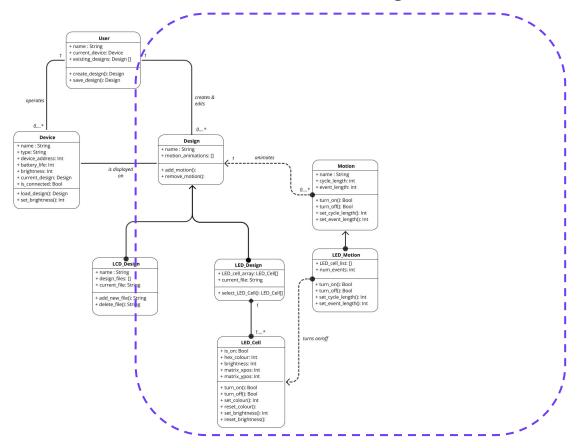

System Specification/Block Diagram: Final (Screen)


Size: 30mm x 35mm x 2.6mm


Connection: Full 3-line SPI peripheral (SCX, SCL, SDA)

Better Resolution: 128x128 pixels, allow image update


Physical Design



Connect earring here

System Specification/Block Diagram: iOS UI/UX

System Specification: iOS Class Diagram

Implementation Plan

Copying: STM32WB55 PCB Schematic (SnapEDA) AFK128128A0-1.44N6NTM PCB Schematic (SnapEAD) Adafruit DotStar 8x8 RGB LED Matrix PCB Schematic (Github)

Downloading: STM32W HAL Peripheral Library (Github) CircuitPython Libraries (Github)

Developing on our own: Customized PCBs BLE and SPI Firmware User App (iOS) Bare-metal Embedded Software

Testing, Verification and Metrics

Spec	Requirement	Testing/Verification Method
Weight	< 20g	Use a scale
Temperature	< 40 degrees	Run the device for 40 min and record maximum temperature reached
Update Speed	< 1500ms	 Update speed and be inferred from SPI peripheral clock frequency Measure the update speed and make sure it's < 1500ms
Setup Time	< 90 s to scan/pair device and set custom pattern	Run scan/pair experiment 10 times and record the average latency
Battery Life	3 hr for RGB matrix 45 min for LCD	Put the device in real-life scenario and record the battery life

We also plan to collect user feedback by letting them wear the device and fill out a survey to estimate overall user satisfaction

Risk factors and unknowns

Risks:

- PCB not working as expected
 - Parallel development. We believe developing the system prototype and PCB at the same time can save time and guide our PCB design
- Can't get BLE to work
 - On the hardware side, we can consult peripheral code provided by ST from cubeIDE.
 - On the user side, we can first develop a Python bluetooth script

Upcoming Tasks: Hardware		Shize	Saniya				
Writing the basic interface to interact with the DotStar Matrix							
Creating the second level of functions: static preset patterns, selective color changes, color shifts along the spectrum, simple moving patterns							
Download generic BLE driver code onto STM32 and customize for our application (configure IO for our devices)							
Receive single-color signal over BLE							
Design encoding schema for complex pattern data (setting all 64 pixels)							
Upcoming Tasks: Software							
Create bare bones Swift app: single-color selection interface for entire matrix, if time: individual pixel color selection							
Integrate Swift Core BLE and configure STM32 connection							
Use BLE data transfer to transmit single-color selection signals over Bluetooth to device							
Add preset pattern options and encode pattern data as decided to transmit to STM32							