
1
18-500 Final Project Report: Team A1 May 03/2023

Multi-room Space Heater
System

Your names and affiliation: Eric Menq, Jie Sun, Rong
Feng Ye

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— Many students who live off campus in old Pittsburgh
houses struggle with a viable and flexible heating system that can
cater to the preferences of multiple tenants. In our project, we provide
a solution for these students by creating a remote controlled space
heating system that is managed by a web application. Our system
dynamically controls the temperature across different areas in a house
via space heaters located throughout multiple rooms. Our system
uses infrared and motion sensors to monitor occupancy and regulate
temperature levels to effectively limit energy waste and circuit
overload. The listed functionalities and preferences can be easily
controlled by the user through our web application that is hosted on a
HTTP Apache Web Server on an AWS EC2 instance.

Index Terms
Personal space - A room or a chunk of occupied space around 100

square feet.
Infrared Motion Sensors - Motion detectors that detect moving

humans using thermal heat.
Smart Plugs - Wifi smart plugs that can remotely turn the power on

or off.
Temperature sensor - A smart thermometer capable of sending

temperature data through IOT.

I. INTRODUCTION
As students who have lived in old off campus houses

with multiple roommates throughout the past three years, we
have noticed many challenges and problems that arise from
this common living situation. One of the major issues in these
houses during the frigid Pittsburgh winter time is the presence
of a safe, reliable, and flexible heating system that can cater
the varying temperature preferences of multiple tenants. Many
of these Pittsburgh houses are very old, therefore lack proper
insulation along with a dependable thermostat system. As a
result, students have resorted to using space heaters, but their
combined power wattages often lead to very expensive energy
bills and breaker shut downs. Although this seems like a
troubling issue for college tenants, rental demand for these off
campus houses is relatively inelastic, allowing for landlords to
continuously profit year to year without renovating these
houses. Therefore, we hope to solve this problem for college
students by creating a multi-room space heater system that is
financially conscious, safe, and flexible to the varying
temperature preferences of tenants. This space heater system
will be regulated with a Web Application that will be hosted
by an Apache HTTP server on an EC2 instance. The web
application will allow for multiple users to regulate the

temperature of their personal space via the application
interface.

Our multi-room space heater system is primarily
targeted towards an audience of technologically literate
college students who live in old Pittsburgh houses. However,
since the design report, we did include additional automatic
integration of our devices with a Wifi hotspot to simplify the
setup process and aid less technologically savvy users. With
our application, college students who live off campus in old
Pittsburgh houses will be able to safely regulate the
temperature within their personal space without disrupting the
temperature of their roommates’. They will be able to do this
on the web application by scheduling a specific preferred
temperature (active and idle) for the space heater in their
personal space. Additionally, our application uses motion
sensors to keep count of the number of people within a defined
personal space, and automatically drop to a predefined idle
temperature when unoccupied to lower energy consumption
and decrease the risk of electrical caused incidents. This will
lead to decrease in electrical breaker issues, cut down financial
and electrical consumption, improve overall tenant satisfaction
during the colder months. Although we do not have direct
competing products, there exists similar technologies. Our
product mimics the function of a modern app controlled
centralized heating system. However, it is costly and highly
unlikely that the landlords of these off-campus houses will go
through costly renovation to install a system. Additionally,
Shelly is a company that offers wireless cloud controlled
electronic gadgets. Although they do not have a product as
complex as a wireless heating system, they offer many tools
that can be used together to create a more complex system.
Specifically, we will be using the Shelly Smart Plug to
regulate and keep track of electrical usage in our system.

II. USE-CASE REQUIREMENTS

Our goal is to help students living in standard dorms
with reasonable accommodations. When coming up with the
design requirement numbers, we did research on how an
average cmu student lives, how much energy they consume,
what they need most from a thermostat system, etc. As
everyone has different housing and circuit layouts, our web
application allows the users to customize their own setups. We
measured the rooms in our own house, and the average area of
our rooms are around 100 square feet. Hence, that will be the
area of operation for each room during our testing. For bigger
rooms, the users can set up two heaters in the same room and
register them both on the same circuit with separate
temperature sensors to ensure the room has consistent
temperature throughout. The application will have a multi-user
set up with login, registration, home and heater specification
pages. The entire household will be able to manage their home
system under one account, with each user being able to
manage their individual space heaters. The first time a user
accesses the page they will be redirected to the registration
page of the website as they won’t be allowed to access the
application without an account. Once the user is registered, all
of their login and heater preference information will be stored
confidentially inside our database.

2
18-500 Final Project Report: Team A1 May 03/2023

In the specification page, the users have the option to set their
heater schedule down to the hour as well as setting their
preferred temperature. The system will keep the temperature
within 2 degrees Fahrenheit of the user’s set temperature
number. The space heaters we bought have the power to heat
up the room temperature by 1 degree every 5 minutes, given
that the room’s around 100 square feet. We feel like these
temperature requirements are more than enough for the
average cmu students. For each registered user, we will keep
track of their total energy consumption in watts for students
who are on a budget for their electricity bill or care about their
carbon footprint. From our personal experience, we also have
had the case where space heaters shut down the breakers from
the space heater using too much energy. Therefore, everytime
the user adds a space heater, we will have an option for the
heater to be added into a circuit system. Each circuit will keep
track of how many space heaters are turned on. From our
research, the average standard circuit breaker has a 1600 Watts
capacity. Taking into account the average cmu students will
have other electrical appliances running at the same time, we
will have our maximum wattage from space heaters running at
800 Watts, half of the maximum circuit breaker capacity. If the
current wattage is over the set limit, the system will not turn
on a scheduled heater or a heater under the set temperature.
Similarly, it will not allow the users to manually turn on a
heater. Instead, the heaters due to be turned on will enter a
queue, and once a heater gets turned on in the circuit, the
heater next in queue will get turned on. This allows a fair
order on which heater gets turned on in a first come first serve
basis. Additionally, since the design report, we have come up
with a solution for fair space heater usage for users in the
same room. We simply set a 10 minute time limit for any
running heater if there are other heaters on the queue, and
when this expires, the running heater will be shut off and
added to the end of the queue.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. Original High level Block Diagram demonstrating the design of the
structure of our entire Multi-Room Space Heating System. Since then,
we have automated the Heater Temperature control algorithm and logic
to a separate python script apart from the Web Application that sits in its
own EC2 instance. We changed it such that the ESP32 microcontroller
communicates with DynamoDB tables.

Fig. 2. Updated Block Diagram of our overall system

The user adds their temperature preferences and
scheduling options to their profile by interacting with the GUI
of our WebApp through a computer browser. The WebApp
then uploads these temperature settings onto a DynamoDB
table that feeds into our Python Script that implements the
algorithm for our heating logic.

The right side showcases our hardware subsystem. Our
ESP32 micro controllers are programmed with Arduino code
and are connected to an AWS IOT endpoint. DynamoDB The
ESP for the temperature sensor will query the sensor every 10

3
18-500 Final Project Report: Team A1 May 03/2023

seconds and send the temperature reading to the endpoint via
MTTQ requests. Similarly, when the ESP reads a change in
occupancy from the motion sensors it sends an update in the
same fashion. The AWS endpoint is configured with a routing
protocol that extracts the fields in the MTTQ request and adds
them to the corresponding row in the DynamoDB table. The
Python script is deployed on an AWS EC2 instance and
continuously reads and updates the two DynamoDB tables
which represent user temperature preferences and the latest
updates to the temperature and occupancy counter within the
physical space. The script then makes API calls to regulate the
Shelly Smart Plug that controls the power to turn on/off the
space heater when needed.

Fig. 3. High Level Block Diagram demonstrating the design of the
Model-View-Controller high level architecture behind our functioning
Web Application

First of all we have models, which define the fields we
are using in the application. For our models we have heater
which has heater id, heater power status, heater circuit
number, the user it belongs to, and the location; circuits which
includes the user group and the heaters in that circuit; and user
profiles. The models created are stored in the django database.

Then there are templates, which are html files used to
outline what each webpage looks like. We have the login and
registration pages, which simply have the login and
registration forms respectively. Once the user is logged in,
they will have access to the homepage, the adding heater page,
the heater customization page, and circuits page. All pages
have headers with user ids and links back to the homepage.
The homepage will have a list of all the heaters the user are
linked to. The heater customization page will allow the user to
change the settings for each heater and the circuits page
displays all the circuits created.

Lastly we have the controllers, which interact with both
the views and the models. Everytime a web page is accessed
or a button is pressed, it will send a request to the controller,
which then processes the data and redirects the user to their
destination. For example, when a user is registers a heater on
the add heater page, the controller will save the heater data in
the Django database by creating a new heater model; then it

will redirect the user to the homepage template where it loads
all the heaters belonging to the user within the Django
database; allowing users to check that the heater was created
successfully. At the same time, it can access the database when
the user clicks on customize for one of the heaters. The
controller will consequently access the model database to find
the heater information corresponding to the one user clicked
on and sends it to the templates for displaying in the user’s
web browser.

Fig. 4. A closer look at the specifics of how a user can interact with our
web application, which is deployed on an HTTP Apache Web Server on
an AWS EC2 instance.

The EC2 server acts as the host for the django server.
When the user interacts with our website, it will send a HTTP
request to the web server gateway interface, which in turn
accesses the django web application hosted on the AWS EC2
server. Once django receives this request, it will act as
described in the previous figure.

III. DESIGN REQUIREMENTS

Our Design requires all communication between
devices and the Web Application to be 100% successful,
meaning nothing is dropped and all HTTP requests are
successful. These communications must occur within 100ms
such that we can meet our use case requirements. Our
occupancy counter must be 95% accurate, meaning it never
fails to count someone walking through the door, or
overcounts. However, realistically, we have to add a limitation
to this requirement that assumes people walk into the room
one at a time and are all adults, as the sensors will be placed at
torso level. To meet our use case requirement of heating up the
room by 1 degree every 5 minutes, it is also a design
requirement to find a space heater that can achieve this while
balancing power usage so that our power consumption
requirements can be met. This being said, it will be a
requirement for our heating system to never break our 800
Watt limit, sacrificing our temperature requirements for this.
To meet our requirement of maintaining a +- 2 degree
temperature range from the user setting, we need a
temperature sensor that is accurate to 1 degree, and the
temperature sensor will turn the heater on or off within 1
second of exceeding 1 degree of the set temperature range.

4
18-500 Final Project Report: Team A1 May 03/2023

For our web application, we will upload the system
onto an AWS EC2 instance. We will require it to provide
robust computing power capable of handling up to 50 different
user accounts on all major web browsers and 200 distinct
space heaters.

Once we have all the basic design requirements
reached, there are a few more requirements to implement.
First, we need to design algorithms that will hit our goal to
reduce energy consumption. We believe, with our consistent
temperature and maintenance, scheduling, and occupancy
detectors, we can reach a requirement of decreasing average
energy consumption by 15%. We also have a requirement for
competing space heaters. For example, if two people are in the
same room with vastly different temperature settings, it will be
impossible to perfectly achieve their temperature settings due
to the thermal flow of heat from one side of the room to the
other. Since space heaters can only increase temperature, this
means the person who wants the room warmer will have a
temperature much closer to their preference compared to the
other. In this situation and similar ones, such as open
doorways and poorly insulated walls, we will write algorithms
such that there is a compromise between users that are
adjacent to each other in the house. More specifically, if two
users are next to each other, and the temperature preference
cannot be met, our software will recognize this and achieve a
temperature for both users that is equally far from their setting.

IV. DESIGN TRADE STUDIES

TABLE I. MICROCONTROLLER REQUIREMENTS

Feature ESP32 RSPi Necessary?

Built in Wifi connection yes yes yes

Size
Fits on one
column of
breadboard

~ twice as large NA

GPIO pinouts with ADC Yes Yes Yes

OS No Yes No

CPU capacity lower High No

a.

Our first design choice was to decide which
microcontroller we should use to control our sensors.
Although initially we considered the Arduino Mini Wifi and
the Raspberry Pi Nano, we eventually decided to use the
ESP32. While the Arduinos and Raspberry Pis provide greater
capabilities, all three of these microcontrollers satisfy our
specific design requirements (shown in the table above).
However, the ESP32 is the cheapest and most available, giving
us more room in our budget and less time waiting for materials
to arrive. One helpful advantage of the RSPi is its higher CPU,
which would be helpful when connected to multiple sensors.
However, with some research, we were confident the ESP32
could handle 2 sensors and our occupancy detector code. As a
result, our tradeoff for a smaller, simpler, and easier to obtain
microcontroller is better than using a microcontroller that has
more features we can live without in our design.

Another tradeoff we made was whether infrared
detectors or infrared motion sensors. The drawback for the

motion sensors is that if it ever failed, our occupancy counter
would be incorrect, which would be an inconvenience for the
user to fix, even if we implemented a way for them to do that.
However, the reason we chose the motion sensors is that the
detectors may miss blind spots in rooms that are not
rectangular. Additionally, we could not find commercially
available detectors that are built for automated use, only
detector guns that have to be manually operated by humans. In
a real world use without our resource constraints, we would
choose to design our own infrared detector, but it was not
feasible for our project.

We also had to decide how we implemented our
motion sensors. One option was to have a motion sensor that
could sense the whole room. The other option was to build an
occupancy counter at the door using two weaker sensors. The
issue with using one, more powerful sensor, is that we would
run into the same problem with the blind spots. Additionally it
would not be able to detect someone if they are sleeping or if
the person is not moving within their room (similar to how
motion detector lights will go off if you stay still in a room).
This means they would have to move around in order to
maintain their temperature setting they want when they are in
the room.

Another decision we had to make within the system
of our occupancy sensor was how to place our sensors. Our
first option, which we saw in other implementations of
occupancy counters, was to place the sensors far apart on the
breadboard. However, after testing, this would struggle to
meet our requirement of near-perfect occupancy detection, as
both sensors may sense movement while someone is walking
through. As a result, we chose to take the sensors off the
breadboard using three long ribbon cables and tape them on
the walls inside and outside of the door frame. Although this is
less convenient, we found it worth it, because we could
physically separate the sensors so that we can guarantee the
sensor inside the room only goes off when someone is moving
inside the room, and vice versa. Finally, we chose to do this
because it allows us to put the sensors at the torso level of
most people as they walk through the door, which we found to
be much more reliable than placing it on the floor.

Watts = Amps*Volts (1)

One key design choice for us is what our threshold is
for the maximum electrical power our space heaters can use
on one circuit. We first researched the average maximum
wattage for most circuits in houses, and found a range of
1500-2000 Watts. We then looked at the specs for breaker
boxes in older houses and found they have a max electrical
load of 25 Amps. Given the standard electrical supply to
houses of 120V, this is 3,000 Watts. A large appliance, such as
a washer, will use 100V and 15 Amps. Using equation (1), this
is 1500 Watts. Similarly, two medium devices, like a hair
dryer or microwave, will be around 700-1000 Watts. As a
result, we felt 800 Watts would be a good threshold for our
space heaters, giving about 200 extra Watts if two medium
devices are being used, or one large appliance and a smaller
device.

5
18-500 Final Project Report: Team A1 May 03/2023

Onto the software side of things, there were also
many key design choices that we made which streamline the
cohesiveness of our system and optimize the cost and software
which we use. The first big choice was picking between a
website and a web application. Firstly, a website is a collection
of interlinked web pages with the same domain name. But a
web application is a program or software that a user can access
through a web browser. We selected the web application
because Web applications have complemented the ever
increasing sales of eCommerce and Retail growth within the
United States in the past two decades.

The design of web applications are generally based
off of the high level architecture of Model, View, Controller,
which can be seen in Figure 2. To construct our web
application, we leveraged the Django framework to do so.
Django has been a rapidly growing user-centric framework
with detailed documentation that simplifies development for
Web Application engineers. It simplifies the routing of
different pages within the application to easily link the Model
and Views to the controller. It’s extremely hackable in a sense
that it provides many optional settings and extensions for the
developer to specify.

After the development of our web application, we
deployed our software service onto an Apache HTTP server.
The reason which we selected Apache is because it has been
one of the major leading choices as a server within the
industry throughout the past few decades. Its continued
presence demonstrates that it is a solid reliable choice for the
deployment and scalability of our product.

Lastly, to host our Apache HTTP server, we selected
an Amazon Web Server EC2 instance. Working with cloud
based tools shifts the large capital expenditure costs of hosting
into a more streamlined experience of discounted cash flows
(subscription model) and hedges the costs risk for an
independent developing team like us. With that in mind, there
were other additional cloud options like Heroku and Google
AppEngine in the market. The reason we chose AWS is
because it provides cheap and reliable service costing us 10
cents per day. AWS also provides their customers with a one
year free trial. Costs aside, it can be configured with many
software tools and frameworks, and also has incredible
security backed by cryptographic keys like SSH and SSL. We
also have experience working with EC2 during our Web
application class as well as our internships which gave us
additional comfort with selecting AWS.

V. SYSTEM IMPLEMENTATION

A. Subsystem A
The first system is the hardware system, as mentioned

before, we have the temperature sensor, infrared motion
sensor, and the wifi remote plug. Both the temperature sensor
and the infrared motion sensor will be connected to a
breadboard to the ESP32. There will be 2 infrared sensors for
each system, which will be placed on the doorframe of the
user’s room and connected to the breadboard via extended
jumper wires.. a room, we will be using the infrared sensors to

One sensor will be placed on the doorframe facing the
corridor, while the other will be placed on the doorframe
facing the inside of the room. With this setup, we are able to
tell whether someone is entering or exiting the room by the
order these sensors go off. For ex, if the outside sensor goes
off first and the inside one afterwards, we can be certain that
the person is entering the room, by which we increase the
occupancy by 1. On the other hand, if the inside sensor goes
off before the outside sensor, we know that the person is
exiting the room, hence we decrease the occupancy by 1. We
are assuming that only 1 person will be entering or exiting the
room at the same time. Additionally, we added aluminum foil
on the outside of the sensors to limit their sensing range such
that people moving in close proximity to the door would not
set off the motion sensors. This information will then be
processed on the ESP32, keeping track of the number of
occupants in that room. When the occupancy status changes,
the ESP will send a MTTQ request containing a time stamp,
the HeaterID, and the occupancy status to the AWS endpoint.
In order to make this request, we defined a IOT “thing” that
represents the ESP in AWS and configured its certificates and
policies that allow secure data requests. We then wrote a
message routing rule that parses the MTTQ requests and
creates a DynamoDB action that uses the parsed fields. This
will create a new entry in the DynamoDB table, using the
timestamp as the primary key and the other fields as columns.
We will also be using a smart temperature sensor which is

also connected to the ESP32. The temperature sensor is used
to measure the temperature in the user’s living space, such as a
desk or a bed. After testing, we added a 5V voltage module to
the temperature sensor, as it requires more than the 3.3V
provided by the ESP to operate. A pull-up resistor was also
added so that the initial input voltage when serial
communication begins is “High,” which is necessary based on
the code in the temperature sensor library. The temperature
sensor then sends temperature data to the ESP32 every 10
seconds. The ESP will then forward this information to AWS
using the same process as described previously, and the
request will contain the timestamp, HeaterID, and the current
temperature. This creates a new entry that has a null column
for occupancy, but contains a value in the temperature column.
We are also using the smart shelly plugs that we connect the

space heater with. The plugs can be remotely controlled via
the internet. Shelly provides a list of API calls that we are
using to control and monitor the space heaters. This entails
powering the plug on or off, and wattage monitoring. If the
python script finds that the temperature is out of range from
the temperature sensor data, it will execute the API call that
turns off the remote plug, turning off the space heater, and vice
versa with turning the heater back on.
Finally, both the ESP and Shelly will be preconfigured to

connect to a Wifi Hotspot rather than connecting directly to
the home wifi. This will be provided for each room. This
allows for a consistent internet connection that can mitigate
connectivity issues and makes the setup for the user much
easier.

6
18-500 Final Project Report: Team A1 May 03/2023

B. Subsystem B
For the software subsystem, we have the AWS EC2 instance

and the Django Web Application. For our web application, we
are first implementing a multi user structure in order to
accommodate a bigger household. For ex., the house we are
currently living in has 12 occupants, with each occupant
having their own preference of temperature setting. Hence
allowing everyone to have their own accounts which leads to
less arguments about thermostat settings and happier students.
We are using Django to set up our web application since we
have experience with this during our time in the web
application class.
As mentioned in the design report from earlier in the

semester, we completed the web application as the first step. It
was capable of supporting up to 50 users at the same time.
Within the application, we have register and sign in pages for
users visiting the website for the first time; add heater page for
users to register their heaters; edit heater page for users to edit
their heating configurations; and circuit page for the users to
add their heater in a circuit. This all worked, and users were
able to input their information into the Django database easily,
and from our user surveys it was easy to understand even for
non technical users. However, we started running into issues
when we tried to implement the algorithm to control the
heaters according to the user’s preferences. Our original idea
was to for the web application to access the DynamoDB table
directly, and storing all the user data in Django. However,
there were a couple of complications related to that
implementation. First of all, we need to run a while true loop
that checks the sensor data updated onto DynamoDB, checks
the data with user’s settings, and in turn powers the heaters on
or off using the shelly smart plugs. And doing so inside the
web application will be very inefficient since the web
application is already handling the users requests. Secondly,
we found that we need two dynamoDB tables. The ESP32
uses a different API call than python, and it can only add
entries into the DynamoDB table, and unable to edit or delete
any entries. Therefore, we need one table for the ESP32, and
one table for the web application. The ESP 32 table is for all
the sensor’s data: Temperature and occupancy readings; and
the web application table is for the user’s preferences, such as
their preferred temperature, settings, circuits they are
connected to etc. In order to connect both tables, we decided
to run a separate python script on an EC2 server. The script
will be responsible for checking both DynamoDB tables,
updating each other, and turning the shelly smart plugs on or
off. It runs in a while true loop and sleeps for 2 seconds
between each iteration. During each iteration, it will check the
web application table, if there’s new heater information, it will
be stored in the script locally. After that, it will check the
sensors table, if the temperature exceeds the user’s preference,
or the occupancy sensor indicates the room is empty, it will
turn the heater off using the shelly smart plug API call. The
script also handles the circuit implementation. If more than
two heaters are turned on within the same circuit ID on the
heater, it will enter a queue in the script, and the next time a

heater gets turned off in that circuit, it will pop a heater off the
queue and turn it on.
While writing the script and web application, we ran into

some issues connecting the subsystems. First of all, there were
some race conditions between the script and the web
applicaiton. In the web application, when the user selects
manual on in their heater preference, the web application side
would automatically toggle the heater as on in the dyanmoDB
table, disregarding the circuit system. To counteract this, we
disabled the manual turning on option when adding the heater
in the web application. As a result the user can only turn it on
manually when editing their heater preference, and the script
will turn it on accordingly based on the proper circuit system.
Also, if the heater was previously on automatic and is then
turned on manually while the script is running, sometimes it
would lead to a race condition. The web application will
switch the power to on, but since the script hasn’t been
updated, it will power the heater off because it was still on the
automatic setting when computing the sensors data. This lead
to the heater being turned off even though it should be
manually turned on. To counteract this, we added another field
to the dynamoDB table which indicates the mode of the
heater: 1 being automatic, 2 being manual on, and 3 being
manual off. This will give users proper control over the
heater’s power.

VI. TEST, VERIFICATION AND VALIDATION

The testing of our software was broken down into unit
testing the software, unit testing the hardware, before finally
unit and integration testing the combination of hardware and
software into our entire Multi-room space heater system. For
each of these unit and integration tests, we verified the
fulfillment of user-case requirements which we have
theoretically defined back from the beginning of the semester.
To also properly gauge the user-experience of our product, we
were able to successfully poll 15 college students that live in
off campus housing to gauge the user satisfaction of our
product. We collected feedback with surveys to not only gauge
the demand and need for our product but also to tweak
commonly mentioned complaints and issues that may have
slipped through the cracks because of our lack of diversity and
lack of foresight. Receiving alternative perspectives was
critical for the development of our project to properly package
the final creation of our service for the demo.

7
18-500 Final Project Report: Team A1 May 03/2023

Fig. 5. Using the Python Locust library, these are the Load-testing results
of our WebApp that is hosted on an EC2 instance on the AWS free tier.
Because of such, we can see that HTTP failures and server response
times increase as user requests approach our defined capacity limit of 50
users.

Fig. 6. An user-experience form was given to our friends who volunteered
to test out our product. Since the form is long, only the first question is
shown in this picture

A. Results for the load bandwidth of our WebApp
As shown in Figure 5, we tested the load-carrying capacity

of the application. We conducted a load test using the Python
Locust library. Our web application is hosted on an EC2
instance on the AWS free tier, and we measured the server
response time and HTTP failures as we increased the number
of virtual users accessing the website.

Our load testing results showed that our web application can
robustly handle up to 50 users simultaneously. However, as we
increased the number of virtual users beyond this limit, the
number of HTTP failures increased, and the server response
time also increased.

To further analyze the limitations that prevent us from
exceeding this user-case specification of the load bandwidth of

our web application, we analyzed the plot (generated by the
Locust graphical user interface) comparing the value we
analyzed in the design to the measurements we made after
implementing our web application. The plot clearly shows that
our web application can handle up to 50 users simultaneously,
as per the design specification. However, as the load increases
beyond this limit, the performance of the web application
starts to degrade, leading to HTTP failures and increased
server response time.

In our previous section IV, we discussed the significance of
our load testing results and how they help us improve the
performance of our web application. We also compared our
measurements to the theoretical predictions we made earlier
and found that they successfully match closely.

B. Results for User satisfaction
To ensure that our product meets or exceeds Specification of

user experience satisfaction, we conducted a survey with 15 of
our friends. The survey consisted of 5 questions on a scale of
1-5 (5 being the best), and we used the Google Form platform
to collect the responses.

Our survey results showed that we achieved an average total
satisfaction score of 4.6, which indicates that our product is
meeting the user's expectations and providing a satisfactory
experience.

To analyze the limitations that might prevent us from
meeting or exceeding this specification, we created a plot
comparing the value we analyzed in the design to the
measurements we made after implementing our product.
However, since the measurement of user experience
satisfaction is subjective, we cannot represent it numerically in
a plot. Instead, we can represent the survey results using a
graph that displays the distribution of responses across
different questions.

Our survey results indicate that most of our users rated our
product highly in terms of user experience satisfaction.
However, we also received some feedback that can help us
identify areas where we can improve the product.

In section IV, we discussed the significance of our survey
results and how they help us understand the user's perspective
and improve the product accordingly. We also compared our
measurements to the theoretical predictions, and since the
measurement of user experience satisfaction is subjective,
there is no theoretical prediction to compare.

C. Results for Hardware Requirments
asdf
Our design requirement for our motion sensors is 95%

accuracy in detecting occupancy. This is closely related to our
use case of bringing the personal space to a lower temperature

8
18-500 Final Project Report: Team A1 May 03/2023

when the user is not in the room. We tested this by having all 3
of us continuously walking in and out of the room while
monitoring the occupancy outputs on the Arduino serial
monitor. Then, we simply counted how many times the
occupancy sensor failed to register someone entering or
leaving the room. In general, we were able to consistently
detect exiting and entering with 90% success rate, which is
below our requirement of 95%. However, the occupancy
sensor is sometimes able to perform almost flawlessly for
many minutes, but starts failing more. Now that Eric’s finals
are complete, he will be doing some last minute testing to try
to make the sensors reach our requirement consistently.
The temperature sensor is a simpler setup, so we were

hoping for a 100% success rate in measuring temperature with
a precision within half a degree, which is crucial for our use
case requirement to maintain temperature within 2 degrees
fahrenheit. This was successfully achieved when we tested the
temperature sensor against a handgun thermometer while
constantly changing the temperature with a space heater and
opening the window. There was a small delay, as it took the
sensors around 15 seconds to respond to temperature changes,
but this should be a minimal issue when it comes to user
experience, considering the temperature usually won’t change
more than a degree within a minute. The sensor also has a
precision to 2 decimal places in Fahrenheit, but it was difficult
to measure exactly how accurate it was as the handgun
thermometer was likely not exactly accurate. But we found it
measured within 0.1 degrees of the thermometer >95% when
the 15 second delay is accounted for.
We also needed the Shelly to turn on and off the power for

the space heaters with 100% success, which was achieved by
manually sending API calls to the Shelly.

D. Results for Software Requirements
For software requirements, our design requirements state

that all communication between the devices and web
application has to be 100% successful. We tested that by
configuring the user settings on the web application, and see if
all the changes are reflected correctly on the dynamoDB. This
was successful 100% of the time. In turn, we also tested if the
script received all the data in the dynamoDB, and after
printing out all the entires on the script side, this was also
100% successful. The requirements also indicate that we need
to ensure 100% data transfer between the hardware and the
script. That was tested by checking if all the data that was
supposed to be on the dynamoDB table were sent and
received. After testing this continuously, it was also 100%
successful.
The communication between the subsystems is done

through amazon web servers, theoretically is should be sent
within 100ms. However, depending on the server load or the
free tier bandwidth, it could take longer. In any case it should
not affect normal usage.
The circuit queue system was also thoroughly tested. As

mentioned earlier in the same circuit there should never be
more than 2 heaters turned on at the same time. We tested this
by adding all three heaters in the same circuit, and turning

them all on either by setting a high temperature setting, or
turning it on manually on user’s preference. Upon doing so,
the heater that was supposed turned on last did not turn on. It
is also stated on the website that the last heater was entered
into a queue. Then, we turned one of the heaters off, and this
in turn turned on the last heater. We also added some bogey
heaters to test if the system works in a circuit with more than 3
heaters, and it is working as intended.

E. Results for Overall Use Cases
Overall, our system was able to meet our use case

requirements of maintaining a user set temperature within 2
degrees and follow a schedule. Additionally, it was able to
increase the temperature by more than 1 degree every 5
minutes in a personal space. We were able to test this during
integration testing by running our entire project and measuring
the temperature with the handgun thermometer. The only
times it would fail is once again, in the case the occupancy
counter failed.

We were also able to test the responsiveness of the
system to turn on or turn off the heaters within 5 seconds of
the temperature leaving the threshold boundaries. We tested
this by watching the temperature outputs from the temperature
sensors, and making sure the space heaters were turned on and
off within 5 seconds.

VII. PROJECT MANAGEMENT

A. Schedule
The Gantt Chart at the end of our report demonstrates

scheduling of tasks for our project throughout the course of
the semester. As we can see, the green indicates tasks that
were completed earlier than scheduled, whereas red indicates a
task that was completed later than expected.

B. Team Member Responsibilities
Eric focused more on the hardware and hands-on tasks

relevant to the setup and construction of the system consisting
of temperature & motion sensors, smart plugs, and space
heaters. Due to his great meticulous nature and internship
experience on Amazon’s Device Team, Eric is also responsible
for researching and choosing hardware & electronic gadgets
that meet constraint requirements and fit the tradeoff between
technical specifications and product cost.
Jay focused on the software elements of the project. He was

be responsible for the design and development of the web
application. Leveraging his knowledge from his coursework in
17437 and 15440, as well as his experience during his time
interning at Amazon Web Services Jay designed the high-level
architecture of the Model, View, and Control that would allow
for a safe, scalable, and modular application. At the same
time, he worked on the python script that acted as the middle
man between the web application and hardware sensors. He
was be also responsible for the Unit and Integration testing of
different software components throughout the application.
Rong focused more so on a product managerial role,

coordinating between the Professors, TA, and the team to

9
18-500 Final Project Report: Team A1 May 03/2023

ensure smooth communication of roadblocks, design choices,
and project progress. Additionally, he worked alongside to
help Jay and Eric bridge the gap between the software and
hardware. This means Rong also tested Unit test the
functionality of the electronic hardware gadgets before helping
Eric implement it within a larger system. Finally, after Jay has
completely developed the application, Rong was responsible
for deploying it onto an Apache HTTP Server that runs on an
EC2 instance.

Fig. 7. Gantt chart showing schedule example with milestones and team
responsibilities

C. Bill of Materials and Budget

D. AWS Usage [if credits requested/used]
Originally, we planned on requesting credits, but since the

operations we wanted to perform (occasional reading and
writing from DynamoDB, receiving MTTQ requests) were
small, we realized we didn’t need to, as it would only cost us a
few cents per month with the AWS free tier. When we load
tested, we used considerably more resources, but since it was
for a short period of time, the cost also came out to be less
than a dollar.

E. Risk Management (used to be Risk Mitigation Plans
in Design Document)

Our risk management strategy when faced with
roadblocks was to proactively replan our schedule to give
ourselves time to address them.

Another risk we faced was the variability of housing.
Every house has very different attributes, whether it's different
room sizes, break load capacities, insulation, etc. We were
able to mitigate these potential issues in two ways. First, we
made the assumption that the user’s house would be old with a
weak circuit system. This way, we could ensure that our
requirement to prevent circuit breakages would be met for all
houses. Second, when testing, we spent significant effort
setting up our project in multiple friend's houses, taught them
how to use it, and asked for feedback to make sure our project
worked with different sized rooms and insulation. While this is
not a guarantee our project works for all variabilities, as we
could not test every house, it is a good indication our
methodology generalizes well to most student housing near
CMU.

Midway through our project, we realized that our use
case requirement for an easy user setup might be challenged as
in order to connect to the Wifi, the user would have to

manually put in their Wifi credentials in the Arduino code and
upload it to the ESP. Additionally, they would have to
configure the Shelly plug. When we were facing issues with
connecting the Shelly with CMU-Devices, we realized we
could fix both these issues by connecting our devices to a Wifi
hotspot, therefore mitigating a networking risk during the
demo and making the user setup experience much more
convenient.

We also faced the issue of weather, as our project is
intended to be used in the winter, when the outside of the
house is significantly colder. This is due to the fact that the
space heaters can only increase temperature, so we needed that
outside factor to lower the temperature when our space heaters
were turned off. We mitigated this risk by having a backup
plan of using our air conditioning units instead of space
heaters if necessary. Luckily, there were plenty of cool days
this Spring, and if we needed to, we could also just run the air
conditioner units simultaneously while testing the space
heaters. so we did not need to use the backup plan.

We recognized a race condition risk, as mentioned in
the software implemntation section.

Overall, we did a very good job of responding to
issues that came up and mitigating their risks to our project.
However, in the future, we hope to do a better job of
mitigating potential risks that may come up later in our
schedule. For example, we wished we had spent more time
and effort doing detailed research on our hardware devices to
have made a better selection, as the specific temperature
sensor we chose has historically had timing issues with the
ESP. One risk we did proactively mitigate is that we knew our
project would face significant integration challenges due to the
complexity of our wireless communications. We allocated a
large chunk of our schedule for integration, which turned out
to be very successful for giving us time to deal with
integration issues, as well as the sensor roadblocks we were
facing.

VIII. ETHICAL ISSUES
One of the worst case scenarios that we discussed as a team

that could happen with our product is if someone intentionally
(or unintentionally) set the space heater preference
temperature to the highest setting and pointed it at an
extremely combustible surface. Additionally, let's say there
were two doors to this room/personal space such that the
motion sensor responsible for maintaining the head count
within the personal space does not drop to zero when the
person leaves — therefore the space heater stays at the
functioning temperature rather than the lower idle
temperature.
This worse case scenario is different from our usual case

scenario in that we assume that our users are performing
rationally. Our product is also directed towards an audience
that isn’t necessarily financially well off, therefore they should
be conscious of leveraging our product to create a
cost-friendly solution to maintaining a warm household
temperature.
In terms of who gets harmed in this scenario in this very

10
18-500 Final Project Report: Team A1 May 03/2023

specific case, the space heater is running a very high wattage
and using up a lot of electricity. Additionally, it may start an
electrical fire on the combustible surface and lead to a larger
accident. In this worst case scenario, there are hazardous
results and expensive monetary consequences as well.
Therefore, the homeowner and/or the tenants are directly

harmed in this situation. Additionally, by taking up first
responder resources (firefighting, ambulatory) you may be
unintentionally harming other people in society from this
unnecessary situation.
For this case, the ethical concepts that we see being violated

are trust and responsibility. As the creators of the product, we
are designing the use case of our product to enhance the living
experience of our intended audience at a low cost. However,
by providing this open ended trust and placing the
responsibility in the hands of the user, we leave our product to
be misused in ways that may be intentional or unintentional.
After thorough class discussion, we were able to learn about

other perspectives about the possible ethical and societal
impacts of our project and its use case. One additional
scenario discussed was about the usage of our occupancy data
that is recorded by our motion sensors. Our motion sensor
setup continuously records and updates the number of people
within a defined personal space. This is continuously updated
such that our algorithm for temperature maintenance logic can
be properly managed on our software side. However, this data
can be used by malicious actors or hackers to stalk or monitor
the location of the users of our Multi-room space heater
application.
This worse case scenario is different from our usual case

scenario in that the occupancy data is now not used for
regulating one’s electrical and utility bill consumption. Our
product is directed towards college students who live off
campus in living situations where there are often multiple
students living within one house. This can result in the
valuable belongings of multiple students placed at risk.
Therefore, the tenants are directly harmed from this situation.
For this case, the ethical concepts that we see being violated

are also trust and responsibility. As the creators of the product,
we are responsible for defining user-case requirements as well
as the potential risks that our product presents for users.
Because of this, we re-evaluated our system design following
this classroom discussion. We decided to utilize AWS
DynamoDB tables to ensure a more robust and secure
management of our user’s sensitive data that can be easily
manipulated.

IX. RELATED WORK

As briefly mentioned earlier in the Introduction section, the
market currently does not have directly competing products,
but there exists similar technologies. This can be attributed to
the very unique user population of college tenants and the
inelastic demand on rental property of off-campus houses near
private universities.
First off, our product mimics the function of a modern app

controlled centralized heating system. Both products provide

the service of specifying and regulating temperature in a
dynamic and safe manner that can cater towards the needs of
multiple tenants across different personal spaces within a
house. However, it is costly and highly unlikely that the
landlords of these off-campus houses will go through costly
renovation to install a system. Our project can be seen as a
jank band aid for an issue whose root cause has corresponding
low incentives to be addressed by landlords.
Additionally, Shelly is a company that offers wireless cloud

controlled electronic gadgets. Although they do not have a
product as complex as a wireless heating system, they offer
many tools that can be used together to create a more complex
system. Because of such, we used Shelly products as a
complementary gadget for our Multi-room space heating
system. Specifically we used the Shelly Smart Plug to regulate
and keep track of electrical usage in our system.

X. SUMMARY

As students who lived off campus for 3 years, inadequate
and uncomfortable heating was an issue that we faced. We
heavily resonated with that and wanted to create a solution to
this issue. Overall, the course of development, final results of
our project have pleasantly reached our expectations for our
defined goals of the user-case requirements. Our classroom
discussions have also provided us with additional perspectives
to unforeseen ethical and societal dilemmas of our design that
allowed us to reassess and carefully retool the details of our
project. Additionally, through our personal struggles
debugging the hardware and software, we have become more
comfortable with these ECE tools to be used beyond the scope
of neatly defined classroom assignments. Lastly, through the
course of our project, our major lessons learned as a team:
Research resources & equipment before purchasing them,
thoroughly understanding devices beforehand instead of
jumping in and dealing with trial and error, expect errors &
have mitigation plans.

REFERENCES

[1] Ardumotive_com, and Instructables. “Arduino IOT: Temperature and
Humidity (with ESP8266 WIFI).” Instructables, Instructables, 30 Sept.
2017,
https://www.instructables.com/Arduino-IOT-Temperature-and-Humidity
-With-ESP8266-/.

[2] Beginners, ESP for. “What Is the Difference between an Arduino/ESP
and a Raspberry Pi?” ESP for Beginners Atom,
https://www.espforbeginners.com/guides/differences-between-arduino-ra
spberry-pi/.

[3] Bennett, Jessica. “How to Calculate Your Home's Electrical Load and
What It Means for Your Power Needs.” Better Homes & Gardens, Better
Homes & Gardens, 26 Oct. 2022,
https://www.bhg.com/home-improvement/electrical/how-to-check-your-
homes-electrical-capacity/#:~:text=But%20how%20do%20you%20tell,i
ndividual%20breakers%20in%20the%20box.

11
18-500 Final Project Report: Team A1 May 03/2023

[4] Harrrry, and Instructables. “Ultrasonic Occupancy Counter (2-Way).”
Instructables, Instructables, 29 Apr. 2021,
https://www.instructables.com/Occupancy-Counter-2-way/.

[5] “HTTP.” Shelly Technical Documentation,
https://shelly-api-docs.shelly.cloud/gen2/ComponentsAndServices/HTT
P/.

[6] ProjectPro. “AWS vs Azure-Who Is the Big Winner in the Cloud War?”
ProjectPro, ProjectPro, 6 June 2022,
https://www.projectpro.io/article/aws-vs-azure-who-is-the-big-winner-in
-the-cloud-war/401.

12
18-500 Final Project Report: Team A1 May 03/2023

