Multi-room Space Heater
Temperature Control

Eric Menq, Jie Sun, Rong Feng Ye

18500 ECE Design Review Presentation

Use Case and Applications

Our goal was to create remote controlled space heating system managed
by a Web Application

Our hope was to provide dynamic temperature control across different
rooms for residents of older housing situations

More specifically, allows for a safer, more financially efficient and flexible
temperature regulation for off campus living situations

With our web application, multiple users with different temperature
preferences can use their corresponding space heaters to regulate
personal temperature preferences at their space within a house

Solution Approach

Web App is the middle man between the
AWS server and the devices

A smart thermostat measures the
temperature in the room.

The WebApp maintains the temperature
setting via a wireless smart plug

Using infrared sensors to optimize load on
breaker and save energy depending on
whether someone is in the room
Customizable temperature scheduling,
setting for unoccupied rooms and breaker
layouts on the Web app

AWS server

A

Web
Application

User } =
| |
Space Heater [|
Remote ‘ ESP32 ESP32
|
\ ‘
\

Switch

L J I J

‘ Temperature
Movement Sensor

‘ Sensor

[

Original High Level Approach

Solution Approach: Software System Specification

‘Web Application MVC-Architecture

[o

HTTP Request

Web Browser | S

S

v
Controller

urlpy
views.py

Model

models.py
forms.py

View

Static Files

HTML Data

HTML Templates

fe—

Cloud Deployment of Web Application

Django’s Object
Relational Mapping

Database
P HTTP Request

Web Browser

e J
‘ HTTP Response

amazon [EC2

APACHE

Web Server
Gateway
Interface

Solution Approach: Hardware System Specification

Space

Heater

Control Power

QD 11 -

N q - @ Bearer Token
amazon
q" "y e e | Smart Plug - "mw"ﬂ“lEcz
=) 4 API Calls
Reoccuring latest temperature &
@ python ey oo

Temp Management
Algorithm Script

Sensors Table

Manage Old Entry Data

Updates to
DB Table

£ ESP 3
E 32 3
Temperature
Controller
4 . 4

.

A
.0 (©.O)
e ARDUINO

Motion
ARDUINO Sensor

Sensor

Temperature

Occupancy Counter
Reading Script

Script

D

LoNNENRE
——

omEEnE P
—

SSEEENEE®
—_—

SSEEEEN W
=

<IN EN

Humidity Sensing
Component

o / Temperature Sensing
VDD , \\ Component(Thernister)

PINS 120N A HORIZONTAL PLANE

HEAT SOURCE VOVEMENT O v

Solution Approach

Through class discussions and deeper reflection over the course of the semester, we have
identified additional considerations regarding public health, safety, and welfare, as well as

global, cultural, social, environmental, and economic impact from our project
Ethical issues like

- Electrical fires caused from misuse/accidents

- Unintentional increase in utility bills if preferences tampered with

Occupancy data can be used in a manner that invades user privacy concerns

We have catered our implementation choices to reduce the possibility of these issues by
- Simplifying our WebApp Ul for less technological literate users
- Choosing secure data storage options on the cloud like EC2 and DynamoDB

Web Browser

HTTP Request
Set Temp Settings

Control Power

Space
Heater

Smart Plug

O Bearer Token

API Calls

Reoccuring latest temperature &
Occupancy Information

@ python |
Temp Management -
> Algorithm Script 1
User Temp Settings I

Heater Status Info

amazon
DynamoDB

Web App Table

[

Information Exchange
with script

N

7

Y

-~
HTTP Response

User Interface

‘amazon

L nebselvcelecz

APACHE
=

WSGI

@ puthon

Web App

Manage Old Entry Data

Occupancy
Controller

Motion
Sensor

. amazon
DynamoDB

Sensors Table

ARDUINO

Occupancy Counter

Updates to
DB Table

Temperature
Controller

A4
SR, (S
Temp
‘ Sensor ARDUINO
Temperature

Reading Script

Test, Verification, and Validation: Use Case
Requirements

Feature Tested Quantitative Methodology Result

Temperature Maintenance | Space Heater must maintain a Success
temperature within a +- 1.5F range

User functionality Manual and scheduling control Success

Web App Usability Satisfactory experience on survey Average 4.6
questions with (1-5) ratings feedback

Test, Verification, and Validation: Design Requirements

Feature Tested

Occupancy Sensors

Temperature Sensors

Toggling Heater Power
depending on temperature

Quantitative Methodology

Sensors must be able to detect a physical
presence in the personal space with >95%
accuracy

Sensors must be accurate within +-0.5 F,
tested with thermometer gun

The heater must be turned on or off when
the room temperature exceeds the user’s
preference within reasonable time limit.

Result

~90% reliability

Success, although
10-15 second delay in
sensing temp changes

Success, the heater is
turned on or off within 5
seconds of temperature
sensing

Test, Verification, and Validation: Design Requirements

Feature Tested

Web App Capacity

Web App and Script
integration

Breaker Circuit
Performance

Quantitative Methodology

Must be able to simultaneously support 50
accounts

The web app and script database must sync
within 5 seconds of new information on
either end

When 2 heaters turned on within the same
circuit, the next heater will be added onto
the queue instead of turning on

Result

Still Testing

Success, the script and
web app was able to
update each other.

Success, the script was
able to add heater to
queue within 2 secs.

Test, Verification, and Validation: Trade Offs

Design Choice

Modularized python control script
Extending motion sensors to side of door
Adding 5V power module to temperature
circuit instead of using 3.3V ESP output

Using a Wifi Hotspot

Adding max of two active heaters on one
circuit

Trade Off
Efficiency VS Cost
Success rate VS more setup and points of failure

Sensor actually working VS additional device cost
and technically higher voltage than ESP input
specs (potential but unlikely damage to ESP pins)

Easier setup/backup for internet outage VS
additional device cost

Preventing breakers going off in older houses VS
potentially limiting heater output -> takes longer to
reach desired heat

Project Management

FEBRUARY 2023 MARCH 2023 APRIL 2023

. . 7 8 9 10 13 14 15 16 17 20 212223242728 1 2 3
Design Experience T F

7 8 9 10 13 14 15 16 17 20 212223 242728293031 3 4 5 6 7 10 1 12 13 14 17 18 19 20 21 24 25 26 27 28
WTFMTWTFMTWTFMTWT F

WTFMTWTFMTWTF FMTWTFMTWTFMTWTFMTWTFMTWTF
v Space Heater Setup

Research materials to meet requirements
Procure Materials and setup in rooms
Build/Setup infrared sensors

Build/Setup Temperature sensors [

v Web Application
Set up webpage outline using html
Use Django to develop the application
Implement user customization features
v Add multi-user customization under one account

Add multi-user customization under one account

Upload the application onto AWS]

v Integration and Testing

Connect/test control of smart-switches to space heaters [|

Test and optimize infrared sensors [)

Connect infrared sensors to database [J

Integrate web application with remote plugs
Gather data from the sensors link it to the web app

Set up Wifi Hotspot and connect devices

Fix temperature sensor failure

¥ Optimize switching for thermal airflow
Thermal calculations to estimate temperature changes
Identify circuit usage and estimate average elec. loads
Write algorithms to optimize circuit loads
Identify energy inefficiencies in current algorithm
Write and test algorithms to optimize energy consumption

Test and optimize same-room different preferences

v Final steps
Fine-tune project for presentation
Work on final presentation

Test and intearate project in demo form

Lessons Learned

e Perform more research on the resources and equipments before purchasing
them
Thoroughly understand all devices we are working with instead of trial and error
e Utilize other’s experiences that are shared online
Expect errors to occur and have a mitigation plans

