18-500 Design Project Report: Team A1 March 03/2023

Multi-room Space Heater
System

Your names and affiliation: Eric Menq, Jie Sun, Rong
Feng Ye

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— Many students in Pittsburgh struggle with heating
system from older house designs. In our project, we will provide a
solution for these students by creating a remote-controlled space
heating system that is managed by a web application. The goal of this
system is to provide temperature control via space heaters across
multiple rooms. Our system will limit energy waste and overloaded
circuits by using motion sensors to track whether each room is
occupied or not. All of this will be easily controlled by the user
through a web application, allowing custom temperature schedules
and settings for each room.

Index Terms

Personal space - A room or a chunk of occupied space around 100
square feet.

Infrared Motion Sensors - Motion detectors that detect moving
humans using thermal heat.

Smart Plugs - Wifi smart plugs that can remotely turn the power on
or off.

Temperature sensor - A smart thermometer capable of sending
temperature data through 10T.

1. INTRODUCTION

As students who have lived in old off campus houses with
multiple roommates throughout the past three years, we have
noticed many challenges and problems that arise from this
common living situation. One of the major issues in these
houses during the frigid Pittsburgh winter time is the presence
of a safe, reliable, and flexible heating system that can cater
the varying temperature preferences of multiple tenants. Many
of these Pittsburgh houses are very old, therefore lack proper
insulation along with a dependable thermostat system. Many
students have resorted to using space heaters, but their
combined power wattages often lead to very expensive energy
bills and breaker shut downs. Although this seems like a
troubling issue for college tenants, rental demand for these off
campus houses is relatively inelastic, allowing for landlords to
continuously profit year to year without renovating these
houses. Therefore, we hope to solve this problem for college
students by creating a multi-room space heater system that is
financially conscious, safe, and flexible to the varying
temperature preferences of tenants. This space heater system
will be regulated with a Web Application that will be hosted
by an Apache http server on an ec2 instance. The web
application will allow for multiple users to regulate the
temperature of their personal space through the application
interface.

Our multi-room space heater system will be primarily

targeted towards an audience of technologically literate
college students who live in old Pittsburgh houses. With our
application, college students who live off campus in old
Pittsburgh houses will be able to safely regulate the
temperature within their personal space without disrupting the
temperature in their roommates’. They will be able to do this
on the web application by scheduling a specific preferred
temperature (active and idle) for the space heater in their
personal space. Additionally, our application uses motion
sensors to keep count of the number of people within a defined
personal space, and automatically drop to a predefined idle
temperature when unoccupied, to lower energy consumption
and decrease the risk of electrical caused incidents. This will
lead to decrease in electrical breaker issues, cut down financial
and electrical consumption, improve overall comfort and
tenant satisfaction during the colder months.

Although we do not have direct competing products, there
exists similar technologies. Our product mimics the function
of a modern app controlled centralized heating system.
However, it is costly and highly unlikely that the landlords of
these off-campus houses will go through costly renovation to
install a system. Additionally, Shelly is a company that offers
wireless cloud controlled electronic gadgets. Although they do
not have a product as complex as a wireless heating system,
they offer many tools that can be used together to create a
more complex system. Specifically we will be using the Shelly
Smart Plug to regulate and keep track of electrical usage in our
system..

1I. USE-CASE REQUIREMENTS

Our goal is to help students living in standard dorms with
reasonable accommodations. When coming up with the design
requirement numbers, we did research on how an average cmu
student lives, how much energy they consume, what they need
most from a thermostat system, etc. As everyone has different
housing and circuit layouts, our web application allows the
users to customize their own setups. We measured the rooms
in our own house, and the average area of our rooms are
around 100 square feet. Hence that will be the area of
operation for each room as we can test the implementation in
our own rooms. For bigger rooms, the users can set up two
heaters in the same room and register them both on the same
circuit with separate temperature sensors to ensure the room
has consistent temperature throughout. The application will
have a multi-user set up with login, registration, home and
heater specification pages. The entire household will be able
to manage their home system under one account, with each
user being able to manage their individual space heaters. The
first time a user accesses the page they will be redirected to
the registration page of the website as they won’t be allowed
to access the application without an account. Once the user is
registered, all of their login and heater preference information
will be stored confidentially inside our database.

In the specification page, the users have the option to
set their heater schedule down to the hour as well as setting
their preferred temperature. The system will keep the

18-500 Design Project Report: Team A1 March 03/2023

temperature within 2 degrees Fahrenheit of the user’s set
temperature number. The space heaters we bought have the
power to heat up the room temperature by 1 degree every 5
minutes, given that the room’s around 100 square feet. We feel
like these temperature requirements are more than enough for
the average cmu students. For each registered user, we will
keep track of their total energy consumption in watts for
students who are on a budget for their electricity bill or care
about their carbon footprint. From our personal experience, we
also have had the case where space heaters shut down the
breakers from the space heater using too much energy.
Therefore, everytime the user adds a space heater, we will
have an option for the heater to be added into a circuit system.
Each circuit will keep track of how many space heaters are
turned on. From our research, the average standard circuit
breaker has a 1600 Watts capacity. Taking into account the
average cmu students will have other electrical appliances
running at the same time, we will have our maximum wattage
from space heaters running at 800 Watts, half of the maximum
circuit breaker capacity. If the current wattage is over the set
limit, the system will not turn on a scheduled heater or a heater
under the set temperature. Similarly, it will not allow the users
to manually turn on a heater. Instead, the heaters due to be
turned on will enter a queue, and once a heater gets turned on
in the circuit, the heater next in queue will get turned on. This
allows a fair order on which heater gets turned on in a first
come first serve basis.

18-500 Design Project Report: Team A1 March 03/2023

I1I1. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
AWS server
i
Web
g ST
R o Application
= - — — — — — —
Space Heater
Remote ESP32 ESP32

Switch

Temperature
Sensor

Movement
Sensor

Fig. 1. High level Block Diagram demonstrating the design of the
structure of our entire Multi-Room Space Heating System

Model-View-Controller Architecture

HTML HTTP Request Apache
Web templates
Browser rTSEDY HTML ol HTTP Response || HTTP Server

HTTP
4 models.py

Fig. 2. High Level Block Diagram demonstrating the design of the High
level architecture behind our functioning Web Application

Database

Fig. 3. High Level Block Diagram demonstrating how the deployment of
our Web Application on an Apache HTTP Server within an EC2 instance
will function to be accessible by users on a web browser

18-500 Design Project Report: Team A1 March 03/2023

IV. DESIGN REQUIREMENTS

Our Design requires all communication between
devices and the Web Application to be 100% successful,
meaning nothing is dropped and all HTTP requests are
successful. These communications must occur within 100ms
such that we can meet our use case requirements. Our
occupancy counter must be 100% accurate, meaning it never
fails to count someone walking through the door, or
overcounts. However, realistically, we have to add a limitation
to this requirement that assumes people walk into the room
one at a time and are all adults, as the sensors will be placed at
torso level. To meet our use case requirement of heating up the
room by 1 degree every 5 minutes, it is also a design
requirement to find a space heater that can achieve this while
balancing power usage so that our power consumption
requirements can be met. This being said, it will be a
requirement for our heating system to never break our 800
Watt limit, sacrificing our temperature requirements for this.
To meet our requirement of maintaining a +- 2 degree
temperature range from the user setting, we need a
temperature sensor that is accurate to 1 degree, and the
temperature sensor will turn the heater on or off within 1
second of exceeding 1 degree of the set temperature range.

For our web application, we will upload the system
onto an AWS EC2 instance. We will require it to provide
robust computing power capable of handling up to 50 different
user accounts on all major web browsers and 200 distinct
space heaters.

Once we have all the basic design requirements
reached, there are a few more requirements to implement.
First, we need to design algorithms that will hit our goal to
reduce energy consumption. We believe, with our consistent
temperature and maintenance, scheduling, and occupancy
detectors, we can reach a requirement of decreasing average
energy consumption by 15%. We also have a requirement for
competing space heaters. For example, if two people are in the
same room with vastly different temperature settings, it will be
impossible to perfectly achieve their temperature settings due
to the thermal flow of heat from one side of the room to the
other. Since space heaters can only increase temperature, this
means the person who wants the room warmer will have a
temperature much closer to their preference compared to the
other. In this situation and similar ones, such as open
doorways and poorly insulated walls, we will write algorithms
such that there is a compromise between users that are
adjacent to each other in the house. More specifically, if two
users are next to each other, and the temperature preference
cannot be met, our software will recognize this and achieve a
temperature for both users that is equally far from their setting.

V. DEsIGN TRADE STUDIES

TABLE I. MICROCONTROLLER REQUIREMENTS

Feature ESP32 RSPi Necessary?

Built in Wifi connection | yes yes yes
Fits on one

Size column of ~twice as large | NA
breadboard

GPIO pinouts with ADC | Yes Yes Yes

oS No Yes No

CPU capacity lower High No

Our first design choice was to decide which
microcontroller we should use to control our sensors.
Although initially we considered the Arduino Mini Wifi and
the Raspberry Pi Nano, we eventually decided to use the
ESP32. While the Arduinos and Raspberry Pis provide greater
capabilities, all three of these microcontrollers satisfy our
specific design requirements (shown in the table above).
However, the ESP32 is the cheapest and most available, giving
us more room in our budget and less time waiting for materials
to arrive. One helpful advantage of the RSPi is its higher CPU,
which would be helpful when connected to multiple sensors.
However, with some research, we were confident the ESP32
could handle 2 sensors and our occupancy detector code. As a
result, our tradeoff for a smaller, simpler, and easier to obtain
microcontroller is better than using a microcontroller that has
more features we can live without in our design.

Another tradeoff we made was whether infrared
detectors or infrared motion sensors. The drawback for the
motion sensors is that if it ever failed, our occupancy counter
would be incorrect, which would be an inconvenience for the
user to fix, even if we implemented a way for them to do that.
However, the reason we chose the motion sensors is that the
detectors may miss blind spots in rooms that are not
rectangular. Additionally, we could not find commercially
available detectors that are built for automated use, only
detector guns that have to be manually operated by humans. In
a real world use without our resource constraints, we would
choose to design our own infrared detector, but it was not
feasible for our project.

We also had to decide how we implemented our
motion sensors. One option was to have a motion sensor that
could sense the whole room. The other option was to build an
occupancy counter at the door using two weaker sensors. The
issue with using one, more powerful sensor, is that we would
run into the same problem with the blind spots. Additionally it
would not be able to detect someone if they are sleeping or if
the person is not moving within their room (similar to how
motion detector lights will go off if you stay still in a room).
This means they would have to move around in order to
maintain their temperature setting they want when they are in
the room.

Another decision we had to make within the system
of our occupancy sensor was how to place our sensors. Our
first option, which we saw in other implementations of
occupancy counters, was to place the sensors far apart on the
breadboard. However, after testing, this would struggle to
meet our requirement of near-perfect occupancy detection, as
both sensors may sense movement while someone is walking

18-500 Design Project Report: Team A1 March 03/2023

through. As a result, we chose to take the sensors off the
breadboard using three long ribbon cables and tape them on
the walls inside and outside of the door frame. Although this is
less convenient, we found it worth it, because we could
physically separate the sensors so that we can guarantee the
sensor inside the room only goes off when someone is moving
inside the room, and vice versa. Finally, we chose to do this
because it allows us to put the sensors at the torso level of
most people as they walk through the door, which we found to
be much more reliable than placing it on the floor.

Watts = Amps*Volts (1)

One key design choice for us is what our threshold is
for the maximum electrical power our space heaters can use
on one circuit. We first researched the average maximum
wattage for most circuits in houses, and found a range of
1500-2000 Watts. We then looked at the specs for breaker
boxes in older houses and found they have a max electrical
load of 25 Amps. Given the standard electrical supply to
houses of 120V, this is 3,000 Watts. A large appliance, such as
a washer, will use 100V and 15 Amps. Using equation (1), this
is 1500 Watts. Similarly, two medium devices, like a hair
dryer or microwave, will be around 700-1000 Watts. As a
result, we felt 800 Watts would be a good threshold for our
space heaters, giving about 200 extra Watts if two medium
devices are being used, or one large appliance and a smaller
device.

Onto the software side of things, there were also
many key design choices that we made which streamline the
cohesiveness of our system and optimize the cost and software
which we use. The first big choice was picking between a
website and a web application. Firstly, a website is a collection
of interlinked web pages with the same domain name. But a
web application is a program or software that a user can access
through a web browser. We selected the web application
because Web applications have complemented the ever
increasing sales of eCommerce and Retail growth within the
United States in the past two decades.

The design of web applications are generally based
off of the high level architecture of Model, View, Controller,
which can be seen in Figure 2. To construct our web
application, we leveraged the Django framework to do so.
Django has been a rapidly growing user-centric framework
with detailed documentation that simplifies development for
Web Application engineers. It simplifies the routing of
different pages within the application to easily link the Model
and Views to the controller. It’s extremely hackable in a sense
that it provides many optional settings and extensions for the
developer to specify.

After the development of our web application, we
plan to deploy our software service onto an Apache HTTP
server. The reason which we selected Apache is because it has
been one of the major leading choices as a server within the
industry throughout the past few decades. Its continued
presence demonstrates that it is a solid reliable choice for the
deployment and scalability of our product.

Lastly, to host our Apache HTTP server, we selected
an Amazon Web Server EC2 instance. Working with cloud

based tools shifts the large capital expenditure costs of hosting
into a more streamlined experience of discounted cash flows
(subscription model) and hedges the costs risk for an
independent developing team like us. With that in mind, there
were other additional cloud options like Heroku and Google
AppEngine in the market. The reason we chose AWS is
because it provides cheap and reliable service costing us 10
cents per day. AWS also provides their customers with a one
year free trial. Costs aside, it can be configured with many
software tools and frameworks, and also has incredible
security backed by cryptographic keys like SSH and SSL. We
also have experience working with EC2 during our Web
application class as well as our internships which gave us
additional comfort with selecting AWS.

VI. SYSTEM IMPLEMENTATION

Within our design, we have 2 different subsystems. One is
the hardware subsystem, where we have the temperature
sensor, infrared motion sensor, the wifi remote plug. The other
subsystem is the software system, which consists of the AWS
EC2 instance and the web application. We will have ESP32
act as the middleware to interact with both systems.

A. Subsystem A

The first system is the hardware system, as mentioned
before, we have the temperature sensor, infrared motion
sensor, and the wifi remote plug. Both the temperature sensor
and the infrared motion sensor will be connected to a
breadboard via long wires to the ESP32. The reason we are
using ESP32 over other microcontrollers is that it is much
cheaper than the other options and we don’t need much
processing power in our proposed system. There will be 2
infrared sensors for each system, and they will both be placed
above the doorframe of the user’s room. As we are counting
the number of occupants in a room, we will be using the
infrared sensors to help achieve that. One sensor will be
placed on the doorframe facing the corridor, while the other
will be placed on the doorframe facing the inside of the room.
With this setup, we are able to tell whether someone is
entering or exiting the room by the order these sensors go off.
For ex, if the outside sensor goes off first and the inside one
afterwards, we can be certain that the person is entering the
room, by which we increase the occupancy by 1. On the other
hand, if the inside sensor goes off before the outside sensor,
we know that the person is exiting the room, hence we
decrease the occupancy by 1. We are assuming that only 1
person will be entering or exiting the room at the same time.
This information will then be processed on the ESP32,
keeping track of the number of occupants in that room. We
will also be using a smart temperature sensor which is also
connected to the ESP32. The temperature sensor is used to
measure the temperature in the user’s living space, such as a
desk or a bed. We will run a long wire from that space to the
breadboard. The temperature sensor then sends temperature
data to the ESP32 periodically. We are also using the smart
shelly plugs that we connect the space heater with. The plugs
can be remotely controlled via the internet. Shelly provides a

18-500 Design Project Report: Team A1 March 03/2023

list of API calls that we are using the control and monitor the
space heaters. This entails powering the plug on or off, and
wattage monitoring. If the web application found that the
temperature is out of range from the temperature sensor data,
it will execute the API call that turns off the remote plug,
turning off the space heater, and vice versa with turning the
heater back on. We will also be utilizing the energy monitoring
functionality, which records the wattage usage for that specific
heater. This data will be uploaded to the web app via
dynamoDB The ESP32 will be our middleware interacting
with both the software and the hardware system. After
receiving the data from the sensors, it will then send the data
to the AWS server. We will be using the dynamoDB database
to store the information. For each system, we will create a new
entry, and each entry will have the current temperature, the
number of occupants in the room, if the heater is powered on
or not, and the wattage used this session by the space heater.
Every Time of the data points are updated in the ESP, it will be
reflected in the dynamoDB. This data is then interpreted on
the web application, which in turn powers on or off the space
heater.

B. Subsystem B

For the software subsystem, we have the AWS EC2
instance and the Django Web Application. For our web
application, we are first implementing a multi user structure in
order to accommodate a bigger household. For ex., the house
we are currently living in has 12 occupants, with each
occupant having their own preference of temperature setting.
Hence allowing everyone to have their own accounts which
leads to less arguments about thermostat settings and happier
students. We are using Django to set up our web application
since we have experience with this during our time in the web
application class. As shown in figure 2, we are following the
model view controller setup within our web application.

First of all we have models, which define the fields we are
using in the application. For our models we have heater which
has heater id, heater power status, heater circuit number, the
user it belongs to, and the location; circuits which includes the
user group and the heaters in that circuit; and user profiles.
The models created are stored in the django database.

Then there are templates, which are html files used to
outline what each webpage looks like. Firstly we have the
login and registration pages, which simply have the login and
registration forms respectively. Once the user is logged in,
they will have access to the homepage and the heater
customization page. Both pages have headers with user ids,
links back to the homepage, and the button back to the
homepage. The homepage will have a list of all the circuits the
user created, and the heaters will be displayed under each
respective circuit. The heater customization page will allow
the user to change the settings for each heater. First of all, the
user can adjust the preferred temperature for that heater. The
user can also turn the heater to either manual mode or auto
mode. The manual mode will keep the heater on regardless of
the room temperature or occupancy status, while the auto

mode will let the space heater system take control depending
on the thermostat or the occupancy. The user can also
customize a schedule for the heater to turn on or off within the
page. Finally, the customization page gives the user some
statistics on the heater. The amount of wattage the space heater
is currently using as well as the past data will be displayed in
the customization page. It will also show the number of people
in the room at the moment.

Lastly we have the controllers, which interact with both the
views and the models. Everytime a web page is accessed or a
button is pressed, it will send a request to the controller, which
then processes the data and redirects the user to their
destination. For example, when a user is registers a heater on
the add heater page, the controller will save the heater data in
the Django database by creating a new heater model; then it
will redirect the user to the homepage template where it loads
all the heaters belonging to the user within the Django
database; allowing users to check that the heater was created
successfully. At the same time, it can access the database when
the user clicks on customize for one of the heaters. The
controller will consequently access the model database to find
the heater information corresponding to the one user clicked
on and send it to the templates for displaying in the user’s web
browser. The controller is the most important part of the model
view controller system, as it acts as the master node
controlling multiple parts of the system and redirects the user
to their desired target. This Django application will
communicate with the hardware part by AWS DynamoDB. We
will write a javascript program that periodically checks for
updates in the dynamoDB table. Then it checks the new data
with the user’s settings in the django database. If a space
heater’s power status changed as a result of that data, it will
communicate with the shell smart plugs via API calls to turn it
on or off. After we complete the Django application, we will
upload the system onto an AWS EC2 instance using Apache.

VIIL TEST, VERIFICATION AND VALIDATION

The testing of our software will be broken down into unit
testing the software, unit testing the hardware, before finally
unit and integration testing the combination of hardware and
software into our entire Multi-room space heater system. For
each of these unit and integration tests, we must verify the
fulfillment of user-case requirements which we have
theoretically defined, however it is important that we must
match the theory with the real life application. To do so, we
plan to poll 15 college students that live in off campus housing
to gauge the user satisfaction of our product. We will collect
feedback with surveys to not only gauge the demand and need
for our product but also to tweak commonly mentioned
complaints and issues that may have slipped through the
cracks because of our lack of diversity and lack of foresight.
This will be critical for us to package the final creation of our
service.

18-500 Design Project Report: Team A1 March 03/2023

A. Tests for Quantitative performance metrics

We have defined many quantitative user-requirement
metrics for the performance of our product using
extrapolations based on gadget specifications and intuitive
knowledge of electronics.

The tests we can perform are:

- Meet safe and reliable power output (Wattage)
consumption of electricity

- Smart thermostat accuracy by comparing the
measured temperature on the smart thermostat and
another purchased thermostat

- The rate of the room temperature increasing from the
space heater by checking how long it takes for the
room to heat up by one degree on the thermostat

- Reduce average energy consumption by at least 15%
through maintaining a constant temperature,
temperature scheduling, and dealing with
inefficiencies from users with different preferences

B. Tests for Use-Case Specification Software

As we have learned in our computer science courses, as
well as our brief stints within the industry, it is critical that we
ensure the verification of software products.

It all first starts off with the individual unit testing of our
software services, which will include
- Ability to create/login users and corresponding space
heater units on the web application
- Ifthe server runs while in a local development setting

Then afterwards, it will be important test the integration of
- Our developed software within a cloud-based
deployed setting
- The integration of our software services with our
physical hardware gadgets

Eventually for our entire web application, we will need to
round out more rigorous testing such as
- Load testing our domain with services such as
Artillery.io to simulate synthetic load

C. Tests for Use-Case Specification Hardware

- We will test our sensors to make sure they meet the
requirements we stated earlier. We will test the
accuracy and sensitivity of our temperature sensors,
and test our motion sensors to see if they can reliably
detect motion.

- We will test to make sure our smart plug can reliably
turn on and off electricity when receiving HTTP
requests.

- We will test to make sure every device can reliably
communicate with our web app.

- We will test to make sure all of hardware is reliable
and easy to set up for the user.

VIII.
A. Schedule

PROJECT MANAGEMENT

1920 212425
M

e=
©
2=
<

T
g
£
2

FEBRUARY 2023

9
0%
0%
o

E
&
§
8

et requirements

2 2 3
@ 3 E 1 S5

Design Experience
¥ Web Applic
~ Final steps

B. Team Member Responsibilities

Eric will focus more on the hardware and hands-on tasks
relevant to the setup and construction of the system consisting
of temperature & motion sensors, smart plugs, and space
heaters. Due to his great meticulous nature and internship
experience on Amazon’s Device Team, Eric is also responsible
for researching and choosing hardware & electronic gadgets
that meet constraint requirements and fit the tradeoff between
technical specifications and product cost.

Jay will focus on the software elements of the project. He
will be responsible for the design and development of the web
application. Leveraging his knowledge from his coursework in

18-500 Design Project Report: Team A1 March 03/2023

17437 and 15440, as well as his experience during his time
interning at Amazon Web Services Jay designed the high-level
architecture of the Model, View, and Control that would allow
for a safe, scalable, and modular application. He will be also
responsible for the Unit and Integration testing of different
software components throughout the application.

Rong will focus more so on a product managerial role,
coordinating between the Professors, TA, and the team to
ensure smooth communication of roadblocks, design choices,
and project progress. Additionally, he will work alongside to
help Jay and Eric bridge the gap between the software and
hardware. This will mean Rong will need to Unit test the
functionality of the electronic hardware gadgets before helping
Eric implement it within a larger system. Finally, after Jay has
completely developed the application, Rong will be
responsible for deploying it onto an Apache HTTP Server that
runs on an EC2 instance.

Fig. 4. Schedule example with milestones and team responsibilities

C. Bill of Materials and Budget
Product Manufacturer Quantity Unit Cost Total Cost W Shipping
Space Heater Riomer 3 19.99 63.57
Temperature Sensors Aideepen 3 9.99 31.27
ESP32 Microcontroller HiLetgo 6 10.99 69.9
Motion Sensors Onyehn 1 10.99 11.65
Breadboards Ambberdr 1 9.99 10.88
Jumper Wires Bestlus 2 15.55 32.78

Grand Total 220.05
D. Risk Mitigation Plans

One huge risk factor is our lack of diversity of our expertise
in our ECE Area courses. All three of us took 15440 and
17437, and aside from that we took 18310 and 18270. This
may be a huge issue when debugging and dealing with foreign
issues that may lie outside our narrow spectrum of courses.

Another risk factor will be the linking of hardware to
software. None of us had worked with connecting
microcontrollers to a corresponding software system, so this
project will be a foreign experience in that aspect.

Lastly, a significant risk factor is the proper testing of our
space heater system. The space heater system is intended to be
used within poorly insulated rooms in old Pittsburgh houses
during the winter time. Given that the expected completion of
our project is to be in April, which is far removed from the
cold winter time, we will not be able to test the natural
diffusion effect of temperature difference without the use of an
artificial cold air source like an air conditioner. The testing of
this may cause breaker issues due to the wattage load on the
electrical outlets. It would also be an extremely costly testing
operation as well.

IX. RELATED WORK

As briefly mentioned earlier in the Introduction section, the
market currently does not have directly competing products,
but there exists similar technologies. This can be attributed to
the very unique user population of college tenants and the

inelastic demand on rental property of off-campus houses near
private universities.

First off, our product mimics the function of a modern app
controlled centralized heating system. Both products provide
the service of specifying and regulating temperature in a
dynamic and safe manner that can cater towards the needs of
multiple tenants across different personal spaces within a
house. However, it is costly and highly unlikely that the
landlords of these off-campus houses will go through costly
renovation to install a system. Our project can be seen as a
jank band aid for an issue whose root cause has corresponding
low incentives to be addressed by landlords.

Additionally, Shelly is a company that offers wireless cloud
controlled electronic gadgets. Although they do not have a
product as complex as a wireless heating system, they offer
many tools that can be used together to create a more complex
system. Because of such, we will be using Shelly products as a
complementary gadget for our Multi-room space heating
system. Specifically we will be using the Shelly Smart Plug to
regulate and keep track of electrical usage in our system.

X. SUMMARY

Our proposed project is a robust space heater controller
system that can help college students with their heating
situation at home. By allowing each user to customize their
heating preferences in their living space using space heaters, it
is a very cost effective solution for students living on a budget.
We considered the challenges we personally encountered
throughout our college life and tackled them with the
knowledge we learned in our ECE classes. Some challenges
we might face are the infrared occupancy sensors which might
not be 100% accurate, and we might have to run some long
wires across the room to complete our intended setup.
However, we can overcome these challenges by testing and
perfecting our wiring strategies.

GLOSSARY OF ACRONYMS

MQTT — Message Queuing Telemetry Transport
OBD - On-Board Diagnostics
RPi — Raspberry Pi

REFERENCES

[1] Ardumotive_com, and Instructables. “Arduino IOT: Temperature and
Humidity (with ESP8266 WIFI).” Instructables, Instructables, 30 Sept.
2017,
https://www.instructables.com/Arduino-IOT-Temperature-and-Humidity
-With-ESP8266-/.

[2] Beginners, ESP for. “What Is the Difference between an Arduino/ESP
and a Raspberry Pi?” ESP for Beginners Atom,
https://www.espforbeginners.com/guides/differences-between-arduino-ra

spberry-pi/.

18-500 Design Project Report: Team A1 March 03/2023

(3]

Bennett, Jessica. “How to Calculate Your Home's Electrical Load and
What It Means for Your Power Needs.” Better Homes & Gardens, Better
Homes & Gardens, 26 Oct. 2022,
https://www.bhg.com/home-improvement/electrical/how-to-check-your-
homes-electrical-capacity/#:~:text=But%20how%20d0%20you%20tell,i
ndividual%20breakers%20in%20the%20box.

Harrrry, and Instructables. “Ultrasonic Occupancy Counter (2-Way).”
Instructables, Instructables, 29 Apr. 2021,
https://www.instructables.com/Occupancy-Counter-2-way/.

“HTTP.” Shelly Technical Documentation,
https://shelly-api-docs.shelly.cloud/gen2/ComponentsAndServices/HTT
P/.

ProjectPro. “AWS vs Azure-Who Is the Big Winner in the Cloud War?”
ProjectPro, ProjectPro, 6 June 2022,
https://www.projectpro.io/article/aws-vs-azure-who-is-the-big-winner-in
-the-cloud-war/401.

