
18-500 Design Review Report Template - 18 January 2022 Page 1 of 12

Tactile Chess
Authors: Mukundh Balajee, Edison Aviles, Juan Mejia

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system, predominantly for blind users,
capable of communicating the user’s moves on a phys-
ical chess board to an online platform, while also pro-
viding feedback based on different game states and
user actions. This system combines vocal and tactile
cues, to provide blind users with an opportunity to
play an online game of chess through a custom-made
chess board. This one-of-a-kind system is capable of
providing feedback based on moves made within 500ms
and retrieving information from a public chess server
within 500ms of an opponent making a move, thereby
giving the user a seamless experience.

Index Terms—3D Printing, 3D Modeling, Chess,
Hall Effect Sensors, PCB Fabrication, Tactile, Vocal
Cues

1 INTRODUCTION

As of the end of 2022, the number of users in the online
chess community is over 100 million [1]. We realized that a
section of the market was neglected: blind users. In order
to address this problem, our team decided to build a custom
chess-board, with accessible features for blind users, which
can connect to an online chess platform, like lichess.org [4].
Our main stakeholders are blind people. However, with the
use of a web application, we hope to provide beginner and
novice chess users with a physical board, to automatically
simulate an online chess game.

Currently, there is no technology that provides blind
users the ability to play online chess without the use of
an iPad or another such device. There are custom-made
boards, which help simulate moves in better ways, however,
these systems are way more expensive (around $2, 000) and
not affordable [7]. Furthermore, such boards are not acces-
sible to blind users. Our board aims to bridge the gap
between the online chess community and blind people as
well as offer a more affordable solution in the market.

For blind users, our board will provide vocal cues. To
make our board more accessible, we are engraving braille
notations for the board’s coordinates, and a distinctive fea-
ture on the pieces so that users can differentiate the color of
the pieces based on touch. This will help them differentiate
pieces and locate them when vocal cues are provided. The
board will have tactile features to allow the blind user to
identify black and white tiles on the board. To ensure the
pieces are placed in the correct spot and do not fall over
during the game, the board and pieces will have a lock-and-
key mechanism with a peg on the base of every piece and a
hole in every tile. To make the gameplay seamless, the user
will be able to start, end, and confirm games using three

buttons on the board. For the rest of our stakeholders, we
hope to provide a chessboard that will help simulate an
online chess game on a physical board, to help understand
the basics of the game and visualize the board.

2 USE-CASE REQUIREMENTS

In order for our project to satisfy our users, we have
focused our efforts on user experience, accessibility, board
integrity, accuracy, and latency.

• For our users to have a seamless experience in play-
ing a game of online chess on our board, users need to
be able to set up games in minimal time. Our board
must be able to connect to lichess.org, and start the
game experience for the user in under 25s. During
a game of chess, our board must be able to assist
blind users in making their moves and help reflect
opponents’ moves on the board with vocal and tac-
tile cues. With our custom board and pieces users
must be able to make moves with a 100% accuracy
rate, almost instantaneously. We also want to make
sure that our user is able to interpret the audio cues
that our board provides by ensuring the audio level is
high enough that they can be heard from a maximum
of 4ft from the board. Currently, we hope to cater to
only English-speaking users. However, we hope to
add language flexibility in the future.

• In order for accurate game-play and to maintain the
board and game integrity, we need to ensure the phys-
ical and online chess games are identical. Our board
will be able to detect the color, type, and location
of every active piece on the board at all times with
100% accuracy. With the help of software checks and
verification, we hope to ensure that the moves made
by the user and the game state are valid at any given
point. The board will provide feedback to the user re-
garding their every move, allowing the user to know
what is currently happening in the game.

• To ensure that the user has a similar experience to
playing a game of 2-player chess, we hope to en-
sure a 100% accuracy with our detection systems in
our physical board (piece detection, move generation,
FEN generation, etc.) We hope to ensure minimal
latency for a seamless game experience for our users.
To help our users navigate the board and get used to
standard chess coordinates and notations, we provide
a chess board with etched coordinates and braille no-
tations, to help the users map the cues to the actions
on the board. Finally, we want our feedback cues to

18-500 Design Review Report Template - 18 January 2022 Page 2 of 12

have an accuracy of 100% to ensure the entire system
works as expected.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

(a)

(b)

Figure 1: System description. (a) Board Design Model (b)
Final Chessboard and Encasing

3.1 Chess Board & Pieces

We created a custom chess board following standard
chess guidelines and incorporated accessible features for our
blind users. The accessible features include varying heights
of black and white tiles, braille engraving for the chess co-
ordinates, pointed tips on black pieces, and a lock-and-key

mechanism between each piece and tile. Below the chess
board, is a PCB with all our circuits and electronics needed
to simulate the physical game of chess on the online plat-
form. With the help of linear Hall Effect Sensors, we hope
to be able to distinguish between pieces and help simulate
an accurate chess experience.

3.2 Hardware

Figure 2: Hardware System Block Diagram

3.2.1 Printed Circuit Board

To detect pieces on the board, we mounted a custom
PCB underneath our chess board. Our circuitry ensures
each tile has one Hall Effect Sensor, resulting in 64 Hall
Effect Sensors. Hence, we have grouped our PCBs as rows
and connected each row to an 8:1 analog mux. The output
of these 8 PCBs is then connected to another 8:1 analog
mux. The select lines of the final mux are controlled by
the Arduino, which helps us cycle through the 64 sensors,
before sending the move information over to the Raspberry
Pi.

Figure 3: 3D-modeled PCB

3.2.2 Raspberry Pi & Arduino Uno

The Arduino Uno serves as an interface between infor-
mation received from the PCB and information being sent
to the RPi. The Arduino controls the select lines for the

18-500 Design Review Report Template - 18 January 2022 Page 3 of 12

muxes, which help us cycle through the 64 sensors, to detect
voltage changes and subsequently send the detected change
information over to the RPi. The Raspberry Pi houses all
our software systems, and also serves as a central data hub
for our system, for data being piped to and from lichess.org.
The bulk of user move validation and board integrity checks
happen at the RPi. The RPi then sends valid moves made
by the user to lichess.org, and vocalizes opponents’ moves
from lichess.org back to the user.

3.2.3 Chessboard Components

The chessboard consists of components that help pro-
vide feedback cues, and tactile cues to the user, and help
control a game. The board consists of a speaker circuit,
which helps provide feedback cues regarding the current
chess game, to the user. The board also has a button sys-
tem, which allows the user to start and end a game, and
also an ’OK’ button to help in various processes like cali-
bration, and set up of the chess board.

3.3 Software

Figure 4: Software System Block Diagram

3.3.1 Legality Check

To ensure minimal latency between subsystems, we are
performing state and move checks locally before communi-
cating the information to the API, given the API’s response
time. We are validating board states and move legality,

with the help of the Stockfish API [6]. The Stockfish API
is an open-source stockfish class that allows the system to
integrate the Stockfish chess engine to check the current
board state, check for illegal moves, stalemates, and check-
mates, and provide feedback through the RPi’s speakers
within our goal of 500ms.

3.3.2 Audio Module

To help vocalize feedback cues from our RPi, we have
an audio module, which parses through data received and
vocalizes information needed by the user to play the game.
The audio module also communicates back to the other
subsystems, in the case we expect our user to correct or
perform a specific action, thereby ensuring correct game
flow between our systems.

3.3.3 Web Application & Communication Script

In order to centralize the communication through our
entire system and lichess.org, we created a JavaScript mod-
ule that simultaneously cases on the information being
piped between our subsystems and lichess.org, and on the
information piped to and from the Arduino Uno. The mod-
ule calls on other custom modules, such as our Move Legal-
ity Checker and Audio Module, based on the information
being processed. Using our existing systems, we were able
to create a Web Application based on the game state re-
trieved from lichess.org, to ensure users do not have control
of the virtual board. The Web App renders the live game
using the React Chessboard[2] and Chess.JS[3] libraries and
serves as a central hub for the user to interact with their
live games. This aspect of our system is mainly focused
on beginner and novice players that will also be using our
product.

4 DESIGN REQUIREMENTS

The following design requirements are quantified met-
rics related to our requirements in Section 2.

4.1 Accuracy Requirements

In order to ensure a seamless transition between the
physical board and the online game, we aim to achieve a
100% accuracy in distinguishing colors, and 100% accu-
racy in identifying pieces. We want our audio module to
vocalize feedback accurately, and ensure a 100% accuracy
in vocalization and communication with other subsystems.
With regards to our serial communication script, we aim to
achieve a 100% accuracy in information being sent between
the RPi and the Arduino. With regards to our software
systems, we want to validate moves and check our board’s
integrity with a 100% accuracy to ensure the gameplay is
accurate, across our subsystems.

18-500 Design Review Report Template - 18 January 2022 Page 4 of 12

4.2 Latency Requirements

Our system latency goal is 1500ms or less, to validate a
user’s move and reflect the move on the online platform, if
it is valid, simultaneously provide vocal feedback regarding
the user’s move, and vocalize the opponent’s moves through
the board’s speaker circuit. This process involves multiple
subsystems with their latency breakdowns highlighted be-
low:

• User button press - 20ms (delay set in the Arduino,
to ensure smooth flow of control

• Collect sensor data and relay information to
Arduino - 320ms (almost instantaneous reads from
each sensor, but a delay of 5ms in Arduino code for 64
sensors to ensure the MUX resets its state properly)

• Check the board integrity and move legality -
< 50ms (instantaneous check to see if given FEN is
legal and given move can be made on the FEN)

• Send move from RPi to lichess.org - 400ms (as
mentioned on the lichess.org website [5])

• Vocalizing feedback to the user - 300ms (to ac-
count for minor delays in vocalizing longer texts)

Our latency goals are optimistic, yet achievable. The total
latency comes out to 1000ms, which gives us at least 500ms
to allow for any extraneous factors which could potentially
affect our latency goals.

4.3 Power Requirements

The entire system will be powered by a wall outlet. The
RPi will be connected to a constant power source, and will
also power our buttons, speakers, and Arduino. Since we
need only 5V for each Hall Effect Sensor, we will use the
5V supply on the Arduino Uno to power our PCB.

4.4 Accessibility requirements

We want our board to be as accessible as possible, es-
pecially to our blind users. We want them to be able to
distinguish pieces and colors with a 100% accuracy. With
the help of the braille notations for the coordinates, we
want them to be able to identify coordinates with a 100%
accuracy. We want our users to be able to identify and
distinguish between a black and a white tile with 100% ac-
curacy. Finally, we want our users to be able to control our
speakers to ensure it isn’t too loud or too soft.

5 DESIGN TRADE STUDIES

5.1 Chess Board and Pieces

Since we decided to make a custom-chess board and in-
clude several accessibility features, we were between two
options: Laser cutting and 3D printing. Since we had no

experience with 3D modeling, we quickly realized the num-
ber of iterations that would be needed to perfect the board,
would result in budget issues. Hence, we pivoted our design
to be more economical and made our board and encasing
by laser-cutting wood. We chose to still 3D print the pieces
to ensure we can get accurate models which are easy to rec-
ognize. The reason we chose wood and plastic as the two
materials for our physical chess board and pieces, was be-
cause of the minimal interference offered by these materials
in the presence of a magnetic field, thereby allowing us to
detect pieces.

5.2 Sensors

For our sensors, we chose to use Hall Effect Sensors
to help detect a magnetic field. We chose between unipo-
lar and bipolar sensors, and also between linear (analog)
and digital Hall Effect Sensors. Since we plan to distin-
guish colors based on the polarity of the magnet, we plan
to use bipolar sensors as it provides a more robust architec-
ture. This will help us distinguish pieces’ colors by flipping
magnets (polarity) instead of varying magnetic strength.
Between the linear and digital sensors, we chose to use a
linear Hall Effect Sensor. A linear sensor helps us receive
varying voltage outputs for varying magnetic fields which
helps us identify each unique piece on the board, in order
to maintain board integrity. Hence, we chose to use the
Texas Instruments Hall Effect Sensors (DRV5055) as these
sensors operated in the range of voltages that we planned
to use to power our sensors, with high magnetic sensitivity
to ensure we can achieve a wide range of values, provide
low-noise output, and cater to all of our above require-
ments better than other brands and sensors, and at a more
affordable rate.

5.3 Multiplexers

The choice of using an 8:1 multiplexer was because of
our choice for PCB Fabrication. Since the board is be-
ing fabricated in rows of 8, we chose to use an 8:1 multi-
plexer for each PCB and connect the output of the 8 PCBs
to another 8:1 MUX to help sequentially cycle through 64
sensors. This architecture helps optimize our performance
and removes the need for an ADC, which would be more
expensive and have more steps to integrate into our project.
Regarding latency, the MUX we have chosen allows us to
reach our goals, as we provide a 5ms delay between each
sensor, to allow the MUX to reset and read the next value.
this way, when we cycle through our sensors, the maximum
amount of time it will take is 320ms.

Delay×Number of Hall Effect Sensors (1)

= 5ms× 64 = 320ms

18-500 Design Review Report Template - 18 January 2022 Page 5 of 12

5.4 PCB Fabrication

We designed our PCBs as individual rows, which con-
sist of 8 Hall Effect Sensor circuits in parallel, to ensure
each sensor gets the same voltage (5V), which are all con-
nected to a single 8:1 MUX. Each hall effect sensor is 2”
apart from each other, to ensure it follows standard chess
guidelines. The outputs of the 8 8:1 MUXES on the PCBs
are connected to a 9th MUX which is connected to the Ar-
duino, to allow us to cycle through the inputs. The reason
we chose this architecture for our PCB was to facilitate
any debugging we had to do during the process of fabrica-
tion, minimize costs and the lack of enough Analog pins on
the Arduino Uno, to be able to read the outputs of all 8
MUXES.

5.5 Power

To power our board we had two options: a Lithium-
Ion battery or a wall outlet. We initially decided to use
Lithium-Ion batteries, however, since we ran into budget
issues and realized that all our systems could be powered
by the 5V and 3.3V power sources from our RPi and Ar-
duino, we changed our approach to use a wall-outlet in-
stead, to power the RPi, and power the rest of our systems
(Arduino, buttons, speaker, etc.) through the RPi’s USB
ports and GPIO pin headers.

5.6 Raspberry Pi & Arduino Uno

For our system, we chose to use an Arduino Uno, in-
stead of an ADC to read the values outputted by our sen-
sors, as an Arduino provides more robust functionality for
our post-MVP goals, and also helps us implement the MUX
logic for all the MUXES easily, without creating a new IDE
(as would be the case for an ADC). We chose the Raspberry
Pi 4 Model 4 4GB. One of the main reasons we chose this
model RPi was the connectivity that it offered. The 40-
pin GPIO header allows us to power our buttons and other
circuits (if needed), without the use of an external power
source. The 4-pole stereo audio port would allow us to con-
nect a speaker to provide vocal cues. The 4GB ram would
give us ample storage and performance to store the game
state and check the legality of moves. The 4 USB ports
would give ample ports to power the Arduino, and other
peripherals that we might need for testing purposes. The
2.4 GHz and 5.0 GHz IEEE 802.11ac wireless connectivity
would allow the RPi to connect to our Web-App. We are
also going to supply the RPi with a 16GB micro-SD card
to store the OS, our Python scripts, and a list of moves for
different games.

5.7 State Validation

In order to efficiently give our user feedback on the cur-
rent state of the board, we decided to incorporate state vali-
dation prior to communication with any external platforms.
This will minimize latency by locally keeping track of a

chessboard state and validating the users move based on
the stored state. To accomplish this, we looked at several
valid move generators and chess engine APIs - including
Stockfish API (an open-source API that gives developers
the ability to use the Stockfish chess engine) and Chessnut.
We decided to move forward with using Stockfish since it
provided extensive documentation and a large variety of
chess related methods, such as loading a game based on a
specific FEN, making moves on a chessboard, and deter-
mining if a stalemate or checkmate is present. Moreover
it provides feedback in around 2ms, which makes up for
the large amount of latency generated by making calls to
lichess.org. Furthermore, lichess also uses the Stockfish en-
gine on their platform, which allows us to keep communica-
tion and behavior consistent throughout the entire system
cycle.

5.8 Legality Check

To validate a move, we will receive information regard-
ing the moved piece and its initial and final positions. With
this information, we can generate a move that needs to
be validated by our checker, to ensure the piece is moved
in its allowed pattern (Bishop can only move diagonally,
Rook can only move in straight lines, etc.) We plan to
use the Stockfish API (described above) to help us val-
idate moves and check for other game states (stalemate,
checkmate, casting, etc.) Even though lichess.org uses the
Stockfish API, it takes up to 500ms to provide feedback
from lichess.org to the RPi. Since we want to provide feed-
back to our users before their move is reflected on the on-
line platform and hit our latency targets, we decided to use
the Stockfish chess engine in our RPi, to help reduce the la-
tency. This way, we validate a user’s move before communi-
cating with the external platform and provide any feedback
regarding the user’s move back to them before changing the
game state.

5.9 Website Infrastructure

Despite our main target audience being blind users, we
decided to create a website to display user and chess-related
information. The main reason for incorporating this web
application into our project was to reach other communi-
ties, especially novice or beginner chess players. By al-
lowing novice players to analyze their games, view daily
puzzles, and observe their current live games we hope to
provide a platform in which users can learn how to play
chess through the use of visual cues on the board and on
the website. We also want to make sure our users cannot
make any changes on the virtual board, thereby ensuring
the game is played from one source. We chose to implement
our web application using a ReactJS frontend and NodeJS
backend. The main reasons for this decision were to utilize
React’s asynchronous rendering functionalities and to use
a JavaScript framework since lichess documentation was
written in JavaScript. Furthermore, the team found a va-
riety of chess-related libraries that were all supported in

18-500 Design Review Report Template - 18 January 2022 Page 6 of 12

JavaScript - including Chess.js and React Chessboard. It
is also incredibly simple to create a React app and connect
it to a Node backend, which in turn allows for easy setup
and deployment.

5.10 Online Chess Platform

For our online chess platform, we looked at various op-
tions. We began by contemplating using the largest on-
line chess platform, chess.com, but quickly realized that
their API was limited to exporting data and wouldn’t al-
low users to make moves during a live game. After coming
to this conclusion, we pivoted and began considering two
main options, lichess.org and creating our own online chess
platform. We considered lichess to be the most reasonable
answer since it would allow our users to connect with one
of the largest online chess communities. Moreover, the ser-
vice provides a variety of endpoints that would allow us to
interact with live games and utilize an already-established
tool set for chess games. The only limiting factor lichess
posed was its latency limits - communication between all of
our systems and lichess will take at least 500ms. In order
to mitigate this and maximize all communication with the
platform we decided to incorporate move validation before
sending moves to the online server - this way the user will
receive feedback on their move faster than they would if
they communicated directly with lichess in order to receive
feedback.

6 SYSTEM IMPLEMENTATION

6.1 Chessboard & Pieces

Our custom chessboard is broken down into two layers,
the top layer consists of a custom laser cut and 3D printed
blind-friendly chessboard surface - where the user will in-
teract with game pieces, and the bottom layer consists of
a PCB which is used for piece and move detection. The
chessboard has been made blind-friendly by varying the
height between white and black tiles and incorporating the
use of braille notation to identify tile coordinates. On the
other hand, the PCB layer consists of 64 hall effect sensors
spaced out by 2 inches between each sensor to allow for a
standard chessboard size. Game pieces have been custom-
made and 3D printed in order to make them blind-friendly.
In order to achieve blind-friendly game pieces we designed
a key and lock mechanism between the pieces and board
while also adding a pointed tip to each individual piece to
help the user identify between different pieces and piece
colors. Inside each of the pieces, there is a varying amount
of magnets, which vary in size and polarity based on the
game piece and piece color.

Figure 5: 3D-modeled chess set

6.2 Board Calibration

To ensure all our Hall Effect Sensors are reading rea-
sonable values, we calibrate our board at the beginning
of every game by removing all the pieces from the board.
This way if we see an erroneous value, we can immediately
identify the problem. We also use this calibration step to
know our min and max base voltages (when no sensors are
present), to help us generate a FEN. Once we get the base
voltages, we set up the board to a starting game position,
and scan our board again to find our min and max values
for each piece, and also ensure that the pieces are within
the pre-determined ranges of voltages. This way, our sys-
tem always checks for any errors before a game is started,
and flags any errors with the board, preventing the user
from playing or asking them to fix it before moving along
(if it is a hardware problem).

6.3 Move Sensing

In order to facilitate move sensing we designed a PCB
which is installed in the bottom layer of our chessboard.
The PCB uses the DRV5055 ratiometric hall effect sensors
from Texas Instruments to detect when pieces are placed
on a tile. Furthermore, the sensors allow us to differentiate
between pieces and color by the varying polarity and mag-
netic strengths produced by the pieces. The PCB design
will be separated into rows which will house 8 ratiometric
hall effect sensors spaced out by 2 inches. The outputs of
the sensors in each row have a dedicated 8:1 multiplexer,
since there are 8 rows on a chessboard we are using a to-
tal of 8 multiplexers (TMUX1208PWR). The 8 multiplex-
ers feed their analog outputs to an Arduino Uno, which
then identifies the piece being moved and the coordinate
of the voltage change and sends it over to the Serial Mod-
ule Script running on the RPi. The module processes the
data and formulates a move when it identifies a move is
finished being made. Afterwards it runs a legality check

18-500 Design Review Report Template - 18 January 2022 Page 7 of 12

on the user’s move before communicating the information
to lichess.org. Once the opponent has made a move and it
has been vocalized through the speakers, the user will then
proceed to replicate the move on the physical board. The
system will detect the replicated move the same way it de-
tects the user’s inputted move, after which the user receives
vocal feedback notifying them if the move was replicated
correctly or not.

6.4 Hardware User Interface

The board’s user interface consists of a speaker and 3
buttons. The speaker is used to provide vocal feedback
about opponent moves and board and move validity. The
speaker’s circuitry is powered by the Raspberry Pi and is
utilized by our Audio Module during different instances of
a live game to provide feedback.

Figure 6: Amplified Speaker Circuit

Furthermore, the 3 buttons have specific behaviors as-
signed to each of them. The first button is used to start
seeking a game with an online opponent, the second is used
to resign the current live game, and the third is used to con-
firm an action. In order to power these buttons and connect
them to the Raspberry Pi we will use a basic switch circuit
- see figure 7. Once the Raspberry Pi is notified of a request
through its GPIO pins, we case on the pressed button in
our JavaScript communication module. In the case of an
online seek, the script will send an HTTP POST request to
lichess.org which will establish a stream of events between
the script and lichess.org. In the case of a resign game,
the system will verify if a game exists and if it does it will
resign the live game. As for the confirm button, the script
will first verify if there is an action awaiting to be confirmed
and if there is it will confirm the action.

Figure 7: Basic Push-Button Circuit

6.5 State Validation

State validation is performed in the Raspberry Pi
through a series of modules - see figure 8. Once a game
start signal is received by our JavaScript communication
module, the system will case on whether it is the oppo-
nent’s or user’s turn. If it is the user’s turn to make a
move, the module will begin to listen for information from
the Arduino. Once a minimum of two coordinates are re-
ceived (representing a basic move), our Serial Communica-
tion script will formulate a move that consists of the piece
and the two coordinates sent by the Arduino in the follow-
ing string format - piece + first coordinate + second coordi-
nate. The JavaScript module will then send the move and
the current game’s FEN to our Move Validation module to
verify if the move is legal. The Move Validation module will
create a stockfish object, using the Stockfish API, and load
the passed FEN as the current game state. Afterwards, the
script will use the object to verify the legality of the passed
move on that FEN. If the move is legal, the Move Valida-
tion module will return an updated FEN and the JavaScript
module will call upon the Audio Module to give the user
feedback before sending the move to lichess.org through an
HTTP POST request and updating the local state. In the
case the move is invalid, the JavaScript will indicate the
Audio Module to give different feedback and wait for the
user to move the piece back to its original position before
making a new move. In the case it is the opponent’s turn,
the system will wait for lichess.org to give a game state up-
date through the established pipeline before informing the
user through the Audio Module of the opponent’s move.
The user will then need to replicate the opponent’s move
on the physical board before proceeding to make their own
move.

18-500 Design Review Report Template - 18 January 2022 Page 8 of 12

Figure 8: State Validation Flowchart Diagram

6.6 Web Application

The website frontend was created using ReactJS and
CSS in order to display different user information, as well
as live games. Furthermore, the ReactJS frontend is also
responsible of communicating with lichess.org through a
series of HTTP GET requests - see Figure 4. We chose
to use ReactJS and CSS for frontend purposes since Re-
actJS allows for an easy way of incorporating JavaScript
into HTML, moreover by using ReactJS’s state manage-
ment we can easily display live games by using React states
to asynchronously update the website’s local game state
copy. Additionally, most of the documentation available
for lichess.org ’s API was written in JavaScript which made
it easier to navigate and translate to our website’s specific
needs. The frontend displays the current live game by ac-
quiring the current live game’s id through an HTTP GET
request to lichess.org. After identifying the game id, the
page will make a second HTTP GET request to lichess.org
which will establish a stream between our web application
and lichess.org. Through this stream lichess.org will be
sending game updates including the current FEN and the
last move made. With this information, the frontend is able
to render the current live FEN using a library called react
chessboard and create a local chess state using Chess.js
which will be linked to the rendered chessboard. Through-
out the rest of the game, the frontend updates the chess-
board state via the moves being streamed to the frontend
by lichess.org.

6.7 Power

We are powering our system through our RPi, which is
connected to a wall outlet using a 12V cable. The Arduino
Uno is connected to the RPi using a USB B to USB A ca-
ble. The Arduino is then powering our PCB via a 5V pin;

we are able to do this since all the components on our PCB
are in parallel and require a maximum of 5V. Moreover,
the amperage draw from the mux and hall effect sensor
components are almost negligible.

7 TEST & VALIDATION

To help our testing plans, we plan to follow test-driven
development, to ensure each subsystem is tested before in-
tegrating with the existing system. Our system will be
tested against a testing script that simulates several games
with different edge cases, to increase the robustness of our
system, and also ensure a 100% accuracy. We also plan
to do separate user testing in order to improve our user
experience and accessibility.

7.1 Results for User Experience and Ac-
cessibility

In order for us to get a sense of how our piece and board
design was affecting a user’s ability to play chess, we ran a
user study of 40 CMU students. Our main objective was
to see if they could easily identify the color and type of
piece they wanted while blindfolded using just their sense
of touch. We would also ask them if they could identify
whether a series of tiles placed in front of them were either
black or white tiles. The results are as follows:

Figure 9: Accessibility & Usability Measurements

7.2 Results for Piece Detection

As achieving a 100% piece detection is one of the most
important use-case and design requirements for our project,
we tried to be as thorough as possible in our unit and in-
game testing. Before we ran our system through an entire
chess game, we first performed unit testing on each indi-
vidual hall effect sensor on the board. We placed all 32
pieces on each individual tile to make sure that the voltage
output that our Arduino was receiving was corresponding
and similar to the voltage output that we were expecting

18-500 Design Review Report Template - 18 January 2022 Page 9 of 12

for each type of piece. After establishing an initial range
for each individual type of piece, we moved to test all 64
sensors in unison while playing 5 games of chess and record-
ing the voltage output for all the tiles and the type of piece
that was on top of it. After gathering the game data, we
had to make minor adjustments to some of the ranges and
set a margin of error of +/- 0.01 V. The ranges for each
piece are as follows:

Figure 10: Piece Voltage ranges

One of our major concerns was the interaction between
different pieces in close proximity, due to a magnetic pres-
ence. Since we glued our magnets to the center of our
base, for increased accuracy, and placed it at the bottom
of a solid chess piece, the magnetic interactions do not af-
fect gameplay or the other pieces on or off the board. Our
current piece detection logic accurately identifies all pieces
placed on or removed from a given tile, however, because
of certain hardware issues with our Hall Effect Sensors, we
are experiencing some issues when using the same voltage
ranges across all 64 sensors, because of minor variations in
the base voltages across the sensors.

7.3 Results for Board Legality

To ensure our users perform legal moves, we hope to
use the Stockfish API to ensure the moves executed are
valid. To test our script for legality checks, we have a test-
ing script that simulates a game of chess with legal moves,
but also sends random illegal moves to ensure our Legality
Checker can catch all these errors. We were able to achieve
a 100% accuracy on this system.

7.4 Results for Latency Test

Since our project involves several different hardware and
software components, one of our biggest challenges was to
keep latency as low as possible. After running several tim-
ing software and testing scripts on our different systems
individual and as a whole we were able to get our overall

latency to at a maximum of 1 second. The other latency
results are shown below:

Figure 11: Latency Ranges

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule in Fig. 12 is organized by subsystems
to account for members’ strengths and weaknesses. The
schedule has been modified a couple of times to account
for shipment delays, and technical challenges faced during
the process (Eg: PCB Fabrication, RPi-Arduino commu-
nication, 3D modeling, etc.) We also factored in various
breaks during the semester to ensure we can complete our
project on time. Finally, we have left the last 2 weeks for
system integration and testing, to ensure optimal perfor-
mance.

8.2 Team Member Responsibilities

Each member has been focused on specific portions of
the project as well as helping the other members in their
tasks as well. This allows us to maximize each of our mem-
bers’ strengths.

8.2.1 Edison

Web-App Development, U.I Designer, Software Sys-
tems, PCB Fabrication and Testing, Sensor Testing and
Integration, Piece Detection System, Serial Communica-
tion between RPi and Arduino

8.2.2 Juan

PCB Design, Fabrication and testing (helped Edison),
and laser cutting

8.2.3 Mukundh

PCB Fabrication and Testing (helped Edison), Board
Accuracy, Integrity and Move Validation, Unit Testing for
Subsystems, CAD design of board and pieces, Braille Com-
munication, Sensor Testing and Integration, Piece Detec-
tion System, Serial Communication between RPi and Ar-
duino, Speaker and Buttons Systems

18-500 Design Review Report Template - 18 January 2022 Page 10 of 12

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
16GB Micro SD card Class 4 16GB SanDisk 1 $6.97 $6.97
Radiometric Hall Effect Sensors DRV5055Z4QDBZR Texas Instruments 85 $1.30 $110.19
Radiometric Hall Effect Sensors DRV5055A4ELPGMQ1 Texas Instruments 5 $3.66 $18.30
8:1 Analog multiplexer TMUX1208PWR Texas Instruments 19 $1.33 $25.36
3.3 K Ohms Resistors EFR-W0D50-A:MF EDGELEC 100 $0.06 $5.99
SMT Breakout PCB 1207 Adafruit 3 $6.00 $18.00
Lead Free Solder Paste 30 grams SP-Sn42Bi58 Wonderway 2 $14.99 $30.00
5v Linear Voltage Regulator MC7805ABTG onsemi 12 $1.40 $16.84
Custom PCB with original pad sizes JLCPCB 5 $9.94 $49.69
Custom PCB with bigger pads and Stencil JLCPCB 10 $9.59 $95.92
0.01uF Ceramic Disk Capacitors B-0004-H15 E-Projects 50 $0.22 $10.96
Strong Neodymium Magnets SRM-2 THCMagorilla 50 $0 $18.01
N42 Neodymium Disc Magnet 42DNE3208-NI MagnetShop 20 $4.87 $97.36
12 x 24 x 1/4 inches Plywood Ideate 5 $3.00 $15.00
Filament for F170 333-60304 TechSpark 284 $0.47 $133.48
Proto Boards Ideate 5 $0 $0
0.01uF Ceramic Disk Capacitors B-0004-H15 Ideate 30 $0 $0
Raspberry Pi 4 Model-B 4GB B 4GB Raspberry Pi 1 $0 $0
Push Buttons Red Arduino 3 $0 $0
Analog Speaker Ideate 2 $0 $0
Arduino Uno Ardunio 1 $0 $0

$652.07

8.3 Bill of Materials and Budget

Our total cost is an estimated value based on our es-
timate of 3D printing costs in Techspark. The majority
of our budget was spent on 3D printing, PCB Fabrication,
and our strong magnets (42DNE3208-NI). To see the full
BOM you can refer to Table 1.

8.4 Risk Management

During the development process, we encountered sev-
eral technical challenges and logistical challenges. We were
able to deal with all these challenges individually and in a
timely manner.

8.4.1 3D Modeling

No one on the team has any 3D modeling or printing
experience. To ensure we were able to design custom pieces
that fit our requirements, Mukundh was able to learn the
basics of Rhino well in advance, to design and print our
pieces.

8.4.2 PCB Fabrication

Our team has no experience designing or fabricating
PCBs. Hence, Juan was able to learn some PCB design
software tools like AutoDesk and EasyEDA. Edison at-
tended training on how to use the soldering ovens in the
PCB fabrication lab, which helped us fabricate our surface-
mount components.

8.4.3 RPi & Arduino Uno Communication

Prior to this project, no one on our team has worked
with a Raspberry Pi. So Mukundh was able to help setup
the RPi and ensure our systems worked on the RPi as well
as our local systems, by installing the needed dependencies.
Establishing quick, uninterrupted communication between
our RPi and Arduino, Mukundh and Edison were able to
implement a quick and seamless communication using Se-
rial Communication (PySerial).

8.4.4 Piece Detection

When testing our sensors and varying the magnetic
strengths for each unique piece, we realized our hardware
components had small margins of errors, which affected our
program in subsequent systems. Hence, Mukundh and Edi-
son were able to change their existing piece detection logic
to account for marginal errors with the Hall Effect Sensors.

8.4.5 Budget and Logistical Challenges

We were short on our remaining budget and needed to
pivot from some ideas like using batteries, which resulted
in some system design changes highlighted in 5. We also
experienced several logistical issues with shipping compa-
nies, which lead to several major delays in the arrival of
our parts.

18-500 Design Review Report Template - 18 January 2022 Page 11 of 12

8.4.6 Team Challenges

Our team members were involved with other organi-
zations on campus, which did take up more time than ex-
pected. We were able to talk to our teammates immediately
and express our concerns and ensure we were able to get
back on track during breaks like Carnival/Spring Break.

9 ETHICAL ISSUES

Our project seeks to primarily add a solution that would
allow blind people to play online chess using a physical
board. A secondary approach to our board is a teaching
tool for novice and intermediate chess players to allow them
to visualize moves and learn chess coordinates on a physi-
cal board while playing against online opponents. The two
primary customer bases would be visually impaired people
and beginner/novice chess players.

In order for our project to meet the needs of our users,
it needs to be able to detect the type of piece, the color,
and the location of all active pieces at all times with 100%
accuracy and with a maximum latency of 1 second. It also
needs to be able to give clear and loud audible cues of the
state of the game. If our board doesn’t meet those re-
quirements then our primary customer base would be the
most at risk. The worst thing that a user could do with
our product is, play an incorrect game of chess by acciden-
tally moving the wrong piece or changing the state of the
board too fast, thereby causing a technical issue. Our blind
users are trusting our product to translate their actions on
a game of chess to the online platform. If we lose the trust
of users because of a fault in our requirements then we
lose our primary customer base. Our secondary customer
base would be less affected because they could verify on a
computer screen if the move that they made is reflected in
the online game and if the audible cue given is actually the
move that the opponent made in the online game, however,
if they are still learning the rules of the game then they still
might not catch the errors.

At the moment we don’t collect any personal data on
the user as for every game that is played on our board, we
create a unique user id and game id that is associated with
each board. The only data that we collect is the output
voltage of all 64 hall effect sensors when a game is being
played.

Tactile Chess is a rather safe product in terms of the
overall health of our target consumer. The biggest health
hazard that our product could pose is that our pieces could
be a choking hazard if the chess board is set up around
small children. This would force us to provide the appro-
priate age range for consumers and have proper warnings
when marketing this product. We plan to address this by
making the size of our pieces as big as possible without
making the pieces too cumbersome for the chess player.
Since our product has a lot of wires connecting the PCBs
together, within a wooden encasing, this could cause a po-
tential fire hazard if any electrical component begins to

smoke.

Our project has a low impact on public safety. Since
our product involves a single player playing chess online,
there is a low chance of a physical argument occurring be-
tween the two players. Since it involves an online platform,
we also create a platform for players to play online chess
on a physical board if there is ever a global pandemic that
requires global quarantine. Our board doesn’t collect any
personal data on the user so there is a low risk of privacy
infringement.

Our project seeks to bring two communities together,
the visually impaired and the online chess community. Us-
ing our product we want to give the visually impaired the
most seamless transition to play chess on an online platform
through a physical board. We will be extremely mindful of
the accessibility of our board by implementing tactile and
audible cues throughout the use of our board. We plan to
have braille engravings throughout each piece and on the
board to identify the coordinates of the board.

10 RELATED WORK

One of the most similar projects/products that we have
found is a product called Phantom Chess [7].

Phantom Chess is an automatic chess board that al-
lows users to play online chess on a physical board. It
achieves this by using 500 hall effect sensors to sense where
the pieces are on the board, and it uses a robotic arm on
the inside of the board that moves the pieces throughout
the board to reflect the moves made by the user and oppo-
nent on lichess.org. Not only is this option over our budget,
but it also is expensive, and not accessible to blind users.

11 SUMMARY

The Tactile Chess system is an all-in-one system that
provides accessibility to play online chess on a physical
board for the visually impaired community. The system
provides users braille identification on the pieces and board,
vocal feedback and queues of their own and their oppo-
nent’s moves, legality checking, access to their past game
data, and a learning platform through puzzles for beginner
chess players. Players will be able to play at their own pace
as competitively as they want with the speed of the board
matching even the most experienced of chess players.

11.1 Future Work

A research group from the University of Pittsburgh has
reached out to us in order to potentially take this project
ahead. Since Mukundh and Edison will be Masters stu-
dents at CMU for the academic year 2023-24, if they receive
funding and financial support, they will carry this project
forward.

18-500 Design Review Report Template - 18 January 2022 Page 12 of 12

11.2 Lessons Learned

Our advice to students wanting to tackle this applica-
tion in the future would be to find a way to turn the product
into a smaller form factor or to use fewer sensors as that
would help bring costs down. This product can potentially
change some people’s lives for the better so the lower the
price point the better.

Glossary of Acronyms

• ADC - Analog-to-Digital Converter

• API - Application Programming Interface

• GPIO - General Purpose Input/Output

• HE - Hall Effect

• MUX - Multiplexer

• PCB - Printed Circuit Board

• RPi – Raspberry Pi

• UART - Universal Asynchronous Receiver-
Transmitter

References

[1] Chess.com. “Chess.com Reaches 100 Million Mem-
bers!” In: Chess.com (Dec. 2022).

[2] “https://github.com/Clariity/react-chessboardreadme”.
In: ().

[3] “https://github.com/jhlywa/chess.js/blob/master/README.md”.
In: ().

[4] “https://lichess.org”. In: (2010).

[5] “https://lichess.org/forum/lichess-feedback/connection-
speed-in-bullet-tournaments”. In: Connection Speed in
Tournaments (2018).

[6] “https://stockfishchess.org/”. In: ().

[7] Wonder Substances. “https://www.indiegogo.com/projects/phantom-
the-robotic-chessboard-made-of-real-wood/”. In:
Phantom Chessboard (2021).

18-500 Design Review Report Template - 18 January 2022 Page 13 of 12

F
ig
u
re

1
2
:
G
a
n
tt

C
h
a
rt

