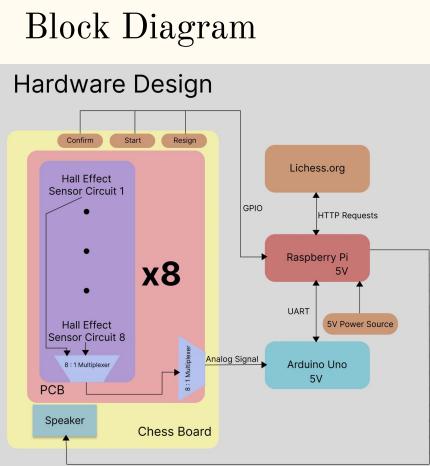
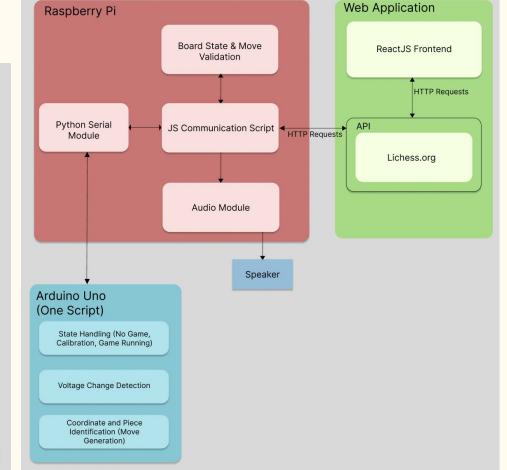
Team AO: Tactile Chess

Mukundh Balajee, Edison Aviles, Juan Mejia


Problem Statement/Use Case

- Online chess platforms have over 1B users
- Inaccessible to blind users
 - \circ No accessible features or products
- Difficult for beginner/novice chess players to practice chess
- Solution:
 - Develop a smart chess board to understand online gameplay
 - \circ Provide tactile and vocal cues to our users
 - Seamless transition between online platform and physical board



Use-Case Requirements

Case	Requirements
User Experience	 ~25s setup time Modified board for blind users
Piece Detection & Board Integrity	 Differentiate between piece type and colour Achieve 100% accuracy Sensors and push-buttons to help verify board and game integrity Board State at any given time Move legality
Accuracy & Latency	 Maximum system latency of 1 second Accuracy of piece detection: 100% Accuracy of tactile and vocal cues: 100%

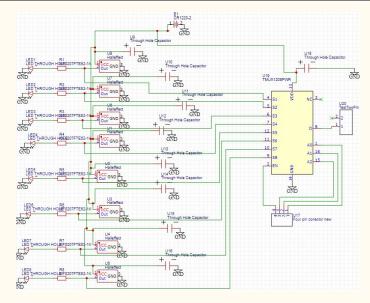
Software Design

Solution - Accessibility

Barrier	Solution
Identification of Pieces	 Differentiate colours Black pieces will have tips To identify pieces blind users touch and feel the piece
Identification of Opponent Moves	 Vocalize opponent moves (based on standard chess coordinates) Using 3W 8Ω General Purpose Speakers LM386 IC to amplify sound Vocal cues and feedback to help user move pieces
Set up convenience	 Use buttons to start and end game Provide vocal cues to help calibrate sensors
User Accounts	 Each board tied to a unique account Ability to change account on lichess.org

Final Solution - Board and Piece Design

- Chess Board laser cut from wood
 - Etched and raised tiles
 - \circ Braille annotations for coordinates and buttons
- 3D printed pieces
 - Magnets in a custom printed base
 - Black pieces will have a tip to help differentiate
- Lock-and-Key mechanism between piece and board
 - \circ Pieces will have pegs on the bottom
 - \circ Board will have holes on each tile



Final Solution - Piece Detection and Board Integrity

- PCB with Hall Effect sensors to detect pieces
 - $\circ \quad \ \ {\rm One \ sensor \ per \ square}$
 - Switch polarity for different colours
 - Different magnetic strength for each unique piece
- Validate board state at any instant
 - Generate a FEN notation of current board state
 - Check legality of FEN using Stockfish API
- Validate any move made by user
 - Generate move at the Arduino
 - \circ ~ Send move to a move legality checker
 - If move is valid, send to lichess.org
 - Provide vocal feedback to user

Final Solution - Software

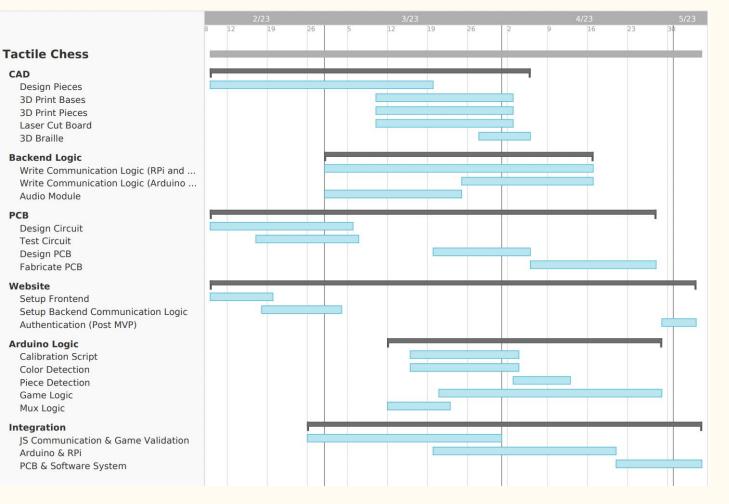
- JavaScript Communication
 - \circ Delegate information being piped from Arduino and Lichess to other modules
- Python Serial Module
 - \circ $\hfill Read and send information between RPi and the Arduino$
 - \circ ~ Flags ensure accurate move generation and communication flow
- Audio Module
 - \circ ~ Used to vocalize messages from the JS Communication script
- Move & Game State Validation
 - \circ ~ Verifies a user's move based on the current state of the live game

Testing & Validation - Implemented

- Move & Board Legality
 - \circ Testing script generating games with random moves
 - All errors caught successfully
 - Latency: <25ms
- Board Components
 - \circ Chess board and pieces have been tested for usability and accessibility
 - \circ \quad Buttons tested for functionality and fast communication
 - \circ Speaker tested for sound, and ability to vocalise accurately
 - Tested with our final vocalization script to ensure accuracy
- Latency Tests
 - \circ $\;$ Arduino UNO and RPi Communication: ${<}80\mathrm{ms}$
 - \circ Vocalization: <500ms
- Power Tests
 - \circ ~ Speaker and buttons tested with 5V input from RPi ~

Testing & Validation - Future Plans

- Piece Detection:
 - \circ PCB with magnets in pieces and chess board
 - Multiple pieces on board
 - Latency: <100ms
- Power Tests:
 - $\circ ~~5V~across~all~PCBs$
- Latency Test:
 - \circ Piece detection: <100ms
 - $\circ \quad {\rm System \ Latency:} < \!\! 1500 {\rm ms}$
- Usability Tests:
 - Simulate 3 different types of games for blind users and beginners
 - Record feedback regarding
 - Latency
 - User Experience
 - Accessibility


Design Trade Offs

• Power

- Wall outlet to power RPi
- RPi powers Arduino and other systems (PCB, speaker, etc.)
- Cheaper than buying batteries
- $\circ \quad \ \ {\rm No \ limit \ on \ battery \ life}$
- Board Design
 - $\circ \quad {\rm Laser \ cut \ board \ from \ wood}$
 - Cheaper than 3D printing
 - \circ $\;$ Laser cut supports for PCB, speaker and buttons

Schedule

