
18-500 Design Review Report Template - 18 January 2022 Page 1 of 9

https://www.overleaf.com/project/63fd2a7afd12d57ea9958f51

Tactile Chess
Authors: Mukundh Balajee, Edison Aviles, Juan Mejia

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system, predominantly for blind users,
capable of communicating the user’s moves on a phys-
ical chess board to an online platform, while also pro-
viding feedback based on different game states and user
actions. This system aims to combine vocal and tactile
cues to provide our blind users with the opportunity to
play online chess through a custom-made chess board.
This one-of-a-kind system will be capable of providing
feedback based on moves made within 300ms and re-
trieving information from a public chess server within
500ms of an opponent making a move.

Index Terms—3D Printing, 3D Modeling, Chess,
Hall Effect Sensors, PCB Fabrication, Tactile, Vocal
Cues

1 INTRODUCTION

With the recent growth in the number of online chess
users, we realized that a section of the market was ne-
glected: blind users. In order to address this problem, our
team decided to build a custom made chess-board, with
accessible features for blind users, which can connect to
an online chess platform, like lichess.org. Our main stake-
holders are blind people. However, with the use of a web
application, we hope to provide beginner and novice chess
users with a physical board, to automatically simulate an
online chess game.

For the blind users, our board will provide vocal cues.
To make our board more accessible, we are engraving braille
notations for the board’s coordinates, and on the pieces.
This will help them differentiate pieces and locate them
when vocal cues are provided. The board will differentiate
black and white tiles by raising one of the colors and lower-
ing the other. To ensure the pieces are placed in the correct
spot and do not fall over during the game, the board and
pieces will have a lock-and-key mechanism with a peg on
the base of every pieces and a hole in every tile. To make
the game play seamless, the user will have to press a button
on the board to start an online chess game, if the board is
set up correctly.

For the rest of our stakeholders, we hope to provide a
chessboard that will help simulate an online chess game on
a physical board, to help understand the basics of the game
and visualize the board.

Currently, there is no technology that provides blind
users the ability to play online chess without the use of
an iPad or another such device. There are custom-made

boards, which help simulate moves in better ways, however,
these systems are way more expensive (around $2, 000) and
not affordable. Furthermore, such boards are not accessible
to blind users.

2 USE-CASE REQUIREMENTS

Our requirements are mostly focused on accessibility
features and user experience.

• The system will be able to distinguish black and white
pieces with 100% accuracy and distinguish between
specific game pieces with 95% accuracy. In order to
guarantee the integrity of our board state we have
to be able to accurately distinguish pieces on the
board. We believe we can distinguish between white
and black pieces fairly easily by varying magnet po-
larity for each color. For individual game pieces, we
will vary magnetic strength slightly by using vary-
ing magnet strengths, sizes, and distances from the
Hall-Effect sensors.

• The board will take 300ms to give user vocal feedback
based on a user’s move. In order to have a seamless
experience, we have set a goal of 300ms since this is
the average human reaction time.

• Once an opponent has made a move, the board will
vocalize the move for the user to then replicate on the
board. The board will be able to do this in 500ms,
the reason for this is lichess.org, the public source
chess API we are using, has a latency time of 500ms.

• The system will provide at least 4 hours of battery
life. The average chess game lasts anywhere from
10-60 minutes and the average chess player plays 2
games per day. Considering our stakeholders are ei-
ther blind users or beginners, we expect the game to
take more than the average length of a chess game.
The average player plays chess for at most 2 hours
per day - by providing 4 hours of battery life, the
user will be able to use the system for longer without
charging it.

• Users will be able to finish setting up their device,
which involves connecting to an online chess game,
within 60 seconds. We will achieve this by having a
push-button mechanism to help start an online game
without too many steps.

18-500 Design Review Report Template - 18 January 2022 Page 2 of 9

• The board will be made accessible. We will achieve
this by creating a custom chess board and chess pieces
that use braille notation to allow users to easily iden-
tify a current piece and tile coordinates. To help blind
users differentiate between black and white pieces,
one of the colors will be raised and the other will be
lowered. We will also have a speaker on the board to
help provide tactile cues.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

3.1 Chess Board & Pieces

We will create a custom chessboard and game pieces
using the Rhino 3D modeling software in order to incor-
porate the distinct cues used in typical blind chess. These
cues include the varying heights of the tile based on its
color, braille engraving for tile coordinates, braille engrav-
ings for each chess piece, and a key and lock mechanism
between chess pieces and each tile. The pieces and board
will be made using plastic since this will guarantee mini-
mum interference with the magnetic fields being measured.
Below the chessboard, we will mount a custom printed cir-
cuit board that will contain all of the circuits and electron-
ics needed to add to help simulate the physical game, on
the online platform. Each unique game piece will contain a
magnet that will vary in size, polarity, and shape based on
the color and piece type - this aims to trigger the linear hall
effect sensors embedded in the PCB, by producing varying
voltages, which will help us distinguish pieces.

(a)

Figure 1: 3D-modeled chess set

3.2 Hardware

3.2.1 Printed Circuit Board

To help in sensing the pieces, we will have a PCB un-
derneath the 3D-printed chessboard. The PCB will house
our entire circuitry to detect varying magnetic fields with
the Hall Effect Sensors. Each tile will have one sensor, re-
sulting in 64 total sensors. We plan to group these sensors
into 8 groups of 8 to allow for convenient 8:1 multiplexing.
The PCB will also have holders for batteries and power
regulation. This will allow the board to not be tethered or
connected to a wall outlet. The output of the multiplexers
will then be connected to an 8 channel analog to digital
converter which will feed digital signals to the Raspberry
Pi.

3.2.2 Raspberry Pi

The Raspberry Pi will help update and store the board
state. The RPi will also serve as a central hub for data
to and from the website. The bulk of the move validation
and legality checks will be done here. The RPi will also
communicate with lichess.org, to update moves made by
the user, and vocalize moves made by the opponent.

3.3 Components on Chessboard

We plan to have LEDs on the chessboard, to help our
beginner and novice users play with ease - this will be inte-
grated post MVP. The chessboard will also have a speaker
to help provide vocal cues to our blind users, and also give
our users feedback and updates regarding the game. Fi-
nally, the board will contain several buttons to connect to
lichess.org and perform certain actions, such as starting or
ending a game.

3.4 Software

3.4.1 Legality Check

In order to guarantee the communication with
lichess.org is minimized - given the API’s latency, we will
be running state and move checks locally before commu-
nicating the information to the API and web application.
In order to perform move and state validation we will be
using the Stockfish API which will allow us to retrieve the
current game state (FEN Notation) via HTTP GET re-
quests to lichess.org and create a local board state through
Stockfish using that board state (FEN Notations). The
Stockfish API is an open-source stockfish class, to inte-
grate the Stockfish chess engine to check the current board
state, check for illegal moves, stalemates, and checkmates,
and provide feedback through the RPi’s speakers within
our goal of 300ms.

3.4.2 Web Application

Our custom made web application will be deployed on
an EC2 AWS server to allow user’s to view their live games,

18-500 Design Review Report Template - 18 January 2022 Page 3 of 9

match history, and solve chess puzzles. The website’s fron-
tend will be coded in reactjs, while the backend will be
coded in nodejs. Through HTTP requests to the public
lichess.org endpoint, the frontend will be able to GET and
POST information about a user’s live games and moves to
then display on the web application. The website’s main
focus is to serve as a central information hub for the user
to interact with past games or view their moves live from
lichess.org. This aspect of our system is mainly focused to-
wards beginner players that will also be using our product.

4 DESIGN REQUIREMENTS

The following design requirements are related to the
use-case requirements that are outlined in Section 2. In or-
der to allow users the seamless transition from the physical
board to the online chess game, the board should distin-
guish the piece color with 100% accuracy and the type of
piece with 95% accuracy. In order to achieve this, the sen-
sors must be able to distinguish first the presence of a white
piece, a black piece, or no piece at all; then they must dis-
tinguish whether its a pawn, knight, rook, bishop, queen,
or a king. The software needs to achieve 100% accuracy
in determining which piece was moved based on the sensor
output, as well as having a 100% accuracy in determining
the legality of moves based on a local system checker. The
legality check will ensure users don’t make an illegal move
when playing against an A.I. or an online opponent.

Our system must take 1500ms or less to validate the
user’s move and reflect the move on the online game or
provide audio feedback to the user, and then vocalize the
opponent’s move through the board. This process goes
through multiple subsystems and so the 500ms is the bound
given to us by lichess.org for the speed that a user can
make a move using their API and the move reflecting on
their platform. To ensure we have minimal latency experi-
enced by our users, we have set realistic latency goals for
each of our subsystems. The latency goals and steps are:
receive the user button press input (20ms), collect sensor
output data (40ms), convert analog outputs to digital out-
puts (50ms), check the legality of the move (50ms), record
the move to store in software (20ms), send the correct move
to lichess.org through our Web-App (500ms), receive the
opponents move on our Web-App (500ms), send the move
data to the board (30ms), and vocalizing the piece type
and the move start and finish based on the standard chess
annotations (30ms). The latency goals are a bit on the
higher side for some of the steps, however, our latency goal
of 1500 ms gives us wiggle room. This would allow us to
account for any communication delay between subsystems
or any delays in vocalizing feedback.

The entire system should have enough battery power
to last a user 4 hours on a single charge. The average
chess game can last anywhere between 10 to 60 minutes
and the average chess player plays 2 games a day. This
would equals about 2 hours of playtime on the high end
of the bounds. Considering our stakeholders are visually

impaired or beginners, we estimate their average playtime
for their games will be higher than normal. Taking into ac-
count the 2-hour-per-day playtime, we want our users to be
able to play more than one game without worrying about
charging the device. We are limiting the system to 4 hours
because this keeps the form factor of the board relatively
small for the convenience of the user.

Lastly, geared more towards our beginner chess player
users, we want our Web-App to display users past match
history, win-loss ratio, and allow users to learn chess strat-
egy through chess puzzles. The users will be able to com-
plete the chess puzzles using the board and the system will
provide audio feedback to help them learn and complete the
puzzles. Our physical board and pieces will have braille en-
graved to help our visually impaired users identify the piece
type and location on the board. Since our board will have
buttons embedded into the board, there will be braille en-
graved above each button to identify their function.

5 DESIGN TRADE STUDIES

5.1 Sensors

For our sensors, we chose to use Hall Effect Sensors to
help detect a magnetic field. We chose to use the Texas
Instruments Hall Effect Sensors. We needed to choose be-
tween unipolar or bipolar sensors, and also between linear
(analog) and digital Hall Effect Sensors. Since we plan to
distinguish colors based on the polarity of the magnet, we
plan to use bipolar sensors since it provides a more robust
architecture. This will help us distinguish pieces’ colors
by flipping magnets (polarity) instead of varying magnetic
strength. Between the linear and digital sensors, we chose
to use a linear Hall Effect Sensor. A linear sensor helps us
receive varying voltage outputs for varying magnetic fields.
So we plan to use varying magnetic fields for each unique
piece, to help identify pieces and maintain board integrity.

5.2 Analog to Digital Converter

We chose to use an 8-bit, 8-channel Analog-to-Digital
Converter (ADC) because we wanted an efficient solution
to sample 8 multiplexers. We chose an 8-bit ADC to avoid
loss of resolution, and reducing the number of bits doesn’t
give us significant cost gains.

5.3 Multiplexers

The choice of using an 8:1 multiplexer was because of
our choice for PCB Fabrication. Since the board is being
fabricated in columns of 8, we chose to use an 8:1 multi-
plexer, and an 8-channel ADC. This architecture will help
optimize our cost with modularity and increased efficiency.

5.4 PCB Fabrication

For our PCB, we will be having a modular approach
to help fabricate a circuit board for one tile (2”x2”) and

18-500 Design Review Report Template - 18 January 2022 Page 4 of 9

replicating it for the other tiles. The dimensions of our
board will be 16”x16” (without the external board compo-
nents). We plan to fabricate the entire board in sections of
columns, instead of one single PCB to minimize cost. Each
of the columns will have an 8:1 multiplexer, the output will
then be fed into an 8-channel ADC, to send the information
over to our Raspberry Pi.

5.5 Batteries

To achieve our desired performance and expected bat-
tery life of 4 hours, we have to size our batteries accordingly
without sacrifice the size of the system. We need a com-
pact solution that has not only enough power to keep our
system powered, but also enough connectivity to power our
hardware subsystems. Lithium-ion cells satisfy all these re-
quirements better than lead-acid, alkaline, or lithium-iron-
phosphate batteries. We will be using a battery pack that
has multiple output types, such as USB, USB-C, and a
DC5521 connector. In order to achieve a smaller form fac-
tor we have experience removing the 18650 cells from the
encasing of the battery pack and putting them into a cell
holder that we can solder directly into the PCB as an op-
tion.

5.6 Raspberry Pi

For our given system, we chose the Raspberry Pi 4
Model 4 4GB. One of the main reasons we chose this model
RPi was for the connectivity that it offered. The 40 pin
GPIO header would allow us to communicate with the sig-
nal from the AC DC converter. The 4-pole stereo audio
port would allow us to connect a speaker to provide vocal
cues. The 4GB ram would give us ample storage and per-
formance to store the game state and check the legality of
moves. The 4 USB ports would give ample ports to power
the speaker and other peripherals that we might need. The
2.4 GHz and 5.0 GHz IEEE 802.11ac wireless would allow
the RPi to connect to our Web-App. The 5V DC via USB-
C connector is compatible with our battery pack for the
system. We are also going to supply the RPi with a 16GB
micro-SD card to store the OS, our python scripts, and list
of moves for different games.

5.7 State Validation

In order to efficiently give our user feedback on the cur-
rent state of the board, we decided to incorporate state vali-
dation prior to communication with any external platforms.
This will minimize latency by locally keeping track of a
chessboard state and validating the users move based on
the stored state. To accomplish this, we looked at several
valid move generators and chess engine APIs - including
Stockfish API (an open-source API that gives developers
the ability to use the Stockfish chess engine) and Chessnut.
We decided to move forward with using Stockfish since it
provided extensive documentation and a large variety of
chess related methods, such as loading a game based on a

specific FEN, making moves on a chessboard, and deter-
mining if a stalemate or checkmate is present. Moreover
it provides feedback in around 2ms, which makes up for
the large amount of latency generated by making calls to
lichess.org. Furthermore, lichess also uses the Stockfish en-
gine on their platform, which allows us to keep communica-
tion and behavior consistent throughout the entire system
cycle.

5.8 Legality Check

To validate a move, we will need to know the initial
and final positions of the moved piece, and make sure the
piece has been moved in its allowed pattern (Bishop can
only move diagonally, Rook can only move in straight lines,
etc.). We could also generate a list of legal moves and com-
pare it to the move made. Even though lichess.org uses
the Stockfish API, it takes up to 500ms to provide feed-
back from lichess.org to the RPi. Since we want to provide
feedback to our users before their move is reflected on the
online platform and hit our latency targets, we decided to
use the Stockfish chess engine in our RPi, to help reduce the
latency. This way, we validate a user’s move before commu-
nicating with the external platform, and provide any feed-
back regarding the user’s ove back to them before changing
the game state.

5.9 Website Infrastructure

Despite our main target audience being blind users, we
decided to create a website to display user and chess re-
lated information. The main reason for incorporating this
web application into our project was to reach other com-
munities, especially novice or beginner chess players. By
allowing novice players to analyse their games, view daily
puzzles, and observe their current live games we hope to
provide a platform in which users can learn how to play
chess through the use of visual cues on the board and on the
website. We chose to implement our web application using
a ReactJS frontend and NodeJS backend. The main rea-
sons for this decision were to utilize React’s asynchronous
rendering functionalities and to use a JavaScript framework
since lichess documentation was written in JavaScript. Fur-
thermore, the team found a variety of chess related libraries
that were all supported in JavaScript - including Chess.js
and React Chessboard. It is also incredibly simple to cre-
ate a React app and connect it to a Node backend, which
in turn allows for easy setup and deployment.

5.10 Online Chess Platform

For our online chess platform, we looked at various op-
tions. We began by contemplating using the largest on-
line chess platform, chess.com, but quickly realized that
their API was limited to exporting data and wouldn’t al-
low users to make moves during a live game. After coming
to this conclusion, we pivoted and began considering two
main options, lichess.org and creating our own online chess

18-500 Design Review Report Template - 18 January 2022 Page 5 of 9

platform. We considered lichess to be the most reasonable
answer since it would allow our users to connect with one
of the largest online chess communities. Moreover, the ser-
vice provides a variety of endpoints that would allow us to
interact with live games and utilize an already established
tool set for chess games. The only limiting factor lichess
posed was its latency limits - communication between all of
our systems and lichess will take at least 500ms. In order
to mitigate this and maximize all communication with the
platform we decided to incorporate move validation before
sending moves to the online server - this way the user will
receive feedback on their move faster than they would if
they communicated directly with lichess in order to receive
feedback.

6 SYSTEM IMPLEMENTATION

6.1 Chessboard & Pieces

Our custom chessboard is broken down into two layers,
the top layer will consist of a custom 3D printed blind-
friendly chessboard surface - where the user will interact
with game pieces, and the bottom layer will consist of a
PCB which will be used for piece and move detection. The
chessboard has been made blind-friendly by varying the
height between white and black tiles and incorporating the
use of braille notation to identify tile coordinates. On the
other hand, the PCB layer will consist of 64 hall effect sen-
sors spaced out by 2 inches between each sensor to allow
for a standard chessboard size. Game pieces will also be 3D
printed and made blind-friendly. In order to achieve blind-
friendly game pieces we designed a key and lock mechanism
between the pieces and board while also engraving braille
notation on each individual piece to help the user iden-
tify between different pieces and piece colors. Inside each
of the pieces, there will be a magnet, which will vary in
size, polarity, and shape based on the game piece and piece
color. The PCB will also consist of several LEDs, these
LEDs will be provided power and utility after the MVP
checkpoint has been reached. The purpose of these LEDs
is to add visual cues for beginner or novice chess players
to easily navigate the board and receive game moves from
their opponents.

Figure 2: 3D-modeled chess set

6.2 Move Sensing

In order to facilitate move sensing we designed a PCB
which will be installed in the bottom layer of our chess-
board. The PCB will use the DRV5055 radiometric hall ef-
fect sensors from Texas Instruments to detect when pieces
are placed on a tile. Furthermore, the sensors will allow us
to differentiate between pieces and color by the varying po-
larity and magnetic strengths produced by the pieces. The
PCB design will be separated into rows which will house 8
radiometric hall effect sensors spaced out by 2 inches. The
outputs of the sensors in each row will have a dedicated 8:1
multiplexer, since there are 8 rows on a chessboard we will
be using a total of 8 multiplexers (74HC4051D IC MUX
8:1 4 OHM 16SOIC 74HC4051D). The 8 multiplexers will
feed their analog outputs to an 8-pin ADC (8-channel ADC
TLA2518IRTER), which will then communicate the digital
output to the Raspberry PI. The RPi will process the data
sent by the sensors and run legality checks on the user’s
input before communicating the information to lichess.org
and the web application. Once the opponent has made a
move and it has been vocalized through the speakers, the
user will then proceed to replicate the move on the physical
board. The move will be registered through our move sens-
ing technology, after which the user will receive vocal feed-
back notifying them if the move was replicated correctly or
not.

6.3 Hardware User Interface

The board’s user interface will consist of a speaker and
3 buttons. The speaker will be used to provide vocal feed-
back about opponent moves and board and move validity.
It will be powered by the Raspberry Pi and will be utilized
by a python script in the RPi during different instances of
a live game. Furthermore, the 3 buttons will have specific
behaviors assigned to each of them. The first button will
be used to start seeking a game with an online opponent,

18-500 Design Review Report Template - 18 January 2022 Page 6 of 9

the second will be used to start a game with an AI oppo-
nent, and the third will be used to resign a game or cancel
a seek. In order to power these buttons and connect them
to the Raspberry Pi we will use a basic switch circuit - see
figure 3. Once the Raspberry Pi is notified of a request, we
will use a Python script to case on the pressed button. In
the case of an online seek, the script will send an HTTP
POST request to lichess.org which will establish a stream
of events between the script and lichess. Once a game start
event is received, our script will move to a game state in
which user and opponent moves will be interpreted. In the
case of an AI seek, the system will follow a similar flow as
the regular online seek, however, the HTTP POST request
being made will hit a different endpoint. As for the resign
or cancel button, the script will first verify if a connection
with lichess has been established and if a game start event
has been received. If a game start event has been received,
the system will then communicate with lichess through an
HTTP POST request indicating the service that the user
is resigning the game - if a game has not yet begun, the
seek will be canceled.

Figure 3: Basic push-button circuit

6.4 State Validation

State validation will be performed in the Raspberry Pi
through a legality move checker script written in python.
The python script will use a library called Stockfish to cre-
ate a local stockfish instance, which is essentially a chess-
board object, on which moves will be replicated. This ob-
ject has certain attributes such as the current fen of the
board and methods that can be used to make moves on
that fen. The script will also be able to communicate di-
rectly with lichess.org by using different methods of HTTP
requests. Once a game is initiated, a stream is started be-

tween lichess and the Raspberry Pi, furthermore a stockfish
object is created. Once the player makes a move the object
will read the input and attempt to replicate the move on
the fen which represents the state of the board. If the move
is valid, the script will then make an HTTP POST request
to lichess.org with the move specifications - if the move is
not valid, the user will receive vocal feedback about the
move. Once the opponent has made a move, the script will
detect it through the already established stream and notify
the user of the move that must be replicated. At this point
a second copy will be created of the stockfish instance -
call this the expected board, which includes the opponents
move. In order to verify that the user replicates that move
correctly on the board, the script will then compare the
result of the user replicating the move with the expected
state. If they match, the game will proceed - if they are
different the user will receive verbal feedback through the
speakers on the board.

6.5 Web Application

The website frontend will use ReactJS and CSS in or-
der to display different user information, as well as live
games. The backend will use NodeJS and will be mainly
used to communicate with lichess.org using different meth-
ods of HTTP requests. We chose to use ReactJS and CSS
for frontend purposes since ReactJS allows for an easy way
of incorporating JavaScript into HTML, moreover by us-
ing ReactJS’s state management we can easily display live
games by using React states to asynchronously update the
website’s local game state copy. We chose to write the
backend in JavaScript to keep the coding language consis-
tent through the full stack of the website. Furthermore,
most of the documentation available for lichess.org ’s API
was written in JavaScript which made it easier to navigate
and translate to our website’s specific needs. The frontend
will display the current live game by acquiring the current
live game’s id through a GET request from our backend
to lichess.org. After identifying the game id, the page will
make a second GET request to lichess.org, this time from
our frontend, which will establish a stream between our web
application and lichess. Through this stream lichess will
be sending game updates including the current FEN and
the last move made. With this information, the frontend
will render the current live FEN using a library called react
chessboard and will create a local chess state using Chess.js
which will be linked to the rendered chessboard. Through-
out the rest of the game, the frontend will update the chess-
board state via the moves being streamed to the frontend
by lichess. The NodeJS backend will mostly be used to
make HTTP requests which don’t require streams, such as
getting a game id or authenticating users via lichess.org.
The web application will be deployed on an EC2 server us-
ing AWS to allow users to view their match history or live
games from any platform.

18-500 Design Review Report Template - 18 January 2022 Page 7 of 9

6.6 Power

In order to power our system we are going to be us-
ing a lithium-ion battery pack. The pack that we want to
use can provide 5V at 12Ah or 12V at 6Ah DC output.
Our Raspberry Pi will use 5W, therefore over a period of 4
hours, it will require 20 Watt-hours of power. In order to
split the output of the battery pack and reduce the noise,
we will have a linear regulator circuit for the PCB. The
12Ah provided by the battery pack will give us plenty of
room to power our system.

7 TEST & VALIDATION

To help our testing plans, we hope to follow test-driven
development, to ensure each subsystem is tested before in-
tegrating with the existing system. To do this, we plan
to develop testing scripts for each subsystem, to test every
function and the overall performance of each subsystem.

7.1 Tests for Accessibility

To ensure that our board caters to our target stakehold-
ers, we plan to test our chessboard by going to the Blind &
Vision Rehabilitation Services of Pittsburgh, to test if our
board is blind-friendly. We also plan to test our board for
beginner and novice users, to make sure the board caters
to all of our target stakeholders.

7.2 Tests for Piece Detection

To test the accuracy of piece detection, we hope to test
our sensors and magnets, by ensuring we have unique read-
ings for each unique piece, and opposite values for different
color pieces. To ensure we hit our accuracy goals, we plan
to test piece detection by placing different pieces in differ-
ent locations to ensure we are able to differentiate between
them. We will also be simulating a blindfolded game of
chess to help ensure if any pieces are knocked down, we
can maintain the board’s integrity by providing appropri-
ate vocal cues, to reach the board’s latest state. We hope to
achieve a 100% accuracy in distinguishing colors and 95%
accuracy in detecting each unique piece.

7.3 Tests for Legality Check

To ensure our users perform legal moves, we hope to use
the Stockfish API to ensure the moves executed are valid.
To test our script for legality checks, we hope to have a
testing script with simulated games and ensure our script
catches all the expected errors and detects the legal and
illegal moves.

7.4 Tests for Components on Board

To test the functionality of the button on the board to
start the game, we hope to ensure that there is smooth
connectivity between the board and lichess.org. For the

speaker, we plan to use our testing script to raise errors
and ensure the errors are being vocalized accurately.

7.5 Latency Tests

To ensure our system latency is within our desired goal,
we plan to test every individual section and also the en-
tire system for response time. We will test and record the
amount of time taken for a piece to be detected. The next
step will be to calculate the time taken for information to
reach the Raspberry Pi and then be checked for legality. We
plan to test this portion with our test script and record the
time taken to provide feedback to the user or communicate
the information to lichess.org. Our final test for latency
will be to check the time taken for an opponent’s move to
be vocalized on our board. For all these latency tests, we
either plan to use a minimum of 40-50 test cases, to help
get an accurate average latency for the system, or simulate
at least 2 games with 40-50 moves per color for each game.

7.6 Power Tests

To measure our power consumption, we plan to test our
RPi and sensors at idle and at their peak consumption us-
ing a power supply instead of our batteries. We will then
simulate at least one chess game, played by blind users.
We will then test the state of charge of the batteries be-
fore and after the game, and extrapolate it to the amount
of time/number of games that can be played. If we need
to increase our battery capacity, we have space to add our
batteries and using this information, we can choose to be
more cost-effective with our battery consumption.

7.7 Usability Tests

To test the overall usability of the system, we hope to
test it with two groups; the first one is our primary stake-
holder, blind users, and our other stakeholders, beginner
and novice chess players. We have a set of user tests we
hope to perform, and collect feedback. For our blind users,
we will ask them to play 3 games:

• One regular game with the chess AI (game starts with
a button push by the blind user)

• One regular game with an online user (game starts
with a button push by the blind user)

• One random ongoing game (simulate a chess game
from the middle of gameplay)

For our other users, we hope to have them play a similar
set of games:

• One regular game with the chess AI

• One regular game with an online user

• One random ongoing game (simulate a chess game
from the middle of gameplay)

18-500 Design Review Report Template - 18 January 2022 Page 8 of 9

We will ask our users to play these games in this or-
der, and then ask them a series of questions, that measure
various components of usability and the test metrics:

• Latency:

– ”Did you feel any noticeable lag between piece
movement and feedback from the speaker?”

• User Experience:

– ”Was the board difficult to use, or difficult to
start a game on?”

• Accessibility:

– ”Was the board easy to understand and use?”

– ”Were you able to play an entire game without
any interruptions?”

– ”Was the board intuitive to use?”

The goal of the above set of questions is to understand
if the system we built has helped solve our initial problem
statement, without changing the usability and experience
of a regular chess game. We would like to see if our prod-
uct’s accessible features, and training features for beginner
users, achieve their expected functionalities without affect-
ing the experience of the game of chess. We hope to test at
least 6 different users (3 blind users and 3 beginner/novice
chess players). We hope to receive a standard response of
”No” for Latency and User Experience, and a ”Yes” for the
Accessibility section (at most 1 ”No”).

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule in Fig. 4 is organized by subsystems to ac-
commodate for each members strengths and weakness.Most
of the and deadlines can be done individually, however later
down the pipeline it becomes crucial to complete the inte-
gration steps in series. We took into account the first week
of March for Spring Break. Depending on how the sub-
systems are progressing, it is up to the team member in
charge of it to mitigate how they will make sure deadlines
are met on time. We also made sure allocate enough time
for integration testing and user testing for the system as a
whole.

8.2 Team Member Responsibilities

Each of our members have both primary and secondary
responsibilities. There are some sections that overlap, how-
ever this allows us to maximize each of our members’
strengths.

8.2.1 Edison

Web-App Development, Project Management, U.I De-
signer, Raspberry Pi to Web-App communication, Legality
Checks

8.2.2 Juan

PCB Design and Fabrication, Sensor Testing and Inte-
gration, 3D printing and laser cutting

8.2.3 Mukundh

PCB Design and Fabrication, Board Accuracy and
Integrity, Legality Checks, Web-App Development, Unit
Testing for Subsystems, CAD design of board and pieces,
and Braille Communication

8.3 Bill of Materials and Budget

A large portion of our budget is going towards hall effect
sensors and 3D printing. We have been using the printers
and laser cutters in TechSpark. We have also managed to
save a good amount of money for components from personal
supplies and the Raspberry Pi through donations from the
ECE department. To see the full BOM you can refer to
Table 1.

8.4 Risk Mitigation Plans

One of the main risks that we must mitigate is that no
one in our team has any experience designing and fabricat-
ing a PCB. In order to deal with this challenge, Mukundh
and Juan will research and learn how to use AutoDesk in
order to design the PCB. Fortunately for the purposes of
our project we will only need to design a single layer PCB
as well as having several manufacturing options at our dis-
posal.

Our second main risk is that no one on our team has
experience using radiometric hall effect sensors. In order
to figure out how the strength of certain magnets affects
the output of the radiometric hall effect sensors that we
order from Texas Instruments and set up a simple circuit
on a breadboard. We will then connect the analog output
of the sensors to an 8:1 Analog multiplexer and then to our
Raspberry Pi in order to visualize the differences in the
magnetic fields create by our 12 distinct magnets.

Our third main risk is on the software side. No one in
our group has worked with communicating a Raspberry Pi
with our Web-App, as well as running a custom python
script on Raspberry OS. In order to overcome this chal-
lenge, Mukundh and Edison have been using a python
script to simulate the physical board inputs and sending the
board information to our Web-App. The unknown comes
in the latency from communication from the Raspberry Pi
all the way to lichess.org. In order to keep this value as
low as possible, the goal is to keep all legality and game
accuracy checks locally on Raspberry Pi.

18-500 Design Review Report Template - 18 January 2022 Page 9 of 9

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
16GB Micro SD card Class 4 16GB SanDisk 1 $6.97 $6.97
Radiometric Hall Effect Sensors DRV5055Z4QDBZR Texas Instruments 5 $3.18 $15.90
Radiometric Hall Effect Sensors DRV5055A4ELPGMQ1 Texas Instruments 5 $3.40 $16.98
Raspberry Pi 4 Model-B 4GB B 4GB Raspberry Pi 1 $0 $0
Filament for F170 333-60304 TechSpark 8.520 $1.24 $10.56
Talentcell Lithium ion Battery Pack Talentcell 1 $39.99 $39.99
Radiometric Hall Effect Sensors DRV5055Z4QDBZR Texas Instruments 64 $1.19 $76.07
Push Buttons Red Arduino 4 $0 $0
IC MUX 8:1 4 OHM 16SOIC 74HC4051D Toshiba 9 $1.30 $11.71
8-channel ADC TLA2518IRTER Texas Instruments 3 $4.63 $13.89
Analog Speaker Ideate 1 $0 $0
LEDs Ideate 1 $0 $0
Custom PCB Seeed Fusion Quick Turn 8 $22.98 $183.86

$375.93

9 RELATED WORK

One of the most similar projects/products that we have
found is a product called Phantom Chess.

Phantom Chess is an automatic chess board that al-
lows users to play online chess on a physical board. It
achieves this by using 500 hall effect sensors to sense where
the pieces are on the board, and it uses a robotic arm on
the inside of the board that moves the pieces throughout
the board to reflect the moves made by the user and oppo-
nent on lichess.org. Not only is this option over our budget,
but it also is expensive, and not accessible to blind users.

10 SUMMARY

The Tactile Chess system is an all-in one system that
provides accessibility to play online chess on a physical
board for the visually impaired community. The system
provides users braille identification on the pieces and board,
vocal feedback and queues of their own and their oppo-
nents moves, legality checking, access to their past game
data, and a learning platform through puzzles for begin-
ner chess players. Players will be able to play at their own
pace as competitive as they want with the speed of the
board matching even the most experienced of chess play-
ers. Foreseeable challenges in the remaining time of the
project would be PCB validation, identifying the correct
magnetic strength for all 12 pieces, laser cutting and 3D
printing the housing for the entire hardware system, and
doing user testing. We are confident that we will overcome
these challenges and meet our use-case and design require-
ments to deliver a high quality product.

Glossary of Acronyms

• ADC - Analog-to-Digital Converter

• API - Application Programming Interface

• HE - Hall Effect

• PCB - Printed Circuit Board

• RPi – Raspberry Pi

References

• Zhelyabuzhsky, I. (2023, February 28). Stockfish.
GitHub. https://github.com/zhelyabuzhsky/stockfish

18-500 Design Review Report Template - 18 January 2022 Page 10 of 9

F
ig
u
re

4
:
G
a
n
tt

C
h
a
rt

