



# Team A0: Tactile Chess

Edison Aviles, Mukundh Balajee, Juan Mejia



## Problem Statement/Use Case

- Online chess inaccessible to the visually-impaired
  - Develop smart chess board
- Using a physical chess board to understand online gameplay
  - Useful for beginner and novice players
- Provide tactile and vocal cues
  - Quick transition between online platform and physical board
- Smooth gameplay experience between the online and physical board



### **Case Requirements - Revisited**

| Case                              | Requirements                                                                                                                                                                        |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| User Experience                   | <ul> <li>60 sec setup time</li> <li>Minimum 4 hours battery life</li> <li>Maximum latency of 1 second</li> </ul>                                                                    |  |
| Piece Detection & Board Integrity | <ul> <li>Differentiate between colours and pieces         <ul> <li>Aim to achieve 100% accuracy</li> </ul> </li> <li>Use sensors to verify board state and move legality</li> </ul> |  |
| Accuracy & Latency                | <ul> <li>Full system latency max 1 second</li> <li>Accuracy of piece detection: 100%</li> </ul>                                                                                     |  |

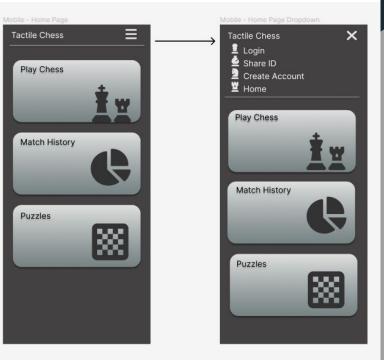
### Solution Approach - Accessibility

| Barrier                             | Solution                                                                                                                                  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Identification of Pieces            | <ul> <li>Pieces will have different textures and braille using<br/>3D printing techniques</li> </ul>                                      |
| Identification of Opponent<br>Moves | <ul> <li>Piece location clear vocalization through speakers<br/>on the chosen device (based on standard chess<br/>coordinates)</li> </ul> |
| Set up convenience                  | <ul> <li>Integrated buttons on the board to start/end/reset<br/>games</li> </ul>                                                          |

### Solution Approach- Board & Piece Design

- Custom design pieces on 3D Modeling Softwares
  - Add Braille notations on the stem of pieces
- Custom design board with etched and raised tiles
  - Add Braille notations for the coordinates
- Have a lock and key mechanism between piece and board
  - Pieces will have pegs and board will have holes

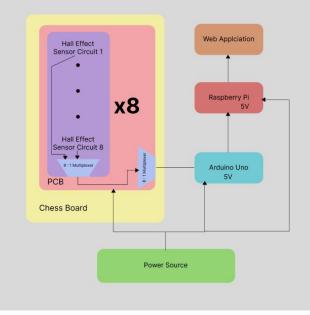



### Solution Approach - Piece Detection, Board Integrity

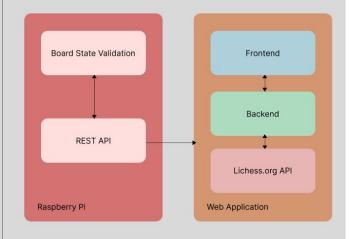
- Use Hall Effect sensors to detect pieces
  - Switch polarity of magnets for opposing teams
  - Control strength of magnet for each unique piece
- Validate moves with the help of the Stockfish API (done on RPi)
- Maintaining a state of the board and recording moves
  - Store moves list for training purposes
- Ensuring physical board and online game are identical



## Solution Approach - Website


- Use reactis frontend and nodejs backend
  - Nodejs backend makes calls to lichess.org API and authenticate users
- Authenticate users through lichess.org or other OAuth APIs
- Seek game and display game once connection is established
- The game/board status streamed through pipeline to RPi
  - Based on updates user receive vocalized cues
  - RPi will be a central data hub for information from board and online game




### **Block Diagram**

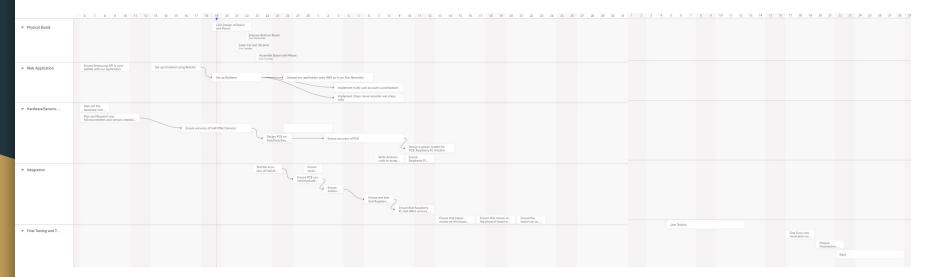
#### System Design

#### Hardware Design



#### Software Design




# Implementation Plan

|          | Materials                                                                                                                                                                                     | System Design                                                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Hardware | <ul> <li>Hall effect sensors</li> <li>Magnets (varying sizes and shapes)</li> <li>Resistors, wires, (for PCB testing)</li> <li>Arduino</li> <li>Raspberry Pi</li> <li>Multiplexers</li> </ul> | <ul> <li>PCB</li> <li>Arduino (Analog to Digital)</li> <li>RPi (integrity checks &amp; web app communication)</li> </ul> |
|          | Software Stack                                                                                                                                                                                | System Design                                                                                                            |
| Software | <ul> <li>ReactJS, NodeJS</li> <li>Python, Stockfish</li> <li>Lichess.org</li> </ul>                                                                                                           | <ul><li>Web application</li><li>Board integrity check</li><li>Chess API</li></ul>                                        |

## Test, Verification, and Validation

| Requirement     | Test                                                                                                         | Mitigation of Failure                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Accessibility   | <ul> <li>Compare ease of navigation of<br/>blindfolded vs not blindfolded games</li> </ul>                   | <ul> <li>Potentially increase the<br/>number of tactile as well as<br/>vocal cues</li> </ul>         |
| Board Integrity | Compare live board state to expected state                                                                   | <ul> <li>Identify what is causing<br/>inaccuracies - vary magnet<br/>placement, etc.</li> </ul>      |
| Latency         | <ul> <li>Test the latency time of each<br/>individual sub-system and the entire<br/>system cycle</li> </ul>  | <ul> <li>Identify latency bottlenecks<br/>and mitigate based on what<br/>is identified</li> </ul>    |
| Battery Life    | <ul> <li>Measure power usage while system is<br/>in idle state and while the system is in<br/>use</li> </ul> | <ul> <li>Visit different battery<br/>options, determine if power<br/>usage can be lowered</li> </ul> |

# Project Management/Schedule



### Post-MVP Plan

- Add LED system on board to train beginners
- Access and setup puzzles for training purposes
- Access past games details