
Team A0: Tactile Chess

Edison Aviles, Mukundh Balajee, Juan Mejia



Problem Statement/Use Case
● Online chess inaccessible to the 

visually-impaired
○ Develop smart chess board

● Using a physical chess board to understand 
online gameplay

○ Useful for beginner and novice players
● Provide tactile and vocal cues

○ Quick transition between online 
platform and physical board

● Smooth gameplay experience between the 
online and physical board



Case Requirements - Revisited

Case Requirements

User Experience ● 60 sec setup time
● Minimum 4 hours battery life
● Maximum latency of 1 second

Piece Detection & Board Integrity ● Differentiate between colours and pieces
○ Aim to achieve 100% accuracy

● Use sensors to verify board state and move legality

Accuracy & Latency ● Full system latency max 1 second
● Accuracy of piece detection: 100%



Solution Approach - Accessibility
Barrier Solution

Identification of Pieces ● Pieces will have different textures and braille using 
3D printing techniques

Identification of Opponent 
Moves

● Piece location clear vocalization through speakers 
on the chosen device (based on standard chess 
coordinates)

Set up convenience ● Integrated buttons on the board to start/end/reset 
games



Solution Approach- Board & Piece Design

● Custom design pieces on 3D Modeling Softwares

○ Add Braille notations on the stem of pieces

● Custom design board with etched and raised tiles

○ Add Braille notations for the coordinates

● Have a lock and key mechanism between piece and 

board

○ Pieces will have pegs and board will have holes



Solution Approach - Piece Detection, Board 
Integrity

● Use Hall Effect sensors to detect pieces

○ Switch polarity of magnets for opposing 

teams

○ Control strength of magnet for each 

unique piece

● Validate moves with the help of the Stockfish 

API (done on RPi)

● Maintaining a state of the board and recording 

moves

○ Store moves list for training purposes

● Ensuring physical board and online game are 

identical



Solution Approach - Website
● Use reactjs frontend and nodejs backend

○ Nodejs backend makes calls to lichess.org API 

and authenticate users

● Authenticate users through lichess.org or other 

OAuth APIs

● Seek game and display game once connection is 

established

● The game/board status streamed through pipeline to 

RPi

○ Based on updates user receive vocalized cues

○ RPi will be a central data hub for information 

from board and online game



Block Diagram



Implementation Plan

Materials System Design

Hardware ● Hall effect sensors
● Magnets (varying sizes and shapes)
● Resistors, wires, … (for PCB testing)
● Arduino
● Raspberry Pi
● Multiplexers

● PCB
● Arduino (Analog to 

Digital)
● RPi (integrity checks & 

web app communication)

Software Stack System Design

Software ● ReactJS, NodeJS
● Python, Stockfish
● Lichess.org

● Web application
● Board integrity check
● Chess API



Test, Verification, and Validation
Requirement Test Mitigation of Failure

Accessibility ● Compare ease of navigation of 
blindfolded vs not blindfolded games

● Potentially increase the 
number of tactile as well as 
vocal cues

Board Integrity ● Compare live board state to expected 
state

● Identify what is causing 
inaccuracies - vary magnet 
placement, etc.

Latency ● Test the latency time of each 
individual sub-system and the entire 
system cycle

● Identify latency bottlenecks 
and mitigate based on what 
is identified

Battery Life ● Measure power usage while system is 
in idle state and while the system is in 
use

● Visit different battery 
options, determine if power 
usage can be lowered



Project Management/Schedule



Post-MVP Plan

● Add LED system on board to train beginners

● Access and setup puzzles for training purposes

● Access past games details 


