
Our circuit was evaluated via a number of component tests conducted 
both with lab equipment and an ADALM. The inductor coil resonance 
was tested by introducing a 125 kHz RFID tag and ensuring that the 
output at this stage was modulated when doing so. The filters were 
tested via a frequency sweep, in which we verified that the output begins 
to attenuate only after our cutoff frequency of 16 kHz. This confirms that 
desired signals are acquired, while any unwanted noise is filtered out. 
Finally, the output of the circuit was analyzed with an oscilloscope, and as 
an RFID tag was introduced, its bit tag was seen on the monitor. This 
confirms that our circuit successfully acquires, demodulates, and filters a 
signal from a 125 kHz RFID tag.

waitr
Team E6: Sophie Sacks, Dina Razek, Samantha Lavelle

18-500 Capstone Design, Spring 2022
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Students on campus have a difficult time knowing how crowded 
restaurants are in real time. A combined hardware and software solution 
helps mitigate this issue. Our end product consists of two 
radio-frequency identification (RFID) scanners that track how long each 
patron is in line: each user scans in at the beginning of the line and scans 
out at the end of the line. This data is sent to our web application, which 
uses a machine learning (ML) neural network to predict wait times using 
this live data and display the current live and approximate wait times. Our 
system transmits data from the RFID reader to the web server in under 2 
seconds, and our web application responds to the user in under 2 
seconds, as well. The accuracy of our wait time predictions has a margin 
of error of 10%, or 2 minutes. Our entire database can keep track of up 
to 50 patrons.

Our system consists of a custom circuit to collect the bit tag from a 125 
kHz RFID tag, a Raspberry Pi to transfer the bit tag to our web 
application, and a machine learning model that factors the scanned in and 
out time into the current wait time calculation. The circuit collects the bit 
tag via a custom antenna that modulates at 125 kHz; a demodulator 
stage; and a filter stage that isolates the signal of interest. This analog 
signal is then input to an Arduino, which translates the signal to a digital 
bit code and sends it to an RPi, which makes a post request to our web 
application. If the ID number scanned is stored in the database, both the 
entry and exit times will be saved as a WaitTime object. Otherwise, the 
entry time and ID number will be saved as an Entry object. Once a week, 

http://course.ece.cmu.edu/~ece5
00/projects/s22-teame6/

System Description

System Evaluation

Conclusions & Additional Information

the WaitTime data is provided to 
the neural network for training. 
This ML model takes in the 
day of the week, the hour, 
and the minute and predicts 
a wait time in minutes.The figure below displays our entire system architecture, including the 

connection from the hardware (left) to the software frontend and backend 
(right). An Arduino is connected to the circuit to convert the ID bit code to 
digital and send to the Raspberry Pi Zero. The RPi used to send the scan 
time and the ID value as a POST request to the web application server. 
Our web application uses a Django Python-based backend framework 
deployed as an EC2 instance on AWS. The views.py file handles our 
backend logic, connecting our models, forms, and HTML templates. Our 
neural network uses trained and live data to predict wait times.

Web Application that displays wait time 
data

ADALM, which provides signal output + 
power to circuit

Circuit to 
gather + 
demodulate, 
filter RFID bit 
code

Output of the circuit in the 
presence of an RFID tag. 

Captured via oscilloscope.

Overall, we were able to complete a fully working 
product that resembles our original design. To 
further improve this project, the circuit’s target 
frequency could be modified to extract data from 
real CMU ID cards, and this design could be 
translated to a PCB. This would allow the RFID 
scanners to be installed in an on-campus 
restaurant and used in real time for our intended 
application.

Check out our web application 
here! https://waitr.link

RPi to send bit 
code to web 
server

To ensure we met the use case of quick transmission of data, we printed 
the time it took for the server to receive the data from the scan time, and 
based on 50 data points, we found that the average time is 0.96 
seconds, which satisfies our design requirement of within 2 seconds. To 
test our web application response time, we printed the time it took for a 
page to reload based on updates to the data, and found that the average 
time from 50 data points is 1.84 seconds. To ensure we could keep track 
of all the data coming into the system, we tested to see if we could hold 
50 separate data points and 
found no errors or loss of data while 
doing so.


