
1
18-500 Final Project Report: Team E6, 5/7/2022

waitr
Sophie Sacks (Author), Samantha Lavelle (Author),

Dina Razek (Author)

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of utilizing sensors to measure how
many people are in a waiting line gives users the opportunity to check
an application to see the estimated wait time. Our end product
includes one custom-built and one commercial RFID scanner with
one at the beginning of the line and one at the end of the line. The
user will scan their CMU ID when they enter the line and when they
exit the line, which will send timing information to our web
application. The web application will use machine learning to predict
wait times throughout the day using real-time information from the
scanners.

Index Terms—Django, inductor coil circuit, machine learning,
RFID, web application.

I. INTRODUCTION

STUDENTS on campus have a very difficult time knowing

how crowded and busy restaurants are in real time. Without a
way to know how long the line is at the on-campus eateries,
students may miss an opportunity to grab food in between
classes. Especially during COVID, students may be concerned
about how crowded an indoor area is. If there was an option to
check the wait time at a certain restaurant before walking
across campus and physically seeing the line, students would
be able to budget their time spent getting food or a drink more
appropriately. This increased accessibility to food makes it
much easier for students to stop skipping meals because they
do not have the time. Additionally, a solution to this use case
would lead to decreased stress on eateries and staff as well as
increased business during slower times.

Although our focus is placed towards one on-campus dining
location, this project can be applied to any physical space with
a line with a single entry and exit and is scalable to many other
businesses. Other applications include, but are not limited to,
package pickup in the University Center, other on-campus
eateries, and restaurants located elsewhere off campus.

A combined hardware-software solution would help
mitigate this issue for students. By having physical sensors to
measure how many people are in line in a certain eatery, users
can then check an online web application to see the estimated
wait time. Our desired end-product consists of two
radio-frequency identification (RFID) scanners to track how
long each patron is in line. Every user will scan in at the
beginning of the line and scan out at the end of the line. This
data will be sent to our web application, which will use
machine learning (ML) to predict wait times as well as display
the current approximate wait time.

While the main goal of this project is to be able to predict
an accurate wait time, we also have the goal of gaining user
buy-in in order to have enough data for training the ML
model. Moreover, the principal advantage of this approach is
that the data collected is completely anonymous, especially in
comparison to a camera-focused solution using computer
vision.

II. USE-CASE REQUIREMENTS

In order to support our predetermined use case, we must
define certain use-case requirements that will ensure our users
are happy with the product. First, each user wants to have a
simple-to-use web application that is not noticeably slow for
users and makes it very easy to figure out an accurate wait
time once opened. This qualitative requirement results in the
quantitative requirement of needing a margin of error for the
wait time within 2 minutes or within 10% (whichever is
larger) of the actual wait time. Users also want as little
interaction as possible with our product, resulting in a total of
2 or less points of interaction (i.e. the scanners) while
physically in line at the eatery.

To continue maintaining accurate wait times, our system
must be able to properly track ID and keep track of up to 50
patrons who are in line. This number ensures that we will be
able to collect and analyze enough data to make an accurate
prediction in the time window. On the other hand, our system
should be able to show information to users when there are no
patrons in line as well. In addition, it must be able to properly
handle the case of a user leaving the line after being tracked as
entering the line or scanning out of line without scanning into
line. Thus, if 3 or more users are tracked as exiting the line
who originally came before the patron in question (based on
data points of exact time and ID in our entry data table), then
that user’s data point will be discarded. Similarly, if the user is
tracked as exiting the line without entering the line, their data
point will also be discarded so that our ML model can still
accurately predict wait times. Lastly, our system must have a
battery lasting three or more hours. We do not want to add a
large burden to the staff who must keep the devices in
operating conditions, so three hours gives the staff ample time
and opportunity to update the power source in times of low
customer count.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The diagram in Fig. 1 shows our entire system architecture.
On the left side is the hardware subsystem and on the right
side is the software subsystem.

Our solution to the previously described problem utilizes
RFID scanners to track wait times in line. This data is fed
through a machine learning model to then predict wait times in
the future. All of this data is stored in a Django SQL database,
which then propagates through to the frontend web application
where users can view the current and future wait times.

The hardware subsystem consists of three major
components: the inductor coil circuit, the Arduino, and the
Raspberry Pi. We created one total hardware component to Bf

2
18-500 Final Project Report: Team E6, 5/7/2022

Fig. 1. Block diagram of entire system architecture.6
connect to our software to be used as an RFID reader in the
line. The other hardware component used is a commercial
RFID reader to be used as the other scanner in the line. The
main connection between the hardware and software systems
are the RPis. The data flows from these hardware pieces to the
software backend.

The software subsystem consists mainly of the Django web
application server and the machine learning component. These
are connected in the backend for communicating information
to the user. The data flows from the backend of the server to
the frontend where the user can see the predicted wait time.

We originally wanted to have two custom-built RFID
readers in our system, but due to issues with the lab
equipment, we were only able to construct one. Ideally, if we
were to continue developing the project, we would solder the
circuit that’s on our proto-board twice to make two
ready-to-use boards. The custom-built reader and the
commercial reader read IDs at the same frequency, so for now
we are able to use one at the beginning of the line and one at

the end of the line.
Fig. 2 shows the actual implementation of our system. The

laptop screen shows our web application. On the right is an
ADALM, which powers the op amp in our circuit and
provides a 125 kHz sine wave to the scanner antenna portion
of the circuit. On the left is our inductor coil and the circuit
itself, which scans and demodulates the ID number via RFID.
The circuit is connected to an Arduino Uno, which converts
the analog bit signal to digital and sends it to the RPi Zero W.
The Arduino and the RPi are directly connected to each other
with a cable. Finally, the ID number is sent to our web server
via the wireless capabilities of the RPi Zero W.

Fig. 1. Block diagram of entire system architecture.

3
18-500 Final Project Report: Team E6, 5/7/2022

Fig. 2. Overall completed system with one RFID reader.

IV. DESIGN REQUIREMENTS

Our solution space has many critical constraints that we will
use to define success. To satisfy the use case requirement of
having a battery last three hours or more, our design requires a
125 kHz power source to power the RFID reader circuit and
an additional power source for the op amp, RPi, and Arduino
components.

To meet the use case of quick responsiveness of our web
application, we must have transmission from the RFID reader
to the server within 2 seconds and web application response
within 2 seconds. These requirements are based on the size of
the data, the channel bandwidth, and general expectation of
transmission delay. Users are likely to notice a delay if it is
over 2 seconds, and may leave the application entirely as a
result. In order to be usable, we have a design requirement of a
reasonable level of security in our web application, ensuring
corrupt user input does not crash our website and that our data
is securely stored and inaccessible to the public. Similarly, we
require that relevant data is displayed in a format easily
digestible to any possible users.

In order to satisfy the use case requirement of accurate data
being displayed, we require a margin of error for wait time to
be within 2 minutes or 10% - whichever quantity is larger.
This ensures that the predicted wait time closely reflects the
actual wait time for the entire range of possible times.
Similarly, we must ensure our design has proper error
mitigation, catching any cases of incomplete or invalid data to
ensure our data does not get affected and remains accurate. To

be able to hold up to 50 patrons at a time, we have a design
requirement of having a large enough SQL database.

V. DESIGN TRADE STUDIES

A. Hardware Subsystem
As shown in Fig. 1, our hardware subsystem will involve an

inductor coil that detects the presence of an RFID card.
(1)𝐿 = 𝑁2µ

0
𝑎 [𝑙𝑛 8𝑎

𝑟 − 2]
The inductance of our coil is found via equation (1) [1], where

is the inductance (in Henries), is the number of turns, is𝐿 𝑁 µ
0

the permeability of free space (), is the4π * 10−7 𝐻/𝑚 𝑎
radius of the loop (in meters), and is the radius of the wire𝑟
(in meters). Because our inductor coil detects and reads the
RFID card, it must be larger than the ID card in diameter. This
will cause to increase, resulting in a higher inductance.𝑎

(2)ω
0
 = 1

𝐿𝐶

(3)ω = 2π𝑓
This inductance is then used to calculate the capacitance
required to achieve our resonant frequency. The calculation for
this is shown in equation (2), where is the resonantω

0

frequency and is the capacitance needed. Since we are𝐶
operating at 125 kHz, we will use equation (3) to convert this
to angular frequency. 125 kHz is used to power the system
because that is the RFID frequency used in ID cards [2].

B. Computers
Other design choices include which devices will connect to

our circuit and transmit our data. The use of the Arduino Uno
allows the system to be easily adaptable, as we can modify
how the circuit behaves via the Arduino code. This allows us
to customize the LED lights, sound, and more. The use of the
Raspberry Pi Zero W as our microcontroller unit allows us to
send data wirelessly to our web server thanks to facile
connection to the Arduino. We chose to use two separate
controllers so that both components of the system (software
and hardware) can be developed in parallel, and easily
combined at the end. This worked out well; the circuit was
tested and debugged with the Arduino attached, and the
software component was tested using the RPi hooked up to a
commercial RFID reader. These two components were also
chosen simply because they were readily available to the
project, allowing us to begin work as early as possible.

C. Web Application Frontend Subsystem
For our web application frontend, the main design

requirement is being intuitive, responsive, and easy to use. We
will use HTML, CSS, and Javascript to build our frontend
design. While we considered writing our own CSS for the
design, we looked into possible frontend frameworks that have
built-in components we could utilize. Bootstrap is a responsive
open-source frontend framework that contains CSS and
Javascript-based design templates for many types of interface
components, such as navigation, forms, and typography, thus
satisfying our design needs. There are many existing themes

4
18-500 Final Project Report: Team E6, 5/7/2022

that we could utilize and easily add to our project. Our team
also has experience using Bootstrap in web applications. As a
result, implementing a Bootstrap framework can fit in our
project timeline while also meeting our design requirements.

D. Web Application Backend Subsystem
For our web application backend, we performed a design

review of a few different backend frameworks. The two
frameworks that stood out for our application were Express
and Django. Express is a minimal and fast framework that
provides some core framework functionalities while remaining
very flexible, thus suiting some of our design needs. However,
there is a lack of definition of a lot of functionality that would
make it difficult to ramp up quickly and complete our project
within the semester time limit.

On the other hand, Django is a Model-View-Template
framework that contains many features we need for our
solution, namely security and authentication tools. The models
make it simple to deal with the database, the templates set us
up to reuse many components, and the views contain all
business logic required for our application. The built-in
structure is robust and simple, making it easy for developers to
write efficient and clean code. Our team also has extensive
experience using Django, so we would be able to quickly jump
into the code. Through performing this design review, we were
able to make the decision to use Django.

E. Machine Learning Backend Component
One of our most important design requirements is accuracy

in predicting wait times, which relies completely on our neural
network. The main design choices affecting accuracy are the
optimizer and loss functions used by the network.

The optimizer function called Adam, or adaptive moment
estimation, has been shown to require little memory as well as
converge on a model much faster than other types of optimizer
functions [5]. Although most of the optimizer functions are
similarly simple to implement using tensorflow, we decided
to utilize Adam in order to make our neural network as robust
as possible.

The loss function is used to minimize the error while
training the neural network model. We chose to use mean
squared error (MSE) since that makes the most sense with
regression.

Another component impacting the accuracy and training of
the neural network is its architecture. The one we chose is
discussed further in the System Implementation section below.

VI. SYSTEM IMPLEMENTATION

Our overall system solution is a combination of hardware
and software. On the hardware end, we built one RFID reader,
placed at the entrance of the line, for users to scan in. A
commercial RFID reader is placed at the end of the line for
users to scan out. This setup allowed us to focus on creating
and testing the custom-built RFID reader, which would just be
duplicated to replace the commercial reader. A Raspberry Pi
sends the time data and ID number to our backend server
(views.py), which will be analyzed and parsed by our ML

model and displayed by our web application frontend.

A. Hardware Subsystem
Our hardware subsystem consists of four components: (1)

the inductor coil, which detects and reads the RFID card; (2) a
circuit which filters, demodulates, and delivers the signal; (3)
an Arduino, which captures the data from the circuit and
controls various circuit features; and (4) a Raspberry Pi
microcontroller unit (RPi MCU) which connects to the
Arduino and transmits the data to our web server.

Fig. 3. Schematic of circuit and connected Arduino. Image shown larger
in Appendix. This image is taken from the 18-220 Lab 4C handout.

Fig. 3 shows our circuit design. This figure can be found in
a larger size at the end of our report. The circuit has four
stages: (1) The scanner antenna and tuning components, (2)
The input demodulator, (3) The demodulator filter, and (4) a
final low pass filter. The circuit is connected to an Arduino,
which: powers the op-amp; powers and controls the LED
lights and speaker; captures the output information, which
contains the bit code of the RFID chip; and transmits this
information to our Raspberry Pi.

Fig. 4. Connection of Arduino to RPi MCU.

Fig. 4 [3] shows how the Arduino is connected to the
Raspberry Pi. A USB connection allows for transmission of
data from the Arduino to the Raspberry Pi, which can then
send the data to our web server via an internet connection.

5
18-500 Final Project Report: Team E6, 5/7/2022

Fig. 5. Completed circuit.

Fig. 5 shows the finished circuit on a Perma-Proto Board,
ready to be connected to the inductor coil and Arduino.

B. Web Application Frontend Subsystem
The web application frontend consists of HTML to display

each page, CSS to design each page, and Javascript to handle
the user interactions. Our HTML has the following structure: a
base page that all pages extend (reusable component), a
navigation bar that is included in the base page, and the two
pages that represent the home page and about page. Our CSS
is a combination of our own implementation and a Bootstrap
template.

When the web application is opened or reloaded, a request
is sent to the backend to retrieve the predicted and live wait
times as well as the wait time predictions for the day. The data
is then displayed on the home page. The views.py file is
responsible for rendering each page and retrieving the wait
time.

Fig. 6. views.py, which depicts the rendering of HTML pages.

For the home page design, we display: the predicted wait
time; the live wait time; a graph of the wait times for the
current day, as collected by our ML model; and a form to
allow the user to input their entry and exit time in the case that
they forget to scan in and out on the RFID readers, as seen in
Fig. 7. Graph data points are shown in 15 minute intervals,
and a user can hover over the point to see point details.

Fig. 7. The final design of our web application home page.

In views.py, the data from a form submission is received as
a POST request, and it is either validated or rejected. If it is a
valid data point, views.py sends the success message and the
HTML is updated with a success banner. In the case that it is
an invalid data point, the error message is sent, and the user is
prompted to edit their form response based on the error
received. Examples of both success and error messages can be
seen in Fig. 8.

6
18-500 Final Project Report: Team E6, 5/7/2022

Fig. 8. Possible success and error messages displayed to the user..

C. Web Application Backend Subsystem
Our web application software backend consists almost

entirely of Django, a Python-based open-source framework
that follows the model/template/views architectural
framework. As shown in Fig. 9, the system receives
information from the RFID scanners, including the ID number
that was scanned. This data is stored in the Django SQL
database as either an Entry model object for the first scan or
as a WaitTime model object for the second scan (Fig. 10).
When data from a second scan comes in, views.py searches
for the Entry model object with the matching ID number,
combines it with the current time to create a new WaitTime
model object, and deletes the used Entry model object.

Fig. 9. Software data flow diagram.

Fig. 10. models.py, which depicts the Django SQL database structure.

In addition to the data from the RFID scanners, data

7
18-500 Final Project Report: Team E6, 5/7/2022

collected from the user input form on the web application
frontend is also stored in the SQL database. The form inputs
are validated using several Django validators in order to
implement an allow list. By utilizing both syntactic validation
to ensure the user input has the correct syntax as well as
semantic validation to enforce correctness of the input values
in the specific business context (i.e. time is within operating
hours, wait time is under an hour), the allow list protects
against both cross-site scripting (XSS) and SQL injection
attacks.

When a wait time is requested by the frontend subsystem of
the web application, the backend will call upon the neural
network (described in the section below) to predict the wait
time for the appropriate input time using the most recently
trained and saved neural network model.

We will retrain our neural network once each week outside
of business operating hours with all of the available data in the
SQL database since it takes around an hour to train. The
backend code reformats each WaitTime model object into the
right inputs and output to the neural network as necessary.
Any data more than one month old is discarded by the
backend system by simply deleting it from the SQL database
in order to avoid overfitting our ML model or using any stale
data.

Overall, our web application server is hosted on AWS as an
EC2 instance. We used a t2.medium instance type in order to
have enough memory and space for all the necessary libraries
and the ML model. In addition, our domain name
(waitr.link) is mapped to our server using Route53. We were
also able to encrypt our web application with SSL using
certbot, which means that all of our traffic is routed to https
to make it more secure.

D. Machine Learning Backend Component
To design our neural network, we are using the tensorflow

Python library. This allows us to choose every piece of the
network, including the dense layers, optimization function,
learning rate, loss function, and evaluation metrics.

Our neural network model design is as displayed in Fig. 11.
We chose to utilize two hidden layers because our mapping is
not linear and therefore needs at least one, but it is also not
complex enough to require very deep learning. In addition,
two or fewer layers is often enough for more simple datasets
[4].

Fig. 11. Neural network design.

Our data flows through the neural network using three
inputs: the day of the week (mapped from 1-7), the hour of the
day (mapped from 0-24), and the minute of the hour (mapped
from 0-60). After passing through the hidden layers, the
network will have one output representing the wait time.
There are many rule-of-thumb methods to determine the
number of hidden neurons [4], so we decided to start with
three neurons on the first hidden layer and two neurons on the
second hidden layer. After testing, we kept this design as it
was the most accurate.

Since we need our neural network to predict a single
numerical value, it represents a regression with no activation
function. Thus, we chose mean squared error (MSE) as the
loss function since it fits best with regression models in terms
of guiding the optimizer function based on the loss output. For
the optimizer, we chose a gradient descent algorithm
derivative algorithm called Adam that adds fractions of
previous gradients to the current gradient [5]. We decided to
use this optimizer because it is computationally efficient and
requires little memory usage. We initially chose a learning rate
of 0.001 to start since this is the default value. However, after
some initial testing, our loss function yielded a very high
value. In the end, we chose a slightly higher learning rate of
0.01 for a quicker pass of the data and for more accurate
training since our output is rounded to integer values.

When fitting our neural network model, we need to
determine the right number of epochs to avoid overfitting. We
started with 100 and checked the loss function output as
discussed in testing. We did not end up changing the number
of epochs. We chose 32 for our batch size because it typically
leads to the best results [6].

VII. TEST, VERIFICATION AND VALIDATION

We performed several testing methods to evaluate the
design implementation and make comparisons to theoretical
design trade-offs. These tests both validated and verified our
final solution.

A. Results for Power Source Design Requirement
As we developed our system, the power source design

requirement became obsolete. This is due to the fact that our

8
18-500 Final Project Report: Team E6, 5/7/2022

circuit input must be powered by a 125 kHz, 5Vpp sine wave
and includes an op amp, which requires +/- 5V of DC power.
These requirements mean that we must have a custom power
unit, which can convert AC power from a standard wall outlet
to these two power sources. For demonstration and testing
purposes, the circuit is currently powered by one ADALM,
plugged into a laptop, which meets these requirements.
Because the laptop can be plugged in, this technically puts our
battery life at an infinite time, thus making this test null.

B. Results for Extracting RFID Bit Code Requirement
To test how well our system is able to accurately extract an

RFID bit code, we broke the connection in two places. First,
we broke the connection from the circuit to the Arduino, and
instead sent the output to an oscilloscope. At first, the signal
could not be seen, but after troubleshooting our circuit and the
lab equipment we were able to see the bit code encoded in a
square wave while an RFID tag was being scanned (Fig. 12).

Fig. 12. RFID bit code displayed on an oscilloscope.

We then broke the connection from the Arduino to the RPi,
and instead of sending data to the RPi, printed it to the serial
monitor (Fig. 13). This showed the bit tag in hexadecimal
upon scanning a tag.

Fig. 13. Bit code, in hexadecimal, displayed on the Arduino serial monitor.
To prove that the circuit was able to successfully and

accurately send the code to the Arduino, and the Arduino was
able to convert the analog signal to digital, we compared the
value to that from a commercial RFID scanner, and found ours
to be correct. This shows that we are able to reliably track ID
values, which is integral to our system.

C. Results for Transmission from Scanner to Server
Requirement

Since we wanted our scanners to be usable almost
immediately after each scan, we needed to ensure that the time
of transmission from the RFID reader itself to the web server
was under 2 seconds. To verify this design requirement, we
recorded the start time as the exact time when the ID was
scanned by the RFID reader, and we recorded the end time as
the exact time when the POST request from the RPi to the web
server was completed. Subtracting the start time from the end
time yielded the full transmission time.

We performed the above test 50 separate times by printing
the transmission time to the console to give us 50 data points
to verify our solution. The results can be seen in Fig. 14
below.

Fig. 14. Graph of 50 separate tests of scanner to server transmission time.

As shown in the graph, every single test resulted in a total
transmission time of less than 2 seconds, and the average time
was 0.96 seconds. Thus, we were able to meet our design
requirement of a quick time of transmission from the scanner
to the server, ensuring that our scanner would be readily
available after each scan for any user.

Although these results are promising and meet our
requirements, there is still potential for breaking through this
limitation and lowering the average transmission time by
altering our system. Raspberry Pi computers are typically seen
as fast, there is still a difference between the models that
impacts speed performance. The RPi that we used is an RPi
Zero W, which has a 1 GHz single-core processor. In
comparison, an RPi 3 B has a 1.2 GHz quad-core processor,
which is faster and can handle larger data. Therefore, utilizing

9
18-500 Final Project Report: Team E6, 5/7/2022

a newer model of RPi would likely make the transmission
time to the server faster.

Another potential speed improvement has to do with the
hosting location of our web application entirely. Due to prior
team experience, we decided to host our server on AWS.
However, if the server was hosted on the RPi itself instead of
having the RPi send a POST request to the server, the
transmission time from the scanner to the server would likely
improve since there would be less steps involved to save the
scan data to the proper table in the database.

If we were given unlimited time and resources, we would
adjust our system to implement the two changes discussed
above to break through our original limitation of the
transmission time being less than 2 seconds. With these
changes, it is possible that the requirement could be changed
to always less than at least 1.5 seconds, but maybe even 1
second.

D. Results for Web Application Response Time
Requirement

To ensure the web application does not appear slow, we
printed the time it took for the page to reload with new data
based on updates to the data. Similar to the transmission tests,
we recorded the start time as the exact time when the exit scan
was performed on the RFID reader, and we recorded the end
time as the exact time when the live value changes. This was
done by checking the live time from the backend every 25
milliseconds within a 4 second interval. When the live wait
time value updates with a different value, the exact time of
that event is printed. Subtracting the start time from the end
time yielded the full response time.

We performed the above test 50 separate times by printing
the response time to the console to give us 50 data points to
verify our solution. The results can be seen in Fig. 15 below.

Fig. 15. Graph of 50 separate tests of web application response time.

As shown in the graph, the average time was 1.84 seconds,
satisfying the design expectation of under 2 seconds and the
use-case requirement of not appearing noticeably slow for
users. While there are some spikes above the 2 second limit, it
is the average that we care most about, as that shows us
overall system performance.

There are a few ways to decrease this time. As mentioned

above, there are 2 main changes considered to decrease
transmission time, which accounts for almost half of the
response time. Beyond that, we could speed up our
transmission from the server to the frontend by reducing the
number of queries being made, defining more asynchronous
processes, and essentially optimizing the way we wrote our
code.

E. Results for Input Validation Requirement
To ensure no invalid data entered our database and affected

our wait time accuracy, we implemented input validation and
conducted validation testing. We ensure form and scan times
had already passed in history, that times were during Exchange
business hours, and that the entry time occurred before the exit
time. We wrote unit tests that considered an extensive
possibility of edge cases, and updated our code with any failed
tests. We did this process iteratively until we had a 100% pass
rate.

F. Results for Database Size Requirement
The maximum capacity for a SQL database is 524,272

terabytes according to the Microsoft specifications, which
equates to billions of rows. Even with a limited server size of
16 GB based on the EC2 instance we are using, we are able to
store at least 50 rows in our Entry table. We validated this
requirement of being able to keep track of up to 50 patrons by
scanning as many IDs to store them in the database. After
populating the table with these values, there were no errors
with handling all 50 data points, resulting in the ability of our
database to hold all necessary data at once.

VIII. PROJECT MANAGEMENT

This section describes our project schedule, team member
responsibilities, bill of materials with budget, AWS usage, and
risk management.

A. Schedule
Our Gantt Chart can be found in Fig. 18 at the end of our

report. Milestones include completion of the hardware and
software components, combining the components, completing
final testing, and presenting our final design at the project
demos.

Our schedule has changed from the schedule we had in our
design report. We replaced the soldering step with the quicker
task of assembling the circuit on a Proto-Perma Board, as this
would still allow us to show what the final circuit would look
like soldered. We also had to remove the exploration of
execution in an on-campus eatery, as our system was not as
compact as we had hoped due to issues with providing the
necessary power to the system. We were able to otherwise
complete the assembly and testing of our system on time,
resulting in a successful project and demo.

B. Team Member Responsibilities
We essentially had one team member working on each

subsystem individually until it was time to connect them
together. The hardware subsystem was completed by Sam,

10
18-500 Final Project Report: Team E6, 5/7/2022

which included planning, creating, and further developing the
inductor coil, demodulating and filtering the circuit, and
working with the Arduino Uno. The software component will
be split between Dina and Sophie. Dina completed the
software web application frontend, while Sophie worked on
the software web application backend, including the ML
component and hosting on AWS. Dina and Sophie also
worked together to connect Sam’s circuit to the RPi and send
POST requests from the RPi to the web server.

As each subsystem was developed, we worked together to
ensure that the connection between them functioned properly.
All members worked together to complete deliverables,
including our reports, presentations, final video, and demo.

C. Bill of Materials and Budget
See Fig. 17 at the end of the report for a table of parts and

costs.
Items highlighted in gray were not used in the project; this

includes an RFID Power Source (as it did not come in time)
and 3D-Printed Hardware Casing (as we did not have time to
solder a smaller version of our circuit).

Items highlighted in blue were not originally planned for;
this includes an ADALM (which was used in lieu of the RFID
Power Source) and a Perma-Proto Board (which was used to
create the model of our soldered circuit. We did not know this
modern type of soldering board existed before doing research).

D. AWS Usage
Our AWS credits were used to host our web application on

an EC2 instance. We needed to utilize a t2.medium instance
type to fulfill the required amount of space and memory for
our database and our ML model. We also used Route53 for
hosting our domain name and connecting it to our EC2
instance. By the end of the project demo, all $50 of credits we
were given will be used. We would like to thank AWS for
these credits and giving us the ability to easily host and
manage our web application.

E. Risk Management
Our main project risk was our hardware component;

adapting the design of the 18-220 RFID lab to reading a real
CMU ID was a tricky task. In the lab, cards encoded with bit
tags and power from waveform generators were used.
However, for a real-life application, we did not want to have
these - we instead wanted to read CMU ID cards that we did
not know the resonance frequency of, and AC or DC power.
Unfortunately, both of these risks required workarounds. We
found that CMU ID cards do not resonate at the most common
RFID frequency of 125 kHz, and even after some research,
had no real way of ascertaining their resonance frequency. We
mitigated this issue by pivoting and instead using the 220 lab
cards as our “IDs”. This allowed us to continue building and
testing our circuit at 125 kHz, and to have many data points -
rather than just testing with our three CMU IDs, we now had
many cards to really test our system with. The problem of
powering our circuit and devices also became an issue as we
designed our solution. Although our RPi and Arduino could be

powered with standard AC power from an outlet, the circuit
had components that required specialized sources. The
resonance stage required a 5 Vpp, 125 kHz sine wave, while
an op amp in the circuit required +/-5 V DC power. While
testing, we relied on lab equipment, but this was not a
sustainable solution for even the demo. We mitigated this issue
by ordering an ADALM, which can act as an oscilloscope,
signal generator, and power supply when connected to a
laptop. This allowed us to have a portable system for testing
and demonstration purposes. It also allowed us to resolve an
anticipated risk: much of the equipment in the labs worked
improperly or was not calibrated. This caused our system to
fail to read the RFID cards, even when it was constructed
properly. The ADALM solved this problem by providing a
reliable way of powering and testing the circuit.

Another unanticipated risk we faced was with our software
component. As we built our website, we worried about it
being hard to tell the difference between live (from
RFID/input data) and predicted (from our ML model) wait
times. We solved this issue by listing two separate, labeled
wait times on the site, so that users can use both forms of data
to make the decision that is best for them.

IX. ETHICAL ISSUES

One potential ethical issue with our project is the fact that
when ID numbers are sent from the RFID reader to the web
server and stored in the backend database, they are not
encrypted. With our current implementation, this does not
really present a problem because we are using ID cards from
the 18-220 lab that do not contain any personal information.
However, if we were to adjust our circuit to be able to read
CMU IDs instead, then our web application would be holding
onto unencrypted personal information after the entry scan and
before the exit scan. By implementing an encryption scheme,
this information could be kept safe from anyone trying to
access it since it would no longer be exposed.

Another ethical issue is potentially knowing how many
people are in an area based on the wait time shown on our web
application. Especially since we display a live wait time on the
home page, someone could determine how many people are in
line and thus how many are in the restaurant based on the time
shown. This is sensitive information, but it would be available
to anyone who checks our web application. To mitigate this
issue, we could require users to sign in using SSO through
CMU to attempt to limit who has access to our web
application.

In addition, although we have input validation on the form
on our web application, there is still a chance that someone
could put false times into the form. Since we do not have any
tracking of who uses the web app since we do not make
anyone login, we would be unable to tell who put the false
times into the form. These inputs would directly impact our
ML model since the data would be used to train the neural
network, which would then begin to affect our users since the
predicted wait times would change. Mitigating this issue could
involve validating form input times with the ML model

11
18-500 Final Project Report: Team E6, 5/7/2022

prediction or the current RFID reader input data to see if they
match closely enough.

Finally, one more ethical issue with our project is our ML
model predicting noticeably incorrect wait times. This would
quickly cause us to lose users since they would no longer trust
our product. We could mitigate this issue by continuing to
audit the ML model as well as by retraining it with the most
accurate to live data that we can.

X. RELATED WORK

Work related to our project includes the 18-220 lab that our
circuit design was adapted from. While only experimental in
nature, the goal of this lab is to construct a working RFID
reader, which is a key feature of our own project’s design.

Other related work includes other forms of occupancy
sensors; while our project uses RFIDs to count the number of
people in line, this can also be achieved through imaging
programs like ComputerVision. While other methods may be
trickier to implement, they can eliminate the need for
crowdsourced data, thus potentially improving accuracy and
user experience.

In addition, this project could also be achieved through a
purely software implementation where users input their wait
time manually or their entry/exit time manually. Although this
application could yield somewhat accurate results, having
real-time data through the RFID scanners improves the
accuracy immensely.

Another piece of related work is a study predicting patient
wait time in a queue in the emergency room using deep
learning algorithms [7].

XI. SUMMARY

Our system was able to meet our design requirements by
providing a solution for the very prevalent problem on campus
of unexpected long waits. We successfully built a system that
accurately collects wait time information, publishes that
information for users to view, and provides estimated wait
times based on accumulated data. On both the hardware and
web application fronts, our system is easy to use, intuitive, and
efficient. The main limit on our system’s performance is its
lack of use in the real world. As a system whose data is
crowdsourced, it is difficult for our ML model to learn trends
and build in accuracy without real use in a line. With more
time, we could consolidate our hardware by soldering and
boxing the circuit in order to have a simple interface for users
to scan in on. We would adapt our circuit to the frequency of
CMU IDs, after researching which frequency they resonate at.
Finally, we would create a custom power unit so that our
system could be powered by one standard AC power cord. On
the software side, we could improve this project by building a
framework that could easily be reused for other waiting lines.
They could customize business hours and reuse components of
our ML model to easily set up the software for another line.

We learned many lessons throughout the development of
our system. For one, we learned the hard way to always test
your equipment! Weeks were spent debugging bugs that did

not exist simply due to faulty equipment, and this time could
have been used to create another custom board, or begin
soldering.

On the software side, we learned that training even a simple
ML model takes a great deal of time. In addition, it is very
important to coordinate well with anyone else involved in
writing code so that all components can be connected properly
and so that there are no issues with merging.

GLOSSARY OF ACRONYMS

RFID – Radio-frequency identification
ML – Machine learning
RPi – Raspberry Pi
MCU – Microcontroller Unit
Adam – Adaptive moment estimation
SQL – Structured query language
XSS – Cross-site scripting
MSE – Mean squared error

REFERENCES

[1] EMI Analyst Software, Circular Loop Inductance, Accessed on Mar. 2,
2022, [Online]. Available:
https://www.emisoftware.com/calculator/circular-loop/

[2] Microchip Technology, Inc., microID® 125 kHz RFID
System Design Guide, Accessed on Feb. 28, 2022, [Online]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/51115f.pdf

[3] Image from The Robotics Back-End: Raspberry Pi Arduino Serial
Communication – Everything You Need To Know, Accessed on Mar. 2,
2022, [Online].
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/

[4] Heaton, Jeff. Heaton Research. The Number of Hidden Layers, Accessed
on Feb. 23, 2022. [Online] Available:
https://www.heatonresearch.com/2017/06/01/hidden-layers.html

[5] Kingma, Diederik P. and Jimmy Ba, arXiv, Adam: A Method for
Stochastic Optimization, Accessed on Feb. 23, 2022, [Online].
Available: https://arxiv.org/abs/1412.6980

[6] Masters, Dominic and Carlo Luschi, arXiv, Revisiting Small Batch
Training for Deep Neural Networks, Accessed on Feb. 23, 2022,
[Online]. Available: https://arxiv.org/abs/1804.07612

[7] Hijry, Hassan and Richared Olawoyin, IJIEOM, Predicting Patient Wait
Time in the Queue System Using Deep Learning Algorithms in the
Emergency Room, Accessed on May 6, 2022, [Online]. Available:
https://www.ieomsociety.org/journals/volume3/vol-3-no-1-3.pdf

12
18-500 Final Project Report: Team E6, 5/7/2022

SUPPLEMENTAL FIGURES

Fig. 16. Schematic of circuit and connected Arduino.
Enlarged version of Fig. 3. This image is taken from the
18-220 Lab 4C handout.

Fig. 17. Bill of materials, including quantities and costs.

13
18-500 Final Project Report: Team E6, 5/7/2022

Fig. 18. Gantt chart with all milestones completed.

